machine.c 57.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
27
#include <linux/mman.h>
28

29 30
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

31 32 33 34
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
35
	init_rwsem(&dsos->lock);
36 37
}

38 39 40 41 42 43 44
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
45
		init_rwsem(&threads->lock);
46 47 48 49 50 51
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

52 53
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
54 55 56 57 58 59 60
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
61 62 63 64

	return machine->mmap_name ? 0 : -ENOMEM;
}

65 66
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
67 68
	int err = -ENOMEM;

69
	memset(machine, 0, sizeof(*machine));
70
	map_groups__init(&machine->kmaps, machine);
71
	RB_CLEAR_NODE(&machine->rb_node);
72
	dsos__init(&machine->dsos);
73

74
	machine__threads_init(machine);
75

76
	machine->vdso_info = NULL;
77
	machine->env = NULL;
78

79 80
	machine->pid = pid;

81
	machine->id_hdr_size = 0;
82
	machine->kptr_restrict_warned = false;
83
	machine->comm_exec = false;
84
	machine->kernel_start = 0;
85
	machine->vmlinux_map = NULL;
86

87 88 89 90
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

91 92 93
	if (machine__set_mmap_name(machine))
		goto out;

94
	if (pid != HOST_KERNEL_ID) {
95
		struct thread *thread = machine__findnew_thread(machine, -1,
96
								pid);
97 98 99
		char comm[64];

		if (thread == NULL)
100
			goto out;
101 102

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103
		thread__set_comm(thread, comm, 0);
104
		thread__put(thread);
105 106
	}

107
	machine->current_tid = NULL;
108
	err = 0;
109

110
out:
111
	if (err) {
112
		zfree(&machine->root_dir);
113 114
		zfree(&machine->mmap_name);
	}
115 116 117
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

135 136 137 138 139
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
140
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 142 143
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
144
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 146 147 148 149 150 151
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

152
static void dsos__purge(struct dsos *dsos)
153 154 155
{
	struct dso *pos, *n;

156
	down_write(&dsos->lock);
157

158
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
159
		RB_CLEAR_NODE(&pos->rb_node);
160
		pos->root = NULL;
161 162
		list_del_init(&pos->node);
		dso__put(pos);
163
	}
164

165
	up_write(&dsos->lock);
166
}
167

168 169 170
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
171
	exit_rwsem(&dsos->lock);
172 173
}

174 175
void machine__delete_threads(struct machine *machine)
{
176
	struct rb_node *nd;
177
	int i;
178

179 180
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
181
		down_write(&threads->lock);
182 183 184
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
185

186 187 188
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
189
		up_write(&threads->lock);
190 191 192
	}
}

193 194
void machine__exit(struct machine *machine)
{
195 196
	int i;

197 198 199
	if (machine == NULL)
		return;

200
	machine__destroy_kernel_maps(machine);
201
	map_groups__exit(&machine->kmaps);
202
	dsos__exit(&machine->dsos);
203
	machine__exit_vdso(machine);
204
	zfree(&machine->root_dir);
205
	zfree(&machine->mmap_name);
206
	zfree(&machine->current_tid);
207 208 209

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
210
		exit_rwsem(&threads->lock);
211
	}
212 213 214 215
}

void machine__delete(struct machine *machine)
{
216 217 218 219
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
235 236
			      const char *root_dir)
{
237
	struct rb_node **p = &machines->guests.rb_node;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
259
	rb_insert_color(&machine->rb_node, &machines->guests);
260 261 262 263

	return machine;
}

264 265 266 267 268 269 270 271 272 273 274 275 276
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

277
struct machine *machines__find(struct machines *machines, pid_t pid)
278
{
279
	struct rb_node **p = &machines->guests.rb_node;
280 281 282 283
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

284 285 286
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

303
struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
320
				seen = strlist__new(NULL, NULL);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

337 338
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
339 340 341
{
	struct rb_node *nd;

342
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 344 345 346 347
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

348
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 350 351 352
{
	struct rb_node *node;
	struct machine *machine;

353 354 355
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 357 358 359 360 361 362
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

363 364 365 366 367 368 369 370 371 372 373 374 375
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

376
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 378 379 380
	if (!leader)
		goto out_err;

	if (!leader->mg)
381
		leader->mg = map_groups__new(machine);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
398
		map_groups__put(th->mg);
399 400 401
	}

	th->mg = map_groups__get(leader->mg);
402 403
out_put:
	thread__put(leader);
404 405 406
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407
	goto out_put;
408 409
}

410
/*
411
 * Caller must eventually drop thread->refcnt returned with a successful
412 413
 * lookup/new thread inserted.
 */
414
static struct thread *____machine__findnew_thread(struct machine *machine,
415
						  struct threads *threads,
416 417
						  pid_t pid, pid_t tid,
						  bool create)
418
{
419
	struct rb_node **p = &threads->entries.rb_node;
420 421 422 423
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
424
	 * Front-end cache - TID lookups come in blocks,
425 426 427
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
428
	th = threads->last_match;
429 430 431
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
432
			return thread__get(th);
433 434
		}

435
		threads->last_match = NULL;
436
	}
437 438 439 440 441

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

442
		if (th->tid == tid) {
443
			threads->last_match = th;
444
			machine__update_thread_pid(machine, th, pid);
445
			return thread__get(th);
446 447
		}

448
		if (tid < th->tid)
449 450 451 452 453 454 455 456
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

457
	th = thread__new(pid, tid);
458 459
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
460
		rb_insert_color(&th->rb_node, &threads->entries);
461 462 463 464 465 466 467 468 469

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
470
		if (thread__init_map_groups(th, machine)) {
471
			rb_erase_init(&th->rb_node, &threads->entries);
472
			RB_CLEAR_NODE(&th->rb_node);
473
			thread__put(th);
474
			return NULL;
475
		}
476 477 478 479
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
480 481
		threads->last_match = th;
		++threads->nr;
482 483 484 485 486
	}

	return th;
}

487 488
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
489
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
490 491
}

492 493
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
494
{
495
	struct threads *threads = machine__threads(machine, tid);
496 497
	struct thread *th;

498
	down_write(&threads->lock);
499
	th = __machine__findnew_thread(machine, pid, tid);
500
	up_write(&threads->lock);
501
	return th;
502 503
}

504 505
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
506
{
507
	struct threads *threads = machine__threads(machine, tid);
508
	struct thread *th;
509

510
	down_read(&threads->lock);
511
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
512
	up_read(&threads->lock);
513
	return th;
514
}
515

516 517 518 519 520 521 522 523 524
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

525 526
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
527
{
528 529 530
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
531
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
532
	int err = 0;
533

534 535 536
	if (exec)
		machine->comm_exec = true;

537 538 539
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

540 541
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
542
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
543
		err = -1;
544 545
	}

546 547 548
	thread__put(thread);

	return err;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

582
int machine__process_lost_event(struct machine *machine __maybe_unused,
583
				union perf_event *event, struct perf_sample *sample __maybe_unused)
584 585 586 587 588 589
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

590 591 592 593 594 595 596 597
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

598 599 600
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
601 602 603
{
	struct dso *dso;

604
	down_write(&machine->dsos.lock);
605 606

	dso = __dsos__find(&machine->dsos, m->name, true);
607
	if (!dso) {
608
		dso = __dsos__addnew(&machine->dsos, m->name);
609
		if (dso == NULL)
610
			goto out_unlock;
611

612
		dso__set_module_info(dso, m, machine);
613
		dso__set_long_name(dso, strdup(filename), true);
614 615
	}

616
	dso__get(dso);
617
out_unlock:
618
	up_write(&machine->dsos.lock);
619 620 621
	return dso;
}

622 623 624 625 626 627 628 629
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

630 631 632 633 634 635 636 637
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

638 639 640 641 642 643 644 645
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

661
	dso__set_long_name(dso, dup_filename, true);
662 663
}

664 665
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
666
{
667
	struct map *map = NULL;
668
	struct dso *dso = NULL;
669
	struct kmod_path m;
670

671
	if (kmod_path__parse_name(&m, filename))
672 673
		return NULL;

674
	map = map_groups__find_by_name(&machine->kmaps, m.name);
675 676 677 678 679 680 681
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
682
		goto out;
683
	}
684

685
	dso = machine__findnew_module_dso(machine, &m, filename);
686 687 688
	if (dso == NULL)
		goto out;

689
	map = map__new2(start, dso);
690
	if (map == NULL)
691
		goto out;
692 693

	map_groups__insert(&machine->kmaps, map);
694

695 696
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
697
out:
698 699
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
700
	free(m.name);
701 702 703
	return map;
}

704
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
705 706
{
	struct rb_node *nd;
707
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
708

709
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
710
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
711
		ret += __dsos__fprintf(&pos->dsos.head, fp);
712 713 714 715 716
	}

	return ret;
}

717
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
718 719
				     bool (skip)(struct dso *dso, int parm), int parm)
{
720
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
721 722
}

723
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
724 725 726
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
727
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
728

729
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
730 731 732 733 734 735 736 737 738 739
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
740
	struct dso *kdso = machine__kernel_map(machine)->dso;
741 742 743

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
744 745
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
746 747 748 749 750 751 752 753 754 755 756 757 758
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
759 760
	size_t ret;
	int i;
761

762 763
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
764 765

		down_read(&threads->lock);
766

767
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
768

769 770
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
771

772 773
			ret += thread__fprintf(pos, fp);
		}
774

775
		up_read(&threads->lock);
776
	}
777 778 779 780 781
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
782
	const char *vmlinux_name = machine->mmap_name;
783 784 785
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
786 787 788
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

789 790
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
791
	} else {
J
Jiri Olsa 已提交
792 793 794
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

795 796 797
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
798 799 800 801 802 803 804 805 806 807 808 809
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

810 811 812 813 814 815 816 817 818
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

819 820 821 822 823 824
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
825 826
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
827
{
828
	char filename[PATH_MAX];
829
	int i, err = -1;
830 831
	const char *name;
	u64 addr = 0;
832

833
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
834 835 836 837

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

838
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
839 840
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
841 842 843
			break;
	}

844 845 846
	if (err)
		return -1;

847 848
	if (symbol_name)
		*symbol_name = name;
849

850 851
	*start = addr;
	return 0;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/* Kernel-space maps for symbols that are outside the main kernel map and module maps */
struct extra_kernel_map {
	u64 start;
	u64 end;
	u64 pgoff;
};

static int machine__create_extra_kernel_map(struct machine *machine,
					    struct dso *kernel,
					    struct extra_kernel_map *xm)
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;

	map_groups__insert(&machine->kmaps, map);

	pr_debug2("Added extra kernel map %" PRIx64 "-%" PRIx64 "\n",
		  map->start, map->end);

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
	u64 pgoff = find_entry_trampoline(kernel);
	int nr_cpus_avail, cpu;

	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

	return 0;
}

950 951
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
952
{
953 954
	struct kmap *kmap;
	struct map *map;
955

956 957 958
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

959 960 961
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
962

963 964 965 966 967
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
968

969 970
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
971 972 973 974 975 976

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
977 978
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
979

980 981
	if (map == NULL)
		return;
982

983 984 985 986 987
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
988
	}
989 990

	map__zput(machine->vmlinux_map);
991 992
}

993
int machines__create_guest_kernel_maps(struct machines *machines)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1042
void machines__destroy_kernel_maps(struct machines *machines)
1043
{
1044 1045 1046
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
1047 1048 1049 1050 1051

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1052
		rb_erase(&pos->rb_node, &machines->guests);
1053 1054 1055 1056
		machine__delete(pos);
	}
}

1057
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1058 1059 1060 1061 1062 1063 1064 1065 1066
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1067
int machine__load_kallsyms(struct machine *machine, const char *filename)
1068
{
1069
	struct map *map = machine__kernel_map(machine);
1070
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1071 1072

	if (ret > 0) {
1073
		dso__set_loaded(map->dso);
1074 1075 1076 1077 1078
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1079
		map_groups__fixup_end(&machine->kmaps);
1080 1081 1082 1083 1084
	}

	return ret;
}

1085
int machine__load_vmlinux_path(struct machine *machine)
1086
{
1087
	struct map *map = machine__kernel_map(machine);
1088
	int ret = dso__load_vmlinux_path(map->dso, map);
1089

1090
	if (ret > 0)
1091
		dso__set_loaded(map->dso);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1133
	struct map *map = map_groups__find_by_name(mg, m->name);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1155
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1156
				const char *dir_name, int depth)
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1181 1182 1183 1184 1185 1186 1187 1188 1189
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1190 1191 1192
			if (ret < 0)
				goto out;
		} else {
1193
			struct kmod_path m;
1194

1195 1196 1197
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1198

1199 1200
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1201

1202
			free(m.name);
1203

1204
			if (ret)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1223
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1224 1225 1226
		 machine->root_dir, version);
	free(version);

1227
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1228
}
1229 1230 1231 1232 1233
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1234

1235 1236
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1237
{
1238
	struct machine *machine = arg;
1239
	struct map *map;
1240

1241 1242 1243
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1244
	map = machine__findnew_module_map(machine, start, name);
1245 1246
	if (map == NULL)
		return -1;
1247
	map->end = start + size;
1248 1249 1250 1251 1252 1253 1254 1255

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1256 1257 1258
	const char *modules;
	char path[PATH_MAX];

1259
	if (machine__is_default_guest(machine)) {
1260
		modules = symbol_conf.default_guest_modules;
1261 1262
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1263 1264 1265
		modules = path;
	}

1266
	if (symbol__restricted_filename(modules, "/proc/modules"))
1267 1268
		return -1;

1269
	if (modules__parse(modules, machine, machine__create_module))
1270 1271
		return -1;

1272 1273
	if (!machine__set_modules_path(machine))
		return 0;
1274

1275
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1276

1277
	return 0;
1278 1279
}

1280 1281 1282
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1283 1284 1285 1286 1287 1288 1289 1290
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1291 1292
}

1293 1294 1295
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1296
	const char *name = NULL;
1297
	struct map *map;
1298
	u64 addr = 0;
1299 1300
	int ret;

1301
	if (kernel == NULL)
1302
		return -1;
1303

1304 1305 1306
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1318 1319
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
1320
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1321 1322 1323
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1336 1337
	}

1338 1339 1340 1341 1342
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);

1343 1344 1345
	return 0;
}

1346 1347 1348 1349
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1350
	list_for_each_entry(dso, &machine->dsos.head, node) {
1351 1352 1353 1354 1355 1356 1357
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1358 1359 1360 1361 1362 1363 1364
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1365 1366 1367 1368
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1369 1370 1371 1372 1373 1374
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1375 1376
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1377 1378
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1379 1380
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1381 1382 1383 1384 1385 1386
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1387
				strlen(machine->mmap_name));
1388 1389 1390 1391
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1392 1393 1394
		struct dso *kernel = NULL;
		struct dso *dso;

1395
		down_read(&machine->dsos.lock);
1396

1397
		list_for_each_entry(dso, &machine->dsos.head, node) {
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1418 1419
				continue;

1420

1421 1422 1423 1424
			kernel = dso;
			break;
		}

1425
		up_read(&machine->dsos.lock);
1426

1427
		if (kernel == NULL)
1428
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1429 1430 1431 1432
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1433 1434
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1435
			goto out_problem;
1436
		}
1437

1438 1439
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1440

1441 1442
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1443 1444 1445 1446 1447 1448 1449

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1450 1451 1452
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1453 1454 1455 1456 1457 1458
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1459
			dso__load(kernel, machine__kernel_map(machine));
1460 1461 1462 1463 1464 1465 1466
		}
	}
	return 0;
out_problem:
	return -1;
}

1467
int machine__process_mmap2_event(struct machine *machine,
1468
				 union perf_event *event,
1469
				 struct perf_sample *sample)
1470 1471 1472 1473 1474 1475 1476 1477
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1478 1479
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1480 1481 1482 1483 1484 1485 1486
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1487
					event->mmap2.tid);
1488 1489 1490
	if (thread == NULL)
		goto out_problem;

1491
	map = map__new(machine, event->mmap2.start,
1492
			event->mmap2.len, event->mmap2.pgoff,
1493
			event->mmap2.maj,
1494 1495
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1496 1497
			event->mmap2.prot,
			event->mmap2.flags,
1498
			event->mmap2.filename, thread);
1499 1500

	if (map == NULL)
1501
		goto out_problem_map;
1502

1503 1504 1505 1506
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1507
	thread__put(thread);
1508
	map__put(map);
1509 1510
	return 0;

1511 1512
out_problem_insert:
	map__put(map);
1513 1514
out_problem_map:
	thread__put(thread);
1515 1516 1517 1518 1519
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1520
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1521
				struct perf_sample *sample)
1522 1523 1524
{
	struct thread *thread;
	struct map *map;
1525
	u32 prot = 0;
1526 1527 1528 1529 1530
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1531 1532
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1533 1534 1535 1536 1537 1538
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1539
	thread = machine__findnew_thread(machine, event->mmap.pid,
1540
					 event->mmap.tid);
1541 1542
	if (thread == NULL)
		goto out_problem;
1543

1544
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1545
		prot = PROT_EXEC;
1546

1547
	map = map__new(machine, event->mmap.start,
1548
			event->mmap.len, event->mmap.pgoff,
1549
			0, 0, 0, 0, prot, 0,
1550
			event->mmap.filename,
1551
			thread);
1552

1553
	if (map == NULL)
1554
		goto out_problem_map;
1555

1556 1557 1558 1559
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1560
	thread__put(thread);
1561
	map__put(map);
1562 1563
	return 0;

1564 1565
out_problem_insert:
	map__put(map);
1566 1567
out_problem_map:
	thread__put(thread);
1568 1569 1570 1571 1572
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1573
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1574
{
1575 1576 1577 1578
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1579

1580
	BUG_ON(refcount_read(&th->refcnt) == 0);
1581
	if (lock)
1582
		down_write(&threads->lock);
1583
	rb_erase_init(&th->rb_node, &threads->entries);
1584
	RB_CLEAR_NODE(&th->rb_node);
1585
	--threads->nr;
1586
	/*
1587 1588 1589
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1590
	 */
1591
	list_add_tail(&th->node, &threads->dead);
1592
	if (lock)
1593
		up_write(&threads->lock);
1594
	thread__put(th);
1595 1596
}

1597 1598 1599 1600 1601
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1602 1603
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1604
{
1605 1606 1607
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1608 1609 1610
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1611
	int err = 0;
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1631
	/* if a thread currently exists for the thread id remove it */
1632
	if (thread != NULL) {
1633
		machine__remove_thread(machine, thread);
1634 1635
		thread__put(thread);
	}
1636

1637 1638
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1639 1640

	if (thread == NULL || parent == NULL ||
1641
	    thread__fork(thread, parent, sample->time) < 0) {
1642
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1643
		err = -1;
1644
	}
1645 1646
	thread__put(thread);
	thread__put(parent);
1647

1648
	return err;
1649 1650
}

1651 1652
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1653
{
1654 1655 1656
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1657 1658 1659 1660

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1661
	if (thread != NULL) {
1662
		thread__exited(thread);
1663 1664
		thread__put(thread);
	}
1665 1666 1667 1668

	return 0;
}

1669 1670
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1671 1672 1673 1674 1675
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1676
		ret = machine__process_comm_event(machine, event, sample); break;
1677
	case PERF_RECORD_MMAP:
1678
		ret = machine__process_mmap_event(machine, event, sample); break;
1679 1680
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1681
	case PERF_RECORD_MMAP2:
1682
		ret = machine__process_mmap2_event(machine, event, sample); break;
1683
	case PERF_RECORD_FORK:
1684
		ret = machine__process_fork_event(machine, event, sample); break;
1685
	case PERF_RECORD_EXIT:
1686
		ret = machine__process_exit_event(machine, event, sample); break;
1687
	case PERF_RECORD_LOST:
1688
		ret = machine__process_lost_event(machine, event, sample); break;
1689 1690
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1691
	case PERF_RECORD_ITRACE_START:
1692
		ret = machine__process_itrace_start_event(machine, event); break;
1693 1694
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1695 1696 1697
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1698 1699 1700 1701 1702 1703 1704
	default:
		ret = -1;
		break;
	}

	return ret;
}
1705

1706
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1707
{
1708
	if (!regexec(regex, sym->name, 0, NULL, 0))
1709 1710 1711 1712
		return 1;
	return 0;
}

1713
static void ip__resolve_ams(struct thread *thread,
1714 1715 1716 1717 1718 1719
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1720 1721 1722 1723 1724 1725 1726
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1727
	thread__find_cpumode_addr_location(thread, ip, &al);
1728 1729 1730 1731 1732

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1733
	ams->phys_addr = 0;
1734 1735
}

1736
static void ip__resolve_data(struct thread *thread,
1737 1738
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1739 1740 1741 1742 1743
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1744
	thread__find_symbol(thread, m, addr, &al);
1745

1746 1747 1748 1749
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1750
	ams->phys_addr = phys_addr;
1751 1752
}

1753 1754
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1755
{
1756
	struct mem_info *mi = mem_info__new();
1757 1758 1759 1760

	if (!mi)
		return NULL;

1761
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1762 1763
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1764 1765 1766 1767 1768
	mi->data_src.val = sample->data_src;

	return mi;
}

1769 1770
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1771 1772
	char *srcline = NULL;

1773
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1774 1775 1776 1777 1778 1779 1780 1781
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1782
				      sym, show_sym, show_addr, ip);
1783 1784
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1785

1786
	return srcline;
1787 1788
}

1789 1790 1791 1792 1793
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1794
static int add_callchain_ip(struct thread *thread,
1795
			    struct callchain_cursor *cursor,
1796 1797
			    struct symbol **parent,
			    struct addr_location *root_al,
1798
			    u8 *cpumode,
1799 1800 1801
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1802
			    struct iterations *iter,
1803
			    u64 branch_from)
1804 1805
{
	struct addr_location al;
1806 1807
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1808
	const char *srcline = NULL;
1809 1810 1811

	al.filtered = 0;
	al.sym = NULL;
1812
	if (!cpumode) {
1813
		thread__find_cpumode_addr_location(thread, ip, &al);
1814
	} else {
1815 1816 1817
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1818
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1819 1820
				break;
			case PERF_CONTEXT_KERNEL:
1821
				*cpumode = PERF_RECORD_MISC_KERNEL;
1822 1823
				break;
			case PERF_CONTEXT_USER:
1824
				*cpumode = PERF_RECORD_MISC_USER;
1825 1826 1827 1828 1829 1830 1831 1832
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1833
				callchain_cursor_reset(cursor);
1834 1835 1836 1837
				return 1;
			}
			return 0;
		}
1838
		thread__find_symbol(thread, *cpumode, ip, &al);
1839 1840
	}

1841
	if (al.sym != NULL) {
1842
		if (perf_hpp_list.parent && !*parent &&
1843 1844 1845 1846 1847 1848 1849
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1850
			callchain_cursor_reset(cursor);
1851 1852 1853
		}
	}

1854 1855
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1856 1857 1858 1859 1860 1861

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1862
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1863
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
1864
				       branch, flags, nr_loop_iter,
1865
				       iter_cycles, branch_from, srcline);
1866 1867
}

1868 1869
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1870 1871
{
	unsigned int i;
1872 1873
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1874 1875 1876 1877 1878

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1879 1880
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1881 1882 1883 1884 1885
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1898 1899 1900 1901 1902 1903 1904
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1905 1906
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1943 1944 1945 1946 1947 1948 1949
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1950 1951 1952 1953 1954 1955 1956 1957
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1958
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1959 1960 1961 1962
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1963
{
K
Kan Liang 已提交
1964
	struct ip_callchain *chain = sample->callchain;
1965
	int chain_nr = min(max_stack, (int)chain->nr), i;
1966
	u8 cpumode = PERF_RECORD_MISC_USER;
1967
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1977 1978 1979
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1993
			int err;
1994 1995 1996
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1997 1998 1999
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2000 2001 2002 2003 2004 2005
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2006
					ip = lbr_stack->entries[0].to;
2007 2008
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2009 2010
					branch_from =
						lbr_stack->entries[0].from;
2011
				}
K
Kan Liang 已提交
2012
			} else {
2013 2014 2015 2016 2017 2018
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2019 2020
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2021
				else {
K
Kan Liang 已提交
2022
					ip = lbr_stack->entries[0].to;
2023 2024
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2025 2026
					branch_from =
						lbr_stack->entries[0].from;
2027
				}
K
Kan Liang 已提交
2028 2029
			}

2030 2031
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2032
					       branch, flags, NULL,
2033
					       branch_from);
K
Kan Liang 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
2044
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2045 2046 2047 2048 2049 2050 2051 2052
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2053
	int chain_nr = 0;
2054
	u8 cpumode = PERF_RECORD_MISC_USER;
2055
	int i, j, err, nr_entries;
2056 2057 2058
	int skip_idx = -1;
	int first_call = 0;

2059 2060 2061
	if (chain)
		chain_nr = chain->nr;

2062
	if (perf_evsel__has_branch_callstack(evsel)) {
2063
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2064 2065 2066 2067 2068
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2069 2070 2071 2072
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2073
	skip_idx = arch_skip_callchain_idx(thread, chain);
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2090
		struct iterations iter[nr];
2091 2092 2093 2094 2095 2096 2097 2098 2099

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2100 2101 2102 2103

				if (chain == NULL)
					continue;

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2121 2122
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2123

2124
		for (i = 0; i < nr; i++) {
2125 2126 2127 2128 2129
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2130

2131
			if (!err)
2132
				err = add_callchain_ip(thread, cursor, parent, root_al,
2133 2134
						       NULL, be[i].from,
						       true, &be[i].flags,
2135
						       &iter[i], 0);
2136 2137 2138 2139 2140
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2141 2142 2143 2144

		if (chain_nr == 0)
			return 0;

2145 2146 2147 2148
		chain_nr -= nr;
	}

check_calls:
2149
	for (i = first_call, nr_entries = 0;
2150
	     i < chain_nr && nr_entries < max_stack; i++) {
2151 2152 2153
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2154
			j = i;
2155
		else
2156 2157 2158 2159 2160 2161 2162
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2163

2164 2165
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2166

2167 2168
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2169
				       false, NULL, NULL, 0);
2170 2171

		if (err)
2172
			return (err < 0) ? err : 0;
2173 2174 2175 2176 2177
	}

	return 0;
}

2178 2179 2180 2181 2182 2183
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2184
	int ret = 1;
2185 2186

	if (!symbol_conf.inline_name || !map || !sym)
2187
		return ret;
2188 2189 2190 2191 2192 2193 2194

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2195
			return ret;
2196 2197 2198 2199
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2200 2201 2202
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2203 2204 2205 2206 2207

		if (ret != 0)
			return ret;
	}

2208
	return ret;
2209 2210
}

2211 2212 2213
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2214
	const char *srcline = NULL;
2215 2216 2217

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2218

2219 2220 2221
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2222
	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2223
	return callchain_cursor_append(cursor, entry->ip,
2224
				       entry->map, entry->sym,
2225
				       false, NULL, 0, 0, 0, srcline);
2226 2227
}

2228 2229 2230 2231 2232
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2244
	return unwind__get_entries(unwind_entry, cursor,
2245
				   thread, sample, max_stack);
2246
}
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2258
	callchain_cursor_reset(cursor);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2283
}
2284 2285 2286 2287 2288

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2289
	struct threads *threads;
2290 2291 2292
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2293
	int i;
2294

2295 2296 2297 2298 2299 2300 2301 2302
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2303

2304 2305 2306 2307 2308
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2309 2310 2311
	}
	return rc;
}
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2334
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2335
				  struct target *target, struct thread_map *threads,
2336
				  perf_event__handler_t process, bool data_mmap,
2337 2338
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2339
{
2340
	if (target__has_task(target))
2341
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2342
	else if (target__has_cpu(target))
2343 2344 2345 2346
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2347 2348 2349
	/* command specified */
	return 0;
}
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2390
	thread__put(thread);
2391 2392 2393

	return 0;
}
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2404 2405 2406 2407 2408
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2409 2410
int machine__get_kernel_start(struct machine *machine)
{
2411
	struct map *map = machine__kernel_map(machine);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2424
		err = map__load(map);
2425 2426 2427 2428 2429 2430
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2431 2432 2433 2434
			machine->kernel_start = map->start;
	}
	return err;
}
2435 2436 2437

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2438
	return dsos__findnew(&machine->dsos, filename);
2439
}
2440 2441 2442 2443 2444

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2445
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2446 2447 2448 2449 2450 2451 2452 2453

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}