“a95f8817f8afa75ab41728bd1bb65024c65c91c3”上不存在“kernel/rcu/rcutorture.c”
machine.c 56.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

28 29
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

30 31 32 33
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
34
	init_rwsem(&dsos->lock);
35 36
}

37 38 39 40 41 42 43
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
44
		init_rwsem(&threads->lock);
45 46 47 48 49 50
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

51 52
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
53 54 55 56 57 58 59
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
60 61 62 63

	return machine->mmap_name ? 0 : -ENOMEM;
}

64 65
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
66 67
	int err = -ENOMEM;

68
	memset(machine, 0, sizeof(*machine));
69
	map_groups__init(&machine->kmaps, machine);
70
	RB_CLEAR_NODE(&machine->rb_node);
71
	dsos__init(&machine->dsos);
72

73
	machine__threads_init(machine);
74

75
	machine->vdso_info = NULL;
76
	machine->env = NULL;
77

78 79
	machine->pid = pid;

80
	machine->id_hdr_size = 0;
81
	machine->kptr_restrict_warned = false;
82
	machine->comm_exec = false;
83
	machine->kernel_start = 0;
84

85 86
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

87 88 89 90
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

91 92 93
	if (machine__set_mmap_name(machine))
		goto out;

94
	if (pid != HOST_KERNEL_ID) {
95
		struct thread *thread = machine__findnew_thread(machine, -1,
96
								pid);
97 98 99
		char comm[64];

		if (thread == NULL)
100
			goto out;
101 102

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103
		thread__set_comm(thread, comm, 0);
104
		thread__put(thread);
105 106
	}

107
	machine->current_tid = NULL;
108
	err = 0;
109

110
out:
111
	if (err) {
112
		zfree(&machine->root_dir);
113 114
		zfree(&machine->mmap_name);
	}
115 116 117
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

135 136 137 138 139 140 141 142 143 144 145
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
146
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147 148 149 150 151 152 153
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

154
static void dsos__purge(struct dsos *dsos)
155 156 157
{
	struct dso *pos, *n;

158
	down_write(&dsos->lock);
159

160
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
161
		RB_CLEAR_NODE(&pos->rb_node);
162
		pos->root = NULL;
163 164
		list_del_init(&pos->node);
		dso__put(pos);
165
	}
166

167
	up_write(&dsos->lock);
168
}
169

170 171 172
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
173
	exit_rwsem(&dsos->lock);
174 175
}

176 177
void machine__delete_threads(struct machine *machine)
{
178
	struct rb_node *nd;
179
	int i;
180

181 182
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
183
		down_write(&threads->lock);
184 185 186
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
187

188 189 190
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
191
		up_write(&threads->lock);
192 193 194
	}
}

195 196
void machine__exit(struct machine *machine)
{
197 198
	int i;

199 200 201
	if (machine == NULL)
		return;

202
	machine__destroy_kernel_maps(machine);
203
	map_groups__exit(&machine->kmaps);
204
	dsos__exit(&machine->dsos);
205
	machine__exit_vdso(machine);
206
	zfree(&machine->root_dir);
207
	zfree(&machine->mmap_name);
208
	zfree(&machine->current_tid);
209 210 211

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
212
		exit_rwsem(&threads->lock);
213
	}
214 215 216 217
}

void machine__delete(struct machine *machine)
{
218 219 220 221
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
237 238
			      const char *root_dir)
{
239
	struct rb_node **p = &machines->guests.rb_node;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
261
	rb_insert_color(&machine->rb_node, &machines->guests);
262 263 264 265

	return machine;
}

266 267 268 269 270 271 272 273 274 275 276 277 278
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

279
struct machine *machines__find(struct machines *machines, pid_t pid)
280
{
281
	struct rb_node **p = &machines->guests.rb_node;
282 283 284 285
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

286 287 288
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

305
struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
322
				seen = strlist__new(NULL, NULL);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

339 340
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
341 342 343
{
	struct rb_node *nd;

344
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345 346 347 348 349
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

350
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 352 353 354
{
	struct rb_node *node;
	struct machine *machine;

355 356 357
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358 359 360 361 362 363 364
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

365 366 367 368 369 370 371 372 373 374 375 376 377
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

378
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379 380 381 382
	if (!leader)
		goto out_err;

	if (!leader->mg)
383
		leader->mg = map_groups__new(machine);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
400
		map_groups__put(th->mg);
401 402 403
	}

	th->mg = map_groups__get(leader->mg);
404 405
out_put:
	thread__put(leader);
406 407 408
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409
	goto out_put;
410 411
}

412
/*
413
 * Caller must eventually drop thread->refcnt returned with a successful
414 415
 * lookup/new thread inserted.
 */
416
static struct thread *____machine__findnew_thread(struct machine *machine,
417
						  struct threads *threads,
418 419
						  pid_t pid, pid_t tid,
						  bool create)
420
{
421
	struct rb_node **p = &threads->entries.rb_node;
422 423 424 425
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
426
	 * Front-end cache - TID lookups come in blocks,
427 428 429
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
430
	th = threads->last_match;
431 432 433
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
434
			return thread__get(th);
435 436
		}

437
		threads->last_match = NULL;
438
	}
439 440 441 442 443

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

444
		if (th->tid == tid) {
445
			threads->last_match = th;
446
			machine__update_thread_pid(machine, th, pid);
447
			return thread__get(th);
448 449
		}

450
		if (tid < th->tid)
451 452 453 454 455 456 457 458
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

459
	th = thread__new(pid, tid);
460 461
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
462
		rb_insert_color(&th->rb_node, &threads->entries);
463 464 465 466 467 468 469 470 471

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
472
		if (thread__init_map_groups(th, machine)) {
473
			rb_erase_init(&th->rb_node, &threads->entries);
474
			RB_CLEAR_NODE(&th->rb_node);
475
			thread__put(th);
476
			return NULL;
477
		}
478 479 480 481
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
482 483
		threads->last_match = th;
		++threads->nr;
484 485 486 487 488
	}

	return th;
}

489 490
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
491
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 493
}

494 495
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
496
{
497
	struct threads *threads = machine__threads(machine, tid);
498 499
	struct thread *th;

500
	down_write(&threads->lock);
501
	th = __machine__findnew_thread(machine, pid, tid);
502
	up_write(&threads->lock);
503
	return th;
504 505
}

506 507
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
508
{
509
	struct threads *threads = machine__threads(machine, tid);
510
	struct thread *th;
511

512
	down_read(&threads->lock);
513
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514
	up_read(&threads->lock);
515
	return th;
516
}
517

518 519 520 521 522 523 524 525 526
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

527 528
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
529
{
530 531 532
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
533
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534
	int err = 0;
535

536 537 538
	if (exec)
		machine->comm_exec = true;

539 540 541
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

542 543
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545
		err = -1;
546 547
	}

548 549 550
	thread__put(thread);

	return err;
551 552
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

584
int machine__process_lost_event(struct machine *machine __maybe_unused,
585
				union perf_event *event, struct perf_sample *sample __maybe_unused)
586 587 588 589 590 591
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

592 593 594 595 596 597 598 599
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

600 601 602
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
603 604 605
{
	struct dso *dso;

606
	down_write(&machine->dsos.lock);
607 608

	dso = __dsos__find(&machine->dsos, m->name, true);
609
	if (!dso) {
610
		dso = __dsos__addnew(&machine->dsos, m->name);
611
		if (dso == NULL)
612
			goto out_unlock;
613

614
		dso__set_module_info(dso, m, machine);
615
		dso__set_long_name(dso, strdup(filename), true);
616 617
	}

618
	dso__get(dso);
619
out_unlock:
620
	up_write(&machine->dsos.lock);
621 622 623
	return dso;
}

624 625 626 627 628 629 630 631
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

632 633 634 635 636 637 638 639
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

640 641 642 643 644 645 646 647
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

663
	dso__set_long_name(dso, dup_filename, true);
664 665
}

666 667
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
668
{
669
	struct map *map = NULL;
670
	struct dso *dso = NULL;
671
	struct kmod_path m;
672

673
	if (kmod_path__parse_name(&m, filename))
674 675
		return NULL;

676
	map = map_groups__find_by_name(&machine->kmaps, m.name);
677 678 679 680 681 682 683
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
684
		goto out;
685
	}
686

687
	dso = machine__findnew_module_dso(machine, &m, filename);
688 689 690
	if (dso == NULL)
		goto out;

691 692
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
693
		goto out;
694 695

	map_groups__insert(&machine->kmaps, map);
696

697 698
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
699
out:
700 701
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
702
	free(m.name);
703 704 705
	return map;
}

706
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
707 708
{
	struct rb_node *nd;
709
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
710

711
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
712
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
713
		ret += __dsos__fprintf(&pos->dsos.head, fp);
714 715 716 717 718
	}

	return ret;
}

719
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
720 721
				     bool (skip)(struct dso *dso, int parm), int parm)
{
722
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
723 724
}

725
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
726 727 728
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
729
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
730

731
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
732 733 734 735 736 737 738 739 740 741
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
742
	struct dso *kdso = machine__kernel_map(machine)->dso;
743 744 745

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
746 747
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
748 749 750 751 752 753 754 755 756 757 758 759 760
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
761 762
	size_t ret;
	int i;
763

764 765
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
766 767

		down_read(&threads->lock);
768

769
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
770

771 772
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
773

774 775
			ret += thread__fprintf(pos, fp);
		}
776

777
		up_read(&threads->lock);
778
	}
779 780 781 782 783
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
784
	const char *vmlinux_name = machine->mmap_name;
785 786 787
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
788 789 790
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

791 792
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
793
	} else {
J
Jiri Olsa 已提交
794 795 796
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

797 798 799
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
800 801 802 803 804 805 806 807 808 809 810 811
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

812 813 814 815 816 817 818 819 820
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

821 822 823 824 825 826
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
827 828
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
829
{
830
	char filename[PATH_MAX];
831
	int i, err = -1;
832 833
	const char *name;
	u64 addr = 0;
834

835
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
836 837 838 839

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

840
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
841 842
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
843 844 845
			break;
	}

846 847 848
	if (err)
		return -1;

849 850
	if (symbol_name)
		*symbol_name = name;
851

852 853
	*start = addr;
	return 0;
854 855
}

856 857
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
858
{
859
	int type;
860

861 862 863
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

864 865
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
866
		struct map *map;
867

868
		machine->vmlinux_maps[type] = map__new2(0, kernel, type);
869 870 871 872 873 874
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
875
		map = __machine__kernel_map(machine, type);
876
		kmap = map__kmap(map);
877 878 879
		if (!kmap)
			return -1;

880
		kmap->kmaps = &machine->kmaps;
881
		map_groups__insert(&machine->kmaps, map);
882 883 884 885 886 887 888
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
889
	int type;
890 891 892

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
893
		struct map *map = __machine__kernel_map(machine, type);
894

895
		if (map == NULL)
896 897
			continue;

898 899
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
900
		if (kmap && kmap->ref_reloc_sym) {
901 902 903 904 905
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
906 907 908 909
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
910 911
		}

912
		map__put(machine->vmlinux_maps[type]);
913 914 915 916
		machine->vmlinux_maps[type] = NULL;
	}
}

917
int machines__create_guest_kernel_maps(struct machines *machines)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

966
void machines__destroy_kernel_maps(struct machines *machines)
967
{
968 969 970
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
971 972 973 974 975

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
976
		rb_erase(&pos->rb_node, &machines->guests);
977 978 979 980
		machine__delete(pos);
	}
}

981
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
982 983 984 985 986 987 988 989 990
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

991 992
int machine__load_kallsyms(struct machine *machine, const char *filename,
			     enum map_type type)
993
{
994
	struct map *map = machine__kernel_map(machine);
995
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1010
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1011
{
1012
	struct map *map = machine__kernel_map(machine);
1013
	int ret = dso__load_vmlinux_path(map->dso, map);
1014

1015
	if (ret > 0)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		dso__set_loaded(map->dso, type);

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1058
	struct map *map = map_groups__find_by_name(mg, m->name);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1080
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1081
				const char *dir_name, int depth)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1106 1107 1108 1109 1110 1111 1112 1113 1114
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1115 1116 1117
			if (ret < 0)
				goto out;
		} else {
1118
			struct kmod_path m;
1119

1120 1121 1122
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1123

1124 1125
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1126

1127
			free(m.name);
1128

1129
			if (ret)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1148
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1149 1150 1151
		 machine->root_dir, version);
	free(version);

1152
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1153
}
1154 1155 1156 1157 1158
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1159

1160 1161
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1162
{
1163
	struct machine *machine = arg;
1164
	struct map *map;
1165

1166 1167 1168
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1169
	map = machine__findnew_module_map(machine, start, name);
1170 1171
	if (map == NULL)
		return -1;
1172
	map->end = start + size;
1173 1174 1175 1176 1177 1178 1179 1180

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1181 1182 1183
	const char *modules;
	char path[PATH_MAX];

1184
	if (machine__is_default_guest(machine)) {
1185
		modules = symbol_conf.default_guest_modules;
1186 1187
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1188 1189 1190
		modules = path;
	}

1191
	if (symbol__restricted_filename(modules, "/proc/modules"))
1192 1193
		return -1;

1194
	if (modules__parse(modules, machine, machine__create_module))
1195 1196
		return -1;

1197 1198
	if (!machine__set_modules_path(machine))
		return 0;
1199

1200
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1201

1202
	return 0;
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = start;
		machine->vmlinux_maps[i]->end   = end;

		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
1218
		if (start == 0 && end == 0)
1219 1220 1221 1222
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
}

1223 1224 1225
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1226
	const char *name = NULL;
1227
	struct map *map;
1228
	u64 addr = 0;
1229 1230
	int ret;

1231
	if (kernel == NULL)
1232
		return -1;
1233

1234 1235 1236
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1248 1249 1250 1251 1252 1253
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1266 1267
	}

1268 1269 1270 1271 1272
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);

1273 1274 1275
	return 0;
}

1276 1277 1278 1279
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1280
	list_for_each_entry(dso, &machine->dsos.head, node) {
1281 1282 1283 1284 1285 1286 1287
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1288 1289 1290 1291 1292 1293 1294
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1295 1296 1297 1298
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1299 1300 1301 1302 1303 1304
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1305 1306
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1307 1308
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1309 1310
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1311 1312 1313 1314 1315 1316
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1317
				strlen(machine->mmap_name));
1318 1319 1320 1321
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1322 1323 1324
		struct dso *kernel = NULL;
		struct dso *dso;

1325
		down_read(&machine->dsos.lock);
1326

1327
		list_for_each_entry(dso, &machine->dsos.head, node) {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1348 1349
				continue;

1350

1351 1352 1353 1354
			kernel = dso;
			break;
		}

1355
		up_read(&machine->dsos.lock);
1356

1357
		if (kernel == NULL)
1358
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1359 1360 1361 1362
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1363 1364
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1365
			goto out_problem;
1366
		}
1367

1368 1369
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1370

1371 1372
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1389
			dso__load(kernel, machine__kernel_map(machine));
1390 1391 1392 1393 1394 1395 1396
		}
	}
	return 0;
out_problem:
	return -1;
}

1397
int machine__process_mmap2_event(struct machine *machine,
1398
				 union perf_event *event,
1399
				 struct perf_sample *sample)
1400 1401 1402 1403 1404 1405 1406 1407 1408
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1409 1410
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1411 1412 1413 1414 1415 1416 1417
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1418
					event->mmap2.tid);
1419 1420 1421 1422 1423 1424 1425 1426
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1427
	map = map__new(machine, event->mmap2.start,
1428
			event->mmap2.len, event->mmap2.pgoff,
1429
			event->mmap2.maj,
1430 1431
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1432 1433
			event->mmap2.prot,
			event->mmap2.flags,
1434
			event->mmap2.filename, type, thread);
1435 1436

	if (map == NULL)
1437
		goto out_problem_map;
1438

1439 1440 1441 1442
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1443
	thread__put(thread);
1444
	map__put(map);
1445 1446
	return 0;

1447 1448
out_problem_insert:
	map__put(map);
1449 1450
out_problem_map:
	thread__put(thread);
1451 1452 1453 1454 1455
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1456
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1457
				struct perf_sample *sample)
1458 1459 1460
{
	struct thread *thread;
	struct map *map;
1461
	enum map_type type;
1462 1463 1464 1465 1466
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1467 1468
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1469 1470 1471 1472 1473 1474
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1475
	thread = machine__findnew_thread(machine, event->mmap.pid,
1476
					 event->mmap.tid);
1477 1478
	if (thread == NULL)
		goto out_problem;
1479 1480 1481 1482 1483 1484

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1485
	map = map__new(machine, event->mmap.start,
1486
			event->mmap.len, event->mmap.pgoff,
1487
			0, 0, 0, 0, 0, 0,
1488
			event->mmap.filename,
1489
			type, thread);
1490

1491
	if (map == NULL)
1492
		goto out_problem_map;
1493

1494 1495 1496 1497
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1498
	thread__put(thread);
1499
	map__put(map);
1500 1501
	return 0;

1502 1503
out_problem_insert:
	map__put(map);
1504 1505
out_problem_map:
	thread__put(thread);
1506 1507 1508 1509 1510
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1511
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1512
{
1513 1514 1515 1516
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1517

1518
	BUG_ON(refcount_read(&th->refcnt) == 0);
1519
	if (lock)
1520
		down_write(&threads->lock);
1521
	rb_erase_init(&th->rb_node, &threads->entries);
1522
	RB_CLEAR_NODE(&th->rb_node);
1523
	--threads->nr;
1524
	/*
1525 1526 1527
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1528
	 */
1529
	list_add_tail(&th->node, &threads->dead);
1530
	if (lock)
1531
		up_write(&threads->lock);
1532
	thread__put(th);
1533 1534
}

1535 1536 1537 1538 1539
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1540 1541
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1542
{
1543 1544 1545
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1546 1547 1548
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1549
	int err = 0;
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1569
	/* if a thread currently exists for the thread id remove it */
1570
	if (thread != NULL) {
1571
		machine__remove_thread(machine, thread);
1572 1573
		thread__put(thread);
	}
1574

1575 1576
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1577 1578

	if (thread == NULL || parent == NULL ||
1579
	    thread__fork(thread, parent, sample->time) < 0) {
1580
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1581
		err = -1;
1582
	}
1583 1584
	thread__put(thread);
	thread__put(parent);
1585

1586
	return err;
1587 1588
}

1589 1590
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1591
{
1592 1593 1594
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1595 1596 1597 1598

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1599
	if (thread != NULL) {
1600
		thread__exited(thread);
1601 1602
		thread__put(thread);
	}
1603 1604 1605 1606

	return 0;
}

1607 1608
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1609 1610 1611 1612 1613
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1614
		ret = machine__process_comm_event(machine, event, sample); break;
1615
	case PERF_RECORD_MMAP:
1616
		ret = machine__process_mmap_event(machine, event, sample); break;
1617 1618
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1619
	case PERF_RECORD_MMAP2:
1620
		ret = machine__process_mmap2_event(machine, event, sample); break;
1621
	case PERF_RECORD_FORK:
1622
		ret = machine__process_fork_event(machine, event, sample); break;
1623
	case PERF_RECORD_EXIT:
1624
		ret = machine__process_exit_event(machine, event, sample); break;
1625
	case PERF_RECORD_LOST:
1626
		ret = machine__process_lost_event(machine, event, sample); break;
1627 1628
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1629
	case PERF_RECORD_ITRACE_START:
1630
		ret = machine__process_itrace_start_event(machine, event); break;
1631 1632
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1633 1634 1635
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1636 1637 1638 1639 1640 1641 1642
	default:
		ret = -1;
		break;
	}

	return ret;
}
1643

1644
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1645
{
1646
	if (!regexec(regex, sym->name, 0, NULL, 0))
1647 1648 1649 1650
		return 1;
	return 0;
}

1651
static void ip__resolve_ams(struct thread *thread,
1652 1653 1654 1655 1656 1657
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1658 1659 1660 1661 1662 1663 1664
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1665
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1666 1667 1668 1669 1670

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1671
	ams->phys_addr = 0;
1672 1673
}

1674
static void ip__resolve_data(struct thread *thread,
1675 1676
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1677 1678 1679 1680 1681
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1682
	__thread__find_symbol(thread, m, MAP__VARIABLE, addr, &al);
1683 1684 1685 1686 1687 1688
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1689
		thread__find_symbol(thread, m, addr, &al);
1690 1691
	}

1692 1693 1694 1695
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1696
	ams->phys_addr = phys_addr;
1697 1698
}

1699 1700
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1701
{
1702
	struct mem_info *mi = mem_info__new();
1703 1704 1705 1706

	if (!mi)
		return NULL;

1707
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1708 1709
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1710 1711 1712 1713 1714
	mi->data_src.val = sample->data_src;

	return mi;
}

1715 1716
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1717 1718
	char *srcline = NULL;

1719
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1720 1721 1722 1723 1724 1725 1726 1727
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1728
				      sym, show_sym, show_addr, ip);
1729 1730
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1731

1732
	return srcline;
1733 1734
}

1735 1736 1737 1738 1739
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1740
static int add_callchain_ip(struct thread *thread,
1741
			    struct callchain_cursor *cursor,
1742 1743
			    struct symbol **parent,
			    struct addr_location *root_al,
1744
			    u8 *cpumode,
1745 1746 1747
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1748
			    struct iterations *iter,
1749
			    u64 branch_from)
1750 1751
{
	struct addr_location al;
1752 1753
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1754
	const char *srcline = NULL;
1755 1756 1757

	al.filtered = 0;
	al.sym = NULL;
1758
	if (!cpumode) {
1759 1760
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1761
	} else {
1762 1763 1764
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1765
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1766 1767
				break;
			case PERF_CONTEXT_KERNEL:
1768
				*cpumode = PERF_RECORD_MISC_KERNEL;
1769 1770
				break;
			case PERF_CONTEXT_USER:
1771
				*cpumode = PERF_RECORD_MISC_USER;
1772 1773 1774 1775 1776 1777 1778 1779
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1780
				callchain_cursor_reset(cursor);
1781 1782 1783 1784
				return 1;
			}
			return 0;
		}
1785
		thread__find_symbol(thread, *cpumode, ip, &al);
1786 1787
	}

1788
	if (al.sym != NULL) {
1789
		if (perf_hpp_list.parent && !*parent &&
1790 1791 1792 1793 1794 1795 1796
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1797
			callchain_cursor_reset(cursor);
1798 1799 1800
		}
	}

1801 1802
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1803 1804 1805 1806 1807 1808

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1809
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1810
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1811
				       branch, flags, nr_loop_iter,
1812
				       iter_cycles, branch_from, srcline);
1813 1814
}

1815 1816
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1817 1818
{
	unsigned int i;
1819 1820
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1821 1822 1823 1824 1825

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1826 1827
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1828 1829 1830 1831 1832
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1845 1846 1847 1848 1849 1850 1851
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1852 1853
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1890 1891 1892 1893 1894 1895 1896
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1897 1898 1899 1900 1901 1902 1903 1904
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1905
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1906 1907 1908 1909
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1910
{
K
Kan Liang 已提交
1911
	struct ip_callchain *chain = sample->callchain;
1912
	int chain_nr = min(max_stack, (int)chain->nr), i;
1913
	u8 cpumode = PERF_RECORD_MISC_USER;
1914
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1924 1925 1926
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1940
			int err;
1941 1942 1943
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1944 1945 1946
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1947 1948 1949 1950 1951 1952
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1953
					ip = lbr_stack->entries[0].to;
1954 1955
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1956 1957
					branch_from =
						lbr_stack->entries[0].from;
1958
				}
K
Kan Liang 已提交
1959
			} else {
1960 1961 1962 1963 1964 1965
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1966 1967
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1968
				else {
K
Kan Liang 已提交
1969
					ip = lbr_stack->entries[0].to;
1970 1971
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1972 1973
					branch_from =
						lbr_stack->entries[0].from;
1974
				}
K
Kan Liang 已提交
1975 1976
			}

1977 1978
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1979
					       branch, flags, NULL,
1980
					       branch_from);
K
Kan Liang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1991
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1992 1993 1994 1995 1996 1997 1998 1999
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2000
	int chain_nr = 0;
2001
	u8 cpumode = PERF_RECORD_MISC_USER;
2002
	int i, j, err, nr_entries;
2003 2004 2005
	int skip_idx = -1;
	int first_call = 0;

2006 2007 2008
	if (chain)
		chain_nr = chain->nr;

2009
	if (perf_evsel__has_branch_callstack(evsel)) {
2010
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2011 2012 2013 2014 2015
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2016 2017 2018 2019
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2020
	skip_idx = arch_skip_callchain_idx(thread, chain);
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2037
		struct iterations iter[nr];
2038 2039 2040 2041 2042 2043 2044 2045 2046

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2047 2048 2049 2050

				if (chain == NULL)
					continue;

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2068 2069
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2070

2071
		for (i = 0; i < nr; i++) {
2072 2073 2074 2075 2076
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2077

2078
			if (!err)
2079
				err = add_callchain_ip(thread, cursor, parent, root_al,
2080 2081
						       NULL, be[i].from,
						       true, &be[i].flags,
2082
						       &iter[i], 0);
2083 2084 2085 2086 2087
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2088 2089 2090 2091

		if (chain_nr == 0)
			return 0;

2092 2093 2094 2095
		chain_nr -= nr;
	}

check_calls:
2096
	for (i = first_call, nr_entries = 0;
2097
	     i < chain_nr && nr_entries < max_stack; i++) {
2098 2099 2100
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2101
			j = i;
2102
		else
2103 2104 2105 2106 2107 2108 2109
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2110

2111 2112
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2113

2114 2115
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2116
				       false, NULL, NULL, 0);
2117 2118

		if (err)
2119
			return (err < 0) ? err : 0;
2120 2121 2122 2123 2124
	}

	return 0;
}

2125 2126 2127 2128 2129 2130
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2131
	int ret = 1;
2132 2133

	if (!symbol_conf.inline_name || !map || !sym)
2134
		return ret;
2135 2136 2137 2138 2139 2140 2141

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2142
			return ret;
2143 2144 2145 2146
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2147 2148 2149
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2150 2151 2152 2153 2154

		if (ret != 0)
			return ret;
	}

2155
	return ret;
2156 2157
}

2158 2159 2160
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2161
	const char *srcline = NULL;
2162 2163 2164

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2165

2166 2167 2168
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2169
	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2170
	return callchain_cursor_append(cursor, entry->ip,
2171
				       entry->map, entry->sym,
2172
				       false, NULL, 0, 0, 0, srcline);
2173 2174
}

2175 2176 2177 2178 2179
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2191
	return unwind__get_entries(unwind_entry, cursor,
2192
				   thread, sample, max_stack);
2193
}
2194

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2205
	callchain_cursor_reset(cursor);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2230
}
2231 2232 2233 2234 2235

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2236
	struct threads *threads;
2237 2238 2239
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2240
	int i;
2241

2242 2243 2244 2245 2246 2247 2248 2249
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2250

2251 2252 2253 2254 2255
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2256 2257 2258
	}
	return rc;
}
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2281
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2282
				  struct target *target, struct thread_map *threads,
2283
				  perf_event__handler_t process, bool data_mmap,
2284 2285
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2286
{
2287
	if (target__has_task(target))
2288
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2289
	else if (target__has_cpu(target))
2290 2291 2292 2293
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2294 2295 2296
	/* command specified */
	return 0;
}
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2337
	thread__put(thread);
2338 2339 2340

	return 0;
}
2341 2342 2343

int machine__get_kernel_start(struct machine *machine)
{
2344
	struct map *map = machine__kernel_map(machine);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2357
		err = map__load(map);
2358
		if (!err)
2359 2360 2361 2362
			machine->kernel_start = map->start;
	}
	return err;
}
2363 2364 2365

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2366
	return dsos__findnew(&machine->dsos, filename);
2367
}
2368 2369 2370 2371 2372

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2373
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2374 2375 2376 2377 2378 2379 2380 2381

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}