igb_ptp.c 26.6 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
15 16
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
21
#include <linux/ptp_classify.h>
22
#include <linux/clocksource.h>
23 24 25 26 27 28

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

29
/* The 82580 timesync updates the system timer every 8ns by 8ns,
30 31
 * and this update value cannot be reprogrammed.
 *
32 33 34 35 36 37 38 39 40 41 42
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
43 44 45 46 47 48 49 50
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

71
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
72
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
73 74 75 76
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40
77

78 79
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

80
/* SYSTIM read access for the 82576 */
81
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
82 83 84
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
85 86
	u64 val;
	u32 lo, hi;
87 88 89 90 91 92 93 94 95 96

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

97
/* SYSTIM read access for the 82580 */
98
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
99 100 101
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
102
	u32 lo, hi;
103
	u64 val;
104

105
	/* The timestamp latches on lowest register read. For the 82580
106 107 108
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
109
	rd32(E1000_SYSTIMR);
110 111 112 113 114 115 116 117 118
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

119
/* SYSTIM read access for I210/I211 */
120 121 122
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
123
	u32 sec, nsec;
124

125
	/* The timestamp latches on lowest register read. For I210/I211, the
126 127 128
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
129
	rd32(E1000_SYSTIMR);
130 131 132 133 134 135 136 137 138 139 140 141
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

142
	/* Writing the SYSTIMR register is not necessary as it only provides
143 144 145 146 147 148
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
174 175
	case e1000_82576:
	case e1000_82580:
176
	case e1000_i354:
177 178 179 180 181 182 183 184 185 186
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
187 188
	case e1000_i210:
	case e1000_i211:
189 190 191 192
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
193 194
		break;
	default:
195
		break;
196 197 198
	}
}

199
/* PTP clock operations */
200
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201
{
202 203 204 205
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

229
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230
{
231 232 233 234
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

255
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256
{
257 258
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
259 260 261
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
	timecounter_adjtime(&igb->tc, delta);
263 264 265 266 267
	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
288
{
289 290 291
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
325
{
326 327
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
328
	unsigned long flags;
329
	u64 ns;
330 331 332 333 334 335 336 337 338 339 340 341 342

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

359 360
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
				  struct ptp_clock_request *rq, int on)
361 362 363 364
{
	return -EOPNOTSUPP;
}

365 366 367 368 369 370
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
371
 **/
372
static void igb_ptp_tx_work(struct work_struct *work)
373 374 375 376 377 378 379 380 381
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

382 383 384 385
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
386
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
387
		adapter->tx_hwtstamp_timeouts++;
388
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
389 390 391
		return;
	}

392 393 394 395 396 397 398 399
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

400
static void igb_ptp_overflow_check(struct work_struct *work)
401
{
402 403 404 405
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

406
	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
407 408 409 410 411

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
412 413
}

414 415 416 417 418 419 420 421
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
422
 **/
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
442 443
	if (time_after(adapter->last_rx_timestamp, rx_event))
		rx_event = adapter->last_rx_timestamp;
444 445 446 447 448 449

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
450
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
451 452 453
	}
}

454 455
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
456
 * @adapter: Board private structure.
457 458 459 460
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
461
 **/
462
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
463
{
464 465 466
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
467

468 469
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
470

471
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
472 473 474
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
475
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
476 477
}

478 479 480 481 482 483 484 485 486
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
487
 **/
488 489 490 491
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
492
	__le64 *regval = (__le64 *)va;
493

494
	/* The timestamp is recorded in little endian format.
495 496 497 498 499 500 501 502 503 504 505 506 507 508
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
509
 **/
510
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
511 512 513 514 515 516
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

517
	/* If this bit is set, then the RX registers contain the time stamp. No
518 519 520 521 522 523 524 525 526
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
527 528 529 530 531
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
532 533

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
534 535 536 537 538

	/* Update the last_rx_timestamp timer in order to enable watchdog check
	 * for error case of latched timestamp on a dropped packet.
	 */
	adapter->last_rx_timestamp = jiffies;
539 540 541
}

/**
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
558

559
/**
560 561 562
 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 * @adapter: networking device structure
 * @config: hwtstamp configuration
563 564 565 566 567 568 569 570 571 572 573 574
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
575 576 577
 */
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
				      struct hwtstamp_config *config)
578 579 580 581 582 583 584 585 586 587
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	/* reserved for future extensions */
588
	if (config->flags)
589 590
		return -EINVAL;

591
	switch (config->tx_type) {
592 593 594 595 596 597 598 599
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

600
	switch (config->rx_filter) {
601 602 603 604 605 606 607 608 609 610 611 612 613
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
614 615 616 617
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
618 619
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
620
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
621 622 623
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
624
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
625 626 627
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
628 629 630 631 632 633 634
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
635
			config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
636 637 638
			break;
		}
		/* fall through */
639
	default:
640
		config->rx_filter = HWTSTAMP_FILTER_NONE;
641 642 643 644 645 646 647 648 649
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

650
	/* Per-packet timestamping only works if all packets are
651
	 * timestamped, so enable timestamping in all packets as
652
	 * long as one Rx filter was configured.
653 654 655 656
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
657
		config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
658 659
		is_l2 = true;
		is_l4 = true;
660 661 662 663 664 665 666

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

701
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
702 703 704 705
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
706
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
707 708 709 710 711 712 713 714 715
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
716
	regval = rd32(E1000_TXSTMPL);
717
	regval = rd32(E1000_TXSTMPH);
718
	regval = rd32(E1000_RXSTMPL);
719 720
	regval = rd32(E1000_RXSTMPH);

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	return 0;
}

/**
 * igb_ptp_set_ts_config - set hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config config;
	int err;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = igb_ptp_set_timestamp_mode(adapter, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
748
		-EFAULT : 0;
749 750 751 752 753
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
754
	struct net_device *netdev = adapter->netdev;
755 756

	switch (hw->mac.type) {
757 758 759
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
760
		adapter->ptp_caps.max_adj = 999999881;
761 762 763 764 765 766
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
767
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
768 769 770 771 772 773 774
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
775
	case e1000_82580:
776
	case e1000_i354:
777
	case e1000_i350:
778
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779 780 781 782 783
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784 785 786
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
787
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
788 789 790 791
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
792 793 794
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
795 796
	case e1000_i210:
	case e1000_i211:
797
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
798
		adapter->ptp_caps.owner = THIS_MODULE;
799
		adapter->ptp_caps.max_adj = 62499999;
800 801
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
802 803 804 805
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
806
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
807 808
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
809 810 811 812 813 814 815 816
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

817 818
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
819

820 821 822
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());
823

824 825 826 827
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
828

829 830
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
831

832 833 834
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
835

836 837
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
838
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
839 840 841
		wr32(E1000_IMS, E1000_IMS_TS);
	}

842 843 844
	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

845 846
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
847 848 849
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
850
	} else {
851 852
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
853 854
		adapter->flags |= IGB_FLAG_PTP;
	}
855 856
}

857 858 859 860 861 862 863
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
864
{
865 866
	switch (adapter->hw.mac.type) {
	case e1000_82576:
867
	case e1000_82580:
868
	case e1000_i354:
869
	case e1000_i350:
870
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
871
		break;
872 873 874 875
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
876 877 878
	default:
		return;
	}
879

880
	cancel_work_sync(&adapter->ptp_tx_work);
881 882 883
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
884
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
885
	}
886

887 888 889 890
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
891
		adapter->flags &= ~IGB_FLAG_PTP;
892 893
	}
}
894 895 896 897 898 899 900 901 902 903 904 905 906 907

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

908
	/* reset the tstamp_config */
909
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
910

911 912 913 914 915 916
	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
917
	case e1000_i354:
918 919 920 921 922
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		/* Enable the timer functions and interrupts. */
		wr32(E1000_TSAUXC, 0x0);
923
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
924 925 926 927 928 929 930
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		return;
	}

931 932 933 934 935 936 937 938 939
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
940
}