igb_ptp.c 25.1 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
22
#include <linux/ptp_classify.h>
23 24 25 26 27 28

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

29
/* The 82580 timesync updates the system timer every 8ns by 8ns,
30 31
 * and this update value cannot be reprogrammed.
 *
32 33 34 35 36 37 38 39 40 41 42
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
43 44 45 46 47 48 49 50
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

71
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
72
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
73 74 75 76
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40
77

78
/* SYSTIM read access for the 82576 */
79
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
80 81 82
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
83 84
	u64 val;
	u32 lo, hi;
85 86 87 88 89 90 91 92 93 94

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

95
/* SYSTIM read access for the 82580 */
96
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
97 98 99
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
100 101
	u64 val;
	u32 lo, hi, jk;
102

103
	/* The timestamp latches on lowest register read. For the 82580
104 105 106
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
107 108 109 110 111 112 113 114 115 116
	jk = rd32(E1000_SYSTIMR);
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

117
/* SYSTIM read access for I210/I211 */
118 119 120 121 122
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 sec, nsec, jk;

123
	/* The timestamp latches on lowest register read. For I210/I211, the
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
	jk = rd32(E1000_SYSTIMR);
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

140
	/* Writing the SYSTIMR register is not necessary as it only provides
141 142 143 144 145 146
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
172 173 174 175 176 177 178 179 180 181 182 183
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
184 185
	case e1000_i210:
	case e1000_i211:
186 187 188 189
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
190 191
		break;
	default:
192
		break;
193 194 195
	}
}

196
/* PTP clock operations */
197
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
198
{
199 200 201 202
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

226
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
227
{
228 229 230 231
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

252
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
253
{
254 255
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
256
	unsigned long flags;
257
	s64 now;
258 259 260 261 262 263 264 265 266 267 268 269

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	now = timecounter_read(&igb->tc);
	now += delta;
	timecounter_init(&igb->tc, &igb->cc, now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
290
{
291 292 293
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
327
{
328 329
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
330
	unsigned long flags;
331
	u64 ns;
332 333 334 335 336 337 338 339 340 341 342 343 344

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

361 362
static int igb_ptp_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *rq, int on)
363 364 365 366
{
	return -EOPNOTSUPP;
}

367 368 369 370 371 372
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
373
 **/
374 375 376 377 378 379 380 381 382 383
void igb_ptp_tx_work(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

384 385 386 387 388 389 390 391 392
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		adapter->tx_hwtstamp_timeouts++;
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
		return;
	}

393 394 395 396 397 398 399 400
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

401
static void igb_ptp_overflow_check(struct work_struct *work)
402
{
403 404 405 406
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

407
	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
408 409 410 411 412

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
413 414
}

415 416 417 418 419 420 421 422
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
423
 **/
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_ring *rx_ring;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;
	int n;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		if (time_after(rx_ring->last_rx_timestamp, rx_event))
			rx_event = rx_ring->last_rx_timestamp;
	}

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
	}
}

460 461
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
462
 * @adapter: Board private structure.
463 464 465 466
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
467
 **/
468
void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
469
{
470 471 472
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
473

474 475
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
476

477
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
478 479 480
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
481 482
}

483 484 485 486 487 488 489 490 491
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
492
 **/
493 494 495 496
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
497
	__le64 *regval = (__le64 *)va;
498

499
	/* The timestamp is recorded in little endian format.
500 501 502 503 504 505 506 507 508 509 510 511 512 513
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
514
 **/
515
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
516 517 518 519 520 521
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

522
	/* If this bit is set, then the RX registers contain the time stamp. No
523 524 525 526 527 528 529 530 531
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
532 533 534 535 536
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}

/**
 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 **/
int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
			   struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct hwtstamp_config config;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
602 603 604 605
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
606 607
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
608
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
609 610 611 612 613 614 615
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
616 617 618 619 620 621 622 623 624 625 626
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			break;
		}
		/* fall through */
627
	default:
M
Matthew Vick 已提交
628
		config.rx_filter = HWTSTAMP_FILTER_NONE;
629 630 631 632 633 634 635 636 637
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

638
	/* Per-packet timestamping only works if all packets are
639
	 * timestamped, so enable timestamping in all packets as
640
	 * long as one Rx filter was configured.
641 642 643 644
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
M
Matthew Vick 已提交
645 646 647
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		is_l2 = true;
		is_l4 = true;
648 649 650 651 652 653 654

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

689
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
690 691 692 693
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
694
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
695 696 697 698 699 700 701 702 703
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
704
	regval = rd32(E1000_TXSTMPL);
705
	regval = rd32(E1000_TXSTMPH);
706
	regval = rd32(E1000_RXSTMPL);
707 708 709 710
	regval = rd32(E1000_RXSTMPH);

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
711 712 713 714 715
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
716
	struct net_device *netdev = adapter->netdev;
717 718

	switch (hw->mac.type) {
719 720 721
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
722
		adapter->ptp_caps.max_adj = 999999881;
723 724 725 726 727 728 729 730 731 732 733 734 735 736
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
737
	case e1000_82580:
738
	case e1000_i350:
739
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740 741 742 743 744
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
745 746 747
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
748 749 750 751 752
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
753 754 755
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
756 757
	case e1000_i210:
	case e1000_i211:
758
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
759
		adapter->ptp_caps.owner = THIS_MODULE;
760
		adapter->ptp_caps.max_adj = 62499999;
761 762
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
763 764 765 766
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
767
		adapter->ptp_caps.enable = igb_ptp_enable;
768 769
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
770 771 772 773 774 775 776 777
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

778 779
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
780

781 782 783
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());
784

785 786 787 788
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
789

790 791
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
792

793 794 795
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
796

797 798 799 800 801 802
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		wr32(E1000_TSIM, E1000_TSIM_TXTS);
		wr32(E1000_IMS, E1000_IMS_TS);
	}

803 804
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
805 806 807
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
808
	} else {
809 810
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
811 812
		adapter->flags |= IGB_FLAG_PTP;
	}
813 814
}

815 816 817 818 819 820 821
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
822
{
823 824
	switch (adapter->hw.mac.type) {
	case e1000_82576:
825 826
	case e1000_82580:
	case e1000_i350:
827
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
828
		break;
829 830 831 832
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
833 834 835
	default:
		return;
	}
836

837
	cancel_work_sync(&adapter->ptp_tx_work);
838 839 840 841
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
	}
842

843 844 845 846
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
847
		adapter->flags &= ~IGB_FLAG_PTP;
848 849
	}
}
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		/* Enable the timer functions and interrupts. */
		wr32(E1000_TSAUXC, 0x0);
		wr32(E1000_TSIM, E1000_TSIM_TXTS);
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		return;
	}

883 884 885 886 887 888 889 890 891
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
892
}