rtmutex.c 46.7 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5 6 7 8 9
/*
 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
 *
 * started by Ingo Molnar and Thomas Gleixner.
 *
 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
 *  Copyright (C) 2006 Esben Nielsen
10
 *
11
 *  See Documentation/locking/rt-mutex-design.txt for details.
I
Ingo Molnar 已提交
12 13
 */
#include <linux/spinlock.h>
14
#include <linux/export.h>
I
Ingo Molnar 已提交
15
#include <linux/sched.h>
16
#include <linux/sched/rt.h>
17
#include <linux/sched/deadline.h>
I
Ingo Molnar 已提交
18 19 20 21 22 23 24
#include <linux/timer.h>

#include "rtmutex_common.h"

/*
 * lock->owner state tracking:
 *
25 26
 * lock->owner holds the task_struct pointer of the owner. Bit 0
 * is used to keep track of the "lock has waiters" state.
I
Ingo Molnar 已提交
27
 *
28 29 30 31 32 33
 * owner	bit0
 * NULL		0	lock is free (fast acquire possible)
 * NULL		1	lock is free and has waiters and the top waiter
 *				is going to take the lock*
 * taskpointer	0	lock is held (fast release possible)
 * taskpointer	1	lock is held and has waiters**
I
Ingo Molnar 已提交
34 35
 *
 * The fast atomic compare exchange based acquire and release is only
36 37 38 39 40 41
 * possible when bit 0 of lock->owner is 0.
 *
 * (*) It also can be a transitional state when grabbing the lock
 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
 * we need to set the bit0 before looking at the lock, and the owner may be
 * NULL in this small time, hence this can be a transitional state.
I
Ingo Molnar 已提交
42
 *
43 44 45 46
 * (**) There is a small time when bit 0 is set but there are no
 * waiters. This can happen when grabbing the lock in the slow path.
 * To prevent a cmpxchg of the owner releasing the lock, we need to
 * set this bit before looking at the lock.
I
Ingo Molnar 已提交
47 48
 */

49
static void
50
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
I
Ingo Molnar 已提交
51
{
52
	unsigned long val = (unsigned long)owner;
I
Ingo Molnar 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

	if (rt_mutex_has_waiters(lock))
		val |= RT_MUTEX_HAS_WAITERS;

	lock->owner = (struct task_struct *)val;
}

static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}

static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	unsigned long owner, *p = (unsigned long *) &lock->owner;

	if (rt_mutex_has_waiters(lock))
		return;

	/*
	 * The rbtree has no waiters enqueued, now make sure that the
	 * lock->owner still has the waiters bit set, otherwise the
	 * following can happen:
	 *
	 * CPU 0	CPU 1		CPU2
	 * l->owner=T1
	 *		rt_mutex_lock(l)
	 *		lock(l->lock)
	 *		l->owner = T1 | HAS_WAITERS;
	 *		enqueue(T2)
	 *		boost()
	 *		  unlock(l->lock)
	 *		block()
	 *
	 *				rt_mutex_lock(l)
	 *				lock(l->lock)
	 *				l->owner = T1 | HAS_WAITERS;
	 *				enqueue(T3)
	 *				boost()
	 *				  unlock(l->lock)
	 *				block()
	 *		signal(->T2)	signal(->T3)
	 *		lock(l->lock)
	 *		dequeue(T2)
	 *		deboost()
	 *		  unlock(l->lock)
	 *				lock(l->lock)
	 *				dequeue(T3)
	 *				 ==> wait list is empty
	 *				deboost()
	 *				 unlock(l->lock)
	 *		lock(l->lock)
	 *		fixup_rt_mutex_waiters()
	 *		  if (wait_list_empty(l) {
	 *		    l->owner = owner
	 *		    owner = l->owner & ~HAS_WAITERS;
	 *		      ==> l->owner = T1
	 *		  }
	 *				lock(l->lock)
	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
	 *				  if (wait_list_empty(l) {
	 *				    owner = l->owner & ~HAS_WAITERS;
	 * cmpxchg(l->owner, T1, NULL)
	 *  ===> Success (l->owner = NULL)
	 *
	 *				    l->owner = owner
	 *				      ==> l->owner = T1
	 *				  }
	 *
	 * With the check for the waiter bit in place T3 on CPU2 will not
	 * overwrite. All tasks fiddling with the waiters bit are
	 * serialized by l->lock, so nothing else can modify the waiters
	 * bit. If the bit is set then nothing can change l->owner either
	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
	 * happens in the middle of the RMW because the waiters bit is
	 * still set.
	 */
	owner = READ_ONCE(*p);
	if (owner & RT_MUTEX_HAS_WAITERS)
		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
I
Ingo Molnar 已提交
134 135
}

136
/*
137 138
 * We can speed up the acquire/release, if there's no debugging state to be
 * set up.
139
 */
140
#ifndef CONFIG_DEBUG_RT_MUTEXES
141 142 143 144 145 146 147 148 149
# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)

/*
 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
 * relaxed semantics suffice.
 */
150 151 152 153 154 155
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	unsigned long owner, *p = (unsigned long *) &lock->owner;

	do {
		owner = *p;
156 157
	} while (cmpxchg_relaxed(p, owner,
				 owner | RT_MUTEX_HAS_WAITERS) != owner);
158
}
T
Thomas Gleixner 已提交
159 160 161 162 163 164 165

/*
 * Safe fastpath aware unlock:
 * 1) Clear the waiters bit
 * 2) Drop lock->wait_lock
 * 3) Try to unlock the lock with cmpxchg
 */
166 167
static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
					unsigned long flags)
T
Thomas Gleixner 已提交
168 169 170 171 172
	__releases(lock->wait_lock)
{
	struct task_struct *owner = rt_mutex_owner(lock);

	clear_rt_mutex_waiters(lock);
173
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
T
Thomas Gleixner 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	/*
	 * If a new waiter comes in between the unlock and the cmpxchg
	 * we have two situations:
	 *
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 * cmpxchg(p, owner, 0) == owner
	 *					mark_rt_mutex_waiters(lock);
	 *					acquire(lock);
	 * or:
	 *
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 *					mark_rt_mutex_waiters(lock);
	 *
	 * cmpxchg(p, owner, 0) != owner
	 *					enqueue_waiter();
	 *					unlock(wait_lock);
	 * lock(wait_lock);
	 * wake waiter();
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 *					acquire(lock);
	 */
198
	return rt_mutex_cmpxchg_release(lock, owner, NULL);
T
Thomas Gleixner 已提交
199 200
}

201
#else
202 203 204 205
# define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
# define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
# define rt_mutex_cmpxchg_release(l,c,n)	(0)

206 207 208 209 210
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
}
T
Thomas Gleixner 已提交
211 212 213 214

/*
 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 */
215 216
static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
					unsigned long flags)
T
Thomas Gleixner 已提交
217 218 219
	__releases(lock->wait_lock)
{
	lock->owner = NULL;
220
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
T
Thomas Gleixner 已提交
221 222
	return true;
}
223 224
#endif

225 226 227 228
static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter *left,
		     struct rt_mutex_waiter *right)
{
229
	if (left->prio < right->prio)
230 231 232
		return 1;

	/*
233 234 235 236
	 * If both waiters have dl_prio(), we check the deadlines of the
	 * associated tasks.
	 * If left waiter has a dl_prio(), and we didn't return 1 above,
	 * then right waiter has a dl_prio() too.
237
	 */
238
	if (dl_prio(left->prio))
239 240
		return dl_time_before(left->task->dl.deadline,
				      right->task->dl.deadline);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

	return 0;
}

static void
rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
{
	struct rb_node **link = &lock->waiters.rb_node;
	struct rb_node *parent = NULL;
	struct rt_mutex_waiter *entry;
	int leftmost = 1;

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
		if (rt_mutex_waiter_less(waiter, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		lock->waiters_leftmost = &waiter->tree_entry;

	rb_link_node(&waiter->tree_entry, parent, link);
	rb_insert_color(&waiter->tree_entry, &lock->waiters);
}

static void
rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
{
	if (RB_EMPTY_NODE(&waiter->tree_entry))
		return;

	if (lock->waiters_leftmost == &waiter->tree_entry)
		lock->waiters_leftmost = rb_next(&waiter->tree_entry);

	rb_erase(&waiter->tree_entry, &lock->waiters);
	RB_CLEAR_NODE(&waiter->tree_entry);
}

static void
rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
{
	struct rb_node **link = &task->pi_waiters.rb_node;
	struct rb_node *parent = NULL;
	struct rt_mutex_waiter *entry;
	int leftmost = 1;

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
		if (rt_mutex_waiter_less(waiter, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		task->pi_waiters_leftmost = &waiter->pi_tree_entry;

	rb_link_node(&waiter->pi_tree_entry, parent, link);
	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
}

static void
rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
{
	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
		return;

	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);

	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
	RB_CLEAR_NODE(&waiter->pi_tree_entry);
}

I
Ingo Molnar 已提交
323
/*
324
 * Calculate task priority from the waiter tree priority
I
Ingo Molnar 已提交
325
 *
326
 * Return task->normal_prio when the waiter tree is empty or when
I
Ingo Molnar 已提交
327 328 329 330 331 332 333
 * the waiter is not allowed to do priority boosting
 */
int rt_mutex_getprio(struct task_struct *task)
{
	if (likely(!task_has_pi_waiters(task)))
		return task->normal_prio;

334
	return min(task_top_pi_waiter(task)->prio,
I
Ingo Molnar 已提交
335 336 337
		   task->normal_prio);
}

338 339 340 341 342 343 344 345
struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
{
	if (likely(!task_has_pi_waiters(task)))
		return NULL;

	return task_top_pi_waiter(task)->task;
}

346
/*
347 348
 * Called by sched_setscheduler() to get the priority which will be
 * effective after the change.
349
 */
350
int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351 352
{
	if (!task_has_pi_waiters(task))
353
		return newprio;
354

355 356 357
	if (task_top_pi_waiter(task)->task->prio <= newprio)
		return task_top_pi_waiter(task)->task->prio;
	return newprio;
358 359
}

I
Ingo Molnar 已提交
360 361 362 363 364
/*
 * Adjust the priority of a task, after its pi_waiters got modified.
 *
 * This can be both boosting and unboosting. task->pi_lock must be held.
 */
365
static void __rt_mutex_adjust_prio(struct task_struct *task)
I
Ingo Molnar 已提交
366 367 368
{
	int prio = rt_mutex_getprio(task);

369
	if (task->prio != prio || dl_prio(prio))
I
Ingo Molnar 已提交
370 371 372 373 374 375 376 377 378 379 380 381
		rt_mutex_setprio(task, prio);
}

/*
 * Adjust task priority (undo boosting). Called from the exit path of
 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 *
 * (Note: We do this outside of the protection of lock->wait_lock to
 * allow the lock to be taken while or before we readjust the priority
 * of task. We do not use the spin_xx_mutex() variants here as we are
 * outside of the debug path.)
 */
382
void rt_mutex_adjust_prio(struct task_struct *task)
I
Ingo Molnar 已提交
383 384 385
{
	unsigned long flags;

386
	raw_spin_lock_irqsave(&task->pi_lock, flags);
I
Ingo Molnar 已提交
387
	__rt_mutex_adjust_prio(task);
388
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
I
Ingo Molnar 已提交
389 390
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * Deadlock detection is conditional:
 *
 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 *
 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 * conducted independent of the detect argument.
 *
 * If the waiter argument is NULL this indicates the deboost path and
 * deadlock detection is disabled independent of the detect argument
 * and the config settings.
 */
static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
					  enum rtmutex_chainwalk chwalk)
{
	/*
	 * This is just a wrapper function for the following call,
	 * because debug_rt_mutex_detect_deadlock() smells like a magic
	 * debug feature and I wanted to keep the cond function in the
	 * main source file along with the comments instead of having
	 * two of the same in the headers.
	 */
	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
}

I
Ingo Molnar 已提交
417 418 419 420 421
/*
 * Max number of times we'll walk the boosting chain:
 */
int max_lock_depth = 1024;

422 423 424 425 426
static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
{
	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
}

I
Ingo Molnar 已提交
427 428 429
/*
 * Adjust the priority chain. Also used for deadlock detection.
 * Decreases task's usage by one - may thus free the task.
430
 *
431 432
 * @task:	the task owning the mutex (owner) for which a chain walk is
 *		probably needed
433
 * @chwalk:	do we have to carry out deadlock detection?
434 435 436 437 438 439
 * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
 *		things for a task that has just got its priority adjusted, and
 *		is waiting on a mutex)
 * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
 *		we dropped its pi_lock. Is never dereferenced, only used for
 *		comparison to detect lock chain changes.
440
 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441 442 443 444
 *		its priority to the mutex owner (can be NULL in the case
 *		depicted above or if the top waiter is gone away and we are
 *		actually deboosting the owner)
 * @top_task:	the current top waiter
445
 *
I
Ingo Molnar 已提交
446
 * Returns 0 or -EDEADLK.
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *
 * Chain walk basics and protection scope
 *
 * [R] refcount on task
 * [P] task->pi_lock held
 * [L] rtmutex->wait_lock held
 *
 * Step	Description				Protected by
 *	function arguments:
 *	@task					[R]
 *	@orig_lock if != NULL			@top_task is blocked on it
 *	@next_lock				Unprotected. Cannot be
 *						dereferenced. Only used for
 *						comparison.
 *	@orig_waiter if != NULL			@top_task is blocked on it
 *	@top_task				current, or in case of proxy
 *						locking protected by calling
 *						code
 *	again:
 *	  loop_sanity_check();
 *	retry:
 * [1]	  lock(task->pi_lock);			[R] acquire [P]
 * [2]	  waiter = task->pi_blocked_on;		[P]
 * [3]	  check_exit_conditions_1();		[P]
 * [4]	  lock = waiter->lock;			[P]
 * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
 *	    unlock(task->pi_lock);		release [P]
 *	    goto retry;
 *	  }
 * [6]	  check_exit_conditions_2();		[P] + [L]
 * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
 * [8]	  unlock(task->pi_lock);		release [P]
 *	  put_task_struct(task);		release [R]
 * [9]	  check_exit_conditions_3();		[L]
 * [10]	  task = owner(lock);			[L]
 *	  get_task_struct(task);		[L] acquire [R]
 *	  lock(task->pi_lock);			[L] acquire [P]
 * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 * [12]	  check_exit_conditions_4();		[P] + [L]
 * [13]	  unlock(task->pi_lock);		release [P]
 *	  unlock(lock->wait_lock);		release [L]
 *	  goto again;
I
Ingo Molnar 已提交
489
 */
490
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491
				      enum rtmutex_chainwalk chwalk,
492
				      struct rt_mutex *orig_lock,
493
				      struct rt_mutex *next_lock,
494 495
				      struct rt_mutex_waiter *orig_waiter,
				      struct task_struct *top_task)
I
Ingo Molnar 已提交
496 497
{
	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498
	struct rt_mutex_waiter *prerequeue_top_waiter;
499
	int ret = 0, depth = 0;
500
	struct rt_mutex *lock;
501
	bool detect_deadlock;
502
	bool requeue = true;
I
Ingo Molnar 已提交
503

504
	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
I
Ingo Molnar 已提交
505 506 507 508 509 510 511 512

	/*
	 * The (de)boosting is a step by step approach with a lot of
	 * pitfalls. We want this to be preemptible and we want hold a
	 * maximum of two locks per step. So we have to check
	 * carefully whether things change under us.
	 */
 again:
513 514 515
	/*
	 * We limit the lock chain length for each invocation.
	 */
I
Ingo Molnar 已提交
516 517 518 519 520 521 522 523 524 525 526
	if (++depth > max_lock_depth) {
		static int prev_max;

		/*
		 * Print this only once. If the admin changes the limit,
		 * print a new message when reaching the limit again.
		 */
		if (prev_max != max_lock_depth) {
			prev_max = max_lock_depth;
			printk(KERN_WARNING "Maximum lock depth %d reached "
			       "task: %s (%d)\n", max_lock_depth,
527
			       top_task->comm, task_pid_nr(top_task));
I
Ingo Molnar 已提交
528 529 530
		}
		put_task_struct(task);

531
		return -EDEADLK;
I
Ingo Molnar 已提交
532
	}
533 534 535 536 537 538 539

	/*
	 * We are fully preemptible here and only hold the refcount on
	 * @task. So everything can have changed under us since the
	 * caller or our own code below (goto retry/again) dropped all
	 * locks.
	 */
I
Ingo Molnar 已提交
540 541
 retry:
	/*
542
	 * [1] Task cannot go away as we did a get_task() before !
I
Ingo Molnar 已提交
543
	 */
544
	raw_spin_lock_irq(&task->pi_lock);
I
Ingo Molnar 已提交
545

546 547 548
	/*
	 * [2] Get the waiter on which @task is blocked on.
	 */
I
Ingo Molnar 已提交
549
	waiter = task->pi_blocked_on;
550 551 552 553 554

	/*
	 * [3] check_exit_conditions_1() protected by task->pi_lock.
	 */

I
Ingo Molnar 已提交
555 556 557 558 559
	/*
	 * Check whether the end of the boosting chain has been
	 * reached or the state of the chain has changed while we
	 * dropped the locks.
	 */
560
	if (!waiter)
I
Ingo Molnar 已提交
561 562
		goto out_unlock_pi;

563 564
	/*
	 * Check the orig_waiter state. After we dropped the locks,
565
	 * the previous owner of the lock might have released the lock.
566
	 */
567
	if (orig_waiter && !rt_mutex_owner(orig_lock))
568 569
		goto out_unlock_pi;

570 571 572 573 574 575 576 577 578 579 580 581
	/*
	 * We dropped all locks after taking a refcount on @task, so
	 * the task might have moved on in the lock chain or even left
	 * the chain completely and blocks now on an unrelated lock or
	 * on @orig_lock.
	 *
	 * We stored the lock on which @task was blocked in @next_lock,
	 * so we can detect the chain change.
	 */
	if (next_lock != waiter->lock)
		goto out_unlock_pi;

582 583 584 585 586
	/*
	 * Drop out, when the task has no waiters. Note,
	 * top_waiter can be NULL, when we are in the deboosting
	 * mode!
	 */
587 588 589 590 591
	if (top_waiter) {
		if (!task_has_pi_waiters(task))
			goto out_unlock_pi;
		/*
		 * If deadlock detection is off, we stop here if we
592 593 594
		 * are not the top pi waiter of the task. If deadlock
		 * detection is enabled we continue, but stop the
		 * requeueing in the chain walk.
595
		 */
596 597 598 599 600 601
		if (top_waiter != task_top_pi_waiter(task)) {
			if (!detect_deadlock)
				goto out_unlock_pi;
			else
				requeue = false;
		}
602
	}
I
Ingo Molnar 已提交
603 604

	/*
605 606 607 608 609
	 * If the waiter priority is the same as the task priority
	 * then there is no further priority adjustment necessary.  If
	 * deadlock detection is off, we stop the chain walk. If its
	 * enabled we continue, but stop the requeueing in the chain
	 * walk.
I
Ingo Molnar 已提交
610
	 */
611 612 613 614 615 616
	if (waiter->prio == task->prio) {
		if (!detect_deadlock)
			goto out_unlock_pi;
		else
			requeue = false;
	}
I
Ingo Molnar 已提交
617

618 619 620
	/*
	 * [4] Get the next lock
	 */
I
Ingo Molnar 已提交
621
	lock = waiter->lock;
622 623 624 625 626
	/*
	 * [5] We need to trylock here as we are holding task->pi_lock,
	 * which is the reverse lock order versus the other rtmutex
	 * operations.
	 */
627
	if (!raw_spin_trylock(&lock->wait_lock)) {
628
		raw_spin_unlock_irq(&task->pi_lock);
I
Ingo Molnar 已提交
629 630 631 632
		cpu_relax();
		goto retry;
	}

633
	/*
634 635 636
	 * [6] check_exit_conditions_2() protected by task->pi_lock and
	 * lock->wait_lock.
	 *
637 638 639 640 641
	 * Deadlock detection. If the lock is the same as the original
	 * lock which caused us to walk the lock chain or if the
	 * current lock is owned by the task which initiated the chain
	 * walk, we detected a deadlock.
	 */
642
	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643
		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644
		raw_spin_unlock(&lock->wait_lock);
645
		ret = -EDEADLK;
I
Ingo Molnar 已提交
646 647 648
		goto out_unlock_pi;
	}

649 650 651 652 653 654 655 656 657 658
	/*
	 * If we just follow the lock chain for deadlock detection, no
	 * need to do all the requeue operations. To avoid a truckload
	 * of conditionals around the various places below, just do the
	 * minimum chain walk checks.
	 */
	if (!requeue) {
		/*
		 * No requeue[7] here. Just release @task [8]
		 */
659
		raw_spin_unlock(&task->pi_lock);
660 661 662 663 664 665 666
		put_task_struct(task);

		/*
		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
		 * If there is no owner of the lock, end of chain.
		 */
		if (!rt_mutex_owner(lock)) {
667
			raw_spin_unlock_irq(&lock->wait_lock);
668 669 670 671 672 673
			return 0;
		}

		/* [10] Grab the next task, i.e. owner of @lock */
		task = rt_mutex_owner(lock);
		get_task_struct(task);
674
		raw_spin_lock(&task->pi_lock);
675 676 677 678 679 680 681 682 683 684 685 686 687 688

		/*
		 * No requeue [11] here. We just do deadlock detection.
		 *
		 * [12] Store whether owner is blocked
		 * itself. Decision is made after dropping the locks
		 */
		next_lock = task_blocked_on_lock(task);
		/*
		 * Get the top waiter for the next iteration
		 */
		top_waiter = rt_mutex_top_waiter(lock);

		/* [13] Drop locks */
689 690
		raw_spin_unlock(&task->pi_lock);
		raw_spin_unlock_irq(&lock->wait_lock);
691 692 693 694 695 696 697

		/* If owner is not blocked, end of chain. */
		if (!next_lock)
			goto out_put_task;
		goto again;
	}

698 699 700 701 702 703
	/*
	 * Store the current top waiter before doing the requeue
	 * operation on @lock. We need it for the boost/deboost
	 * decision below.
	 */
	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
I
Ingo Molnar 已提交
704

705
	/* [7] Requeue the waiter in the lock waiter tree. */
706
	rt_mutex_dequeue(lock, waiter);
707
	waiter->prio = task->prio;
708
	rt_mutex_enqueue(lock, waiter);
I
Ingo Molnar 已提交
709

710
	/* [8] Release the task */
711
	raw_spin_unlock(&task->pi_lock);
712 713
	put_task_struct(task);

714
	/*
715 716
	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
	 *
717 718 719 720
	 * We must abort the chain walk if there is no lock owner even
	 * in the dead lock detection case, as we have nothing to
	 * follow here. This is the end of the chain we are walking.
	 */
721 722
	if (!rt_mutex_owner(lock)) {
		/*
723 724 725
		 * If the requeue [7] above changed the top waiter,
		 * then we need to wake the new top waiter up to try
		 * to get the lock.
726
		 */
727
		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728
			wake_up_process(rt_mutex_top_waiter(lock)->task);
729
		raw_spin_unlock_irq(&lock->wait_lock);
730
		return 0;
731
	}
I
Ingo Molnar 已提交
732

733
	/* [10] Grab the next task, i.e. the owner of @lock */
I
Ingo Molnar 已提交
734
	task = rt_mutex_owner(lock);
735
	get_task_struct(task);
736
	raw_spin_lock(&task->pi_lock);
I
Ingo Molnar 已提交
737

738
	/* [11] requeue the pi waiters if necessary */
I
Ingo Molnar 已提交
739
	if (waiter == rt_mutex_top_waiter(lock)) {
740 741 742
		/*
		 * The waiter became the new top (highest priority)
		 * waiter on the lock. Replace the previous top waiter
743
		 * in the owner tasks pi waiters tree with this waiter
744 745 746
		 * and adjust the priority of the owner.
		 */
		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747
		rt_mutex_enqueue_pi(task, waiter);
I
Ingo Molnar 已提交
748 749
		__rt_mutex_adjust_prio(task);

750 751 752 753
	} else if (prerequeue_top_waiter == waiter) {
		/*
		 * The waiter was the top waiter on the lock, but is
		 * no longer the top prority waiter. Replace waiter in
754
		 * the owner tasks pi waiters tree with the new top
755 756 757 758 759 760
		 * (highest priority) waiter and adjust the priority
		 * of the owner.
		 * The new top waiter is stored in @waiter so that
		 * @waiter == @top_waiter evaluates to true below and
		 * we continue to deboost the rest of the chain.
		 */
761
		rt_mutex_dequeue_pi(task, waiter);
I
Ingo Molnar 已提交
762
		waiter = rt_mutex_top_waiter(lock);
763
		rt_mutex_enqueue_pi(task, waiter);
I
Ingo Molnar 已提交
764
		__rt_mutex_adjust_prio(task);
765 766 767 768 769
	} else {
		/*
		 * Nothing changed. No need to do any priority
		 * adjustment.
		 */
I
Ingo Molnar 已提交
770 771
	}

772
	/*
773 774 775 776
	 * [12] check_exit_conditions_4() protected by task->pi_lock
	 * and lock->wait_lock. The actual decisions are made after we
	 * dropped the locks.
	 *
777 778 779 780 781 782
	 * Check whether the task which owns the current lock is pi
	 * blocked itself. If yes we store a pointer to the lock for
	 * the lock chain change detection above. After we dropped
	 * task->pi_lock next_lock cannot be dereferenced anymore.
	 */
	next_lock = task_blocked_on_lock(task);
783 784 785 786
	/*
	 * Store the top waiter of @lock for the end of chain walk
	 * decision below.
	 */
I
Ingo Molnar 已提交
787
	top_waiter = rt_mutex_top_waiter(lock);
788 789

	/* [13] Drop the locks */
790 791
	raw_spin_unlock(&task->pi_lock);
	raw_spin_unlock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
792

793
	/*
794 795 796
	 * Make the actual exit decisions [12], based on the stored
	 * values.
	 *
797 798 799 800 801 802
	 * We reached the end of the lock chain. Stop right here. No
	 * point to go back just to figure that out.
	 */
	if (!next_lock)
		goto out_put_task;

803 804 805 806 807
	/*
	 * If the current waiter is not the top waiter on the lock,
	 * then we can stop the chain walk here if we are not in full
	 * deadlock detection mode.
	 */
I
Ingo Molnar 已提交
808 809 810 811 812 813
	if (!detect_deadlock && waiter != top_waiter)
		goto out_put_task;

	goto again;

 out_unlock_pi:
814
	raw_spin_unlock_irq(&task->pi_lock);
I
Ingo Molnar 已提交
815 816
 out_put_task:
	put_task_struct(task);
817

I
Ingo Molnar 已提交
818 819 820 821 822 823
	return ret;
}

/*
 * Try to take an rt-mutex
 *
824
 * Must be called with lock->wait_lock held and interrupts disabled
825
 *
826 827
 * @lock:   The lock to be acquired.
 * @task:   The task which wants to acquire the lock
828
 * @waiter: The waiter that is queued to the lock's wait tree if the
829
 *	    callsite called task_blocked_on_lock(), otherwise NULL
I
Ingo Molnar 已提交
830
 */
831
static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832
				struct rt_mutex_waiter *waiter)
I
Ingo Molnar 已提交
833 834
{
	/*
835 836 837 838
	 * Before testing whether we can acquire @lock, we set the
	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
	 * other tasks which try to modify @lock into the slow path
	 * and they serialize on @lock->wait_lock.
I
Ingo Molnar 已提交
839
	 *
840 841
	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
	 * as explained at the top of this file if and only if:
I
Ingo Molnar 已提交
842
	 *
843 844 845 846 847 848 849
	 * - There is a lock owner. The caller must fixup the
	 *   transient state if it does a trylock or leaves the lock
	 *   function due to a signal or timeout.
	 *
	 * - @task acquires the lock and there are no other
	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
	 *   the end of this function.
I
Ingo Molnar 已提交
850 851 852
	 */
	mark_rt_mutex_waiters(lock);

853 854 855
	/*
	 * If @lock has an owner, give up.
	 */
856
	if (rt_mutex_owner(lock))
I
Ingo Molnar 已提交
857 858
		return 0;

859
	/*
860
	 * If @waiter != NULL, @task has already enqueued the waiter
861
	 * into @lock waiter tree. If @waiter == NULL then this is a
862
	 * trylock attempt.
863
	 */
864 865 866 867 868 869 870
	if (waiter) {
		/*
		 * If waiter is not the highest priority waiter of
		 * @lock, give up.
		 */
		if (waiter != rt_mutex_top_waiter(lock))
			return 0;
871

872 873
		/*
		 * We can acquire the lock. Remove the waiter from the
874
		 * lock waiters tree.
875 876
		 */
		rt_mutex_dequeue(lock, waiter);
877

878
	} else {
879
		/*
880 881 882 883 884 885
		 * If the lock has waiters already we check whether @task is
		 * eligible to take over the lock.
		 *
		 * If there are no other waiters, @task can acquire
		 * the lock.  @task->pi_blocked_on is NULL, so it does
		 * not need to be dequeued.
886 887
		 */
		if (rt_mutex_has_waiters(lock)) {
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
			/*
			 * If @task->prio is greater than or equal to
			 * the top waiter priority (kernel view),
			 * @task lost.
			 */
			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
				return 0;

			/*
			 * The current top waiter stays enqueued. We
			 * don't have to change anything in the lock
			 * waiters order.
			 */
		} else {
			/*
			 * No waiters. Take the lock without the
			 * pi_lock dance.@task->pi_blocked_on is NULL
			 * and we have no waiters to enqueue in @task
906
			 * pi waiters tree.
907 908
			 */
			goto takeit;
909 910 911
		}
	}

912 913 914 915 916 917
	/*
	 * Clear @task->pi_blocked_on. Requires protection by
	 * @task->pi_lock. Redundant operation for the @waiter == NULL
	 * case, but conditionals are more expensive than a redundant
	 * store.
	 */
918
	raw_spin_lock(&task->pi_lock);
919 920 921 922
	task->pi_blocked_on = NULL;
	/*
	 * Finish the lock acquisition. @task is the new owner. If
	 * other waiters exist we have to insert the highest priority
923
	 * waiter into @task->pi_waiters tree.
924 925 926
	 */
	if (rt_mutex_has_waiters(lock))
		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927
	raw_spin_unlock(&task->pi_lock);
928 929

takeit:
I
Ingo Molnar 已提交
930
	/* We got the lock. */
931
	debug_rt_mutex_lock(lock);
I
Ingo Molnar 已提交
932

933 934 935 936
	/*
	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
	 * are still waiters or clears it.
	 */
937
	rt_mutex_set_owner(lock, task);
I
Ingo Molnar 已提交
938

939
	rt_mutex_deadlock_account_lock(lock, task);
I
Ingo Molnar 已提交
940 941 942 943 944 945 946 947 948

	return 1;
}

/*
 * Task blocks on lock.
 *
 * Prepare waiter and propagate pi chain
 *
949
 * This must be called with lock->wait_lock held and interrupts disabled
I
Ingo Molnar 已提交
950 951 952
 */
static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
				   struct rt_mutex_waiter *waiter,
D
Darren Hart 已提交
953
				   struct task_struct *task,
954
				   enum rtmutex_chainwalk chwalk)
I
Ingo Molnar 已提交
955
{
956
	struct task_struct *owner = rt_mutex_owner(lock);
I
Ingo Molnar 已提交
957
	struct rt_mutex_waiter *top_waiter = waiter;
958
	struct rt_mutex *next_lock;
959
	int chain_walk = 0, res;
I
Ingo Molnar 已提交
960

961 962 963 964 965 966 967 968 969
	/*
	 * Early deadlock detection. We really don't want the task to
	 * enqueue on itself just to untangle the mess later. It's not
	 * only an optimization. We drop the locks, so another waiter
	 * can come in before the chain walk detects the deadlock. So
	 * the other will detect the deadlock and return -EDEADLOCK,
	 * which is wrong, as the other waiter is not in a deadlock
	 * situation.
	 */
970
	if (owner == task)
971 972
		return -EDEADLK;

973
	raw_spin_lock(&task->pi_lock);
D
Darren Hart 已提交
974 975
	__rt_mutex_adjust_prio(task);
	waiter->task = task;
I
Ingo Molnar 已提交
976
	waiter->lock = lock;
977
	waiter->prio = task->prio;
I
Ingo Molnar 已提交
978 979 980 981

	/* Get the top priority waiter on the lock */
	if (rt_mutex_has_waiters(lock))
		top_waiter = rt_mutex_top_waiter(lock);
982
	rt_mutex_enqueue(lock, waiter);
I
Ingo Molnar 已提交
983

D
Darren Hart 已提交
984
	task->pi_blocked_on = waiter;
I
Ingo Molnar 已提交
985

986
	raw_spin_unlock(&task->pi_lock);
I
Ingo Molnar 已提交
987

988 989 990
	if (!owner)
		return 0;

991
	raw_spin_lock(&owner->pi_lock);
I
Ingo Molnar 已提交
992
	if (waiter == rt_mutex_top_waiter(lock)) {
993 994
		rt_mutex_dequeue_pi(owner, top_waiter);
		rt_mutex_enqueue_pi(owner, waiter);
I
Ingo Molnar 已提交
995 996

		__rt_mutex_adjust_prio(owner);
997 998
		if (owner->pi_blocked_on)
			chain_walk = 1;
999
	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1000
		chain_walk = 1;
1001
	}
1002

1003 1004 1005
	/* Store the lock on which owner is blocked or NULL */
	next_lock = task_blocked_on_lock(owner);

1006
	raw_spin_unlock(&owner->pi_lock);
1007 1008 1009 1010 1011 1012
	/*
	 * Even if full deadlock detection is on, if the owner is not
	 * blocked itself, we can avoid finding this out in the chain
	 * walk.
	 */
	if (!chain_walk || !next_lock)
I
Ingo Molnar 已提交
1013 1014
		return 0;

1015 1016 1017 1018 1019 1020 1021
	/*
	 * The owner can't disappear while holding a lock,
	 * so the owner struct is protected by wait_lock.
	 * Gets dropped in rt_mutex_adjust_prio_chain()!
	 */
	get_task_struct(owner);

1022
	raw_spin_unlock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1023

1024
	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1025
					 next_lock, waiter, task);
I
Ingo Molnar 已提交
1026

1027
	raw_spin_lock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1028 1029 1030 1031 1032

	return res;
}

/*
1033
 * Remove the top waiter from the current tasks pi waiter tree and
1034
 * queue it up.
I
Ingo Molnar 已提交
1035
 *
1036
 * Called with lock->wait_lock held and interrupts disabled.
I
Ingo Molnar 已提交
1037
 */
1038 1039
static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
				    struct rt_mutex *lock)
I
Ingo Molnar 已提交
1040 1041 1042
{
	struct rt_mutex_waiter *waiter;

1043
	raw_spin_lock(&current->pi_lock);
I
Ingo Molnar 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052

	waiter = rt_mutex_top_waiter(lock);

	/*
	 * Remove it from current->pi_waiters. We do not adjust a
	 * possible priority boost right now. We execute wakeup in the
	 * boosted mode and go back to normal after releasing
	 * lock->wait_lock.
	 */
1053
	rt_mutex_dequeue_pi(current, waiter);
I
Ingo Molnar 已提交
1054

T
Thomas Gleixner 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * As we are waking up the top waiter, and the waiter stays
	 * queued on the lock until it gets the lock, this lock
	 * obviously has waiters. Just set the bit here and this has
	 * the added benefit of forcing all new tasks into the
	 * slow path making sure no task of lower priority than
	 * the top waiter can steal this lock.
	 */
	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
I
Ingo Molnar 已提交
1064

1065
	raw_spin_unlock(&current->pi_lock);
I
Ingo Molnar 已提交
1066

1067
	wake_q_add(wake_q, waiter->task);
I
Ingo Molnar 已提交
1068 1069 1070
}

/*
1071
 * Remove a waiter from a lock and give up
I
Ingo Molnar 已提交
1072
 *
1073
 * Must be called with lock->wait_lock held and interrupts disabled. I must
1074
 * have just failed to try_to_take_rt_mutex().
I
Ingo Molnar 已提交
1075
 */
1076 1077
static void remove_waiter(struct rt_mutex *lock,
			  struct rt_mutex_waiter *waiter)
I
Ingo Molnar 已提交
1078
{
1079
	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1080
	struct task_struct *owner = rt_mutex_owner(lock);
1081
	struct rt_mutex *next_lock;
I
Ingo Molnar 已提交
1082

1083
	raw_spin_lock(&current->pi_lock);
1084
	rt_mutex_dequeue(lock, waiter);
I
Ingo Molnar 已提交
1085
	current->pi_blocked_on = NULL;
1086
	raw_spin_unlock(&current->pi_lock);
I
Ingo Molnar 已提交
1087

1088 1089 1090 1091 1092
	/*
	 * Only update priority if the waiter was the highest priority
	 * waiter of the lock and there is an owner to update.
	 */
	if (!owner || !is_top_waiter)
1093 1094
		return;

1095
	raw_spin_lock(&owner->pi_lock);
I
Ingo Molnar 已提交
1096

1097
	rt_mutex_dequeue_pi(owner, waiter);
I
Ingo Molnar 已提交
1098

1099 1100
	if (rt_mutex_has_waiters(lock))
		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
I
Ingo Molnar 已提交
1101

1102
	__rt_mutex_adjust_prio(owner);
I
Ingo Molnar 已提交
1103

1104 1105
	/* Store the lock on which owner is blocked or NULL */
	next_lock = task_blocked_on_lock(owner);
1106

1107
	raw_spin_unlock(&owner->pi_lock);
I
Ingo Molnar 已提交
1108

1109 1110 1111 1112
	/*
	 * Don't walk the chain, if the owner task is not blocked
	 * itself.
	 */
1113
	if (!next_lock)
I
Ingo Molnar 已提交
1114 1115
		return;

1116 1117 1118
	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(owner);

1119
	raw_spin_unlock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1120

1121 1122
	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
				   next_lock, NULL, current);
I
Ingo Molnar 已提交
1123

1124
	raw_spin_lock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Recheck the pi chain, in case we got a priority setting
 *
 * Called from sched_setscheduler
 */
void rt_mutex_adjust_pi(struct task_struct *task)
{
	struct rt_mutex_waiter *waiter;
1135
	struct rt_mutex *next_lock;
1136 1137
	unsigned long flags;

1138
	raw_spin_lock_irqsave(&task->pi_lock, flags);
1139 1140

	waiter = task->pi_blocked_on;
1141 1142
	if (!waiter || (waiter->prio == task->prio &&
			!dl_prio(task->prio))) {
1143
		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1144 1145
		return;
	}
1146
	next_lock = waiter->lock;
1147
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1148

1149 1150
	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(task);
1151

1152 1153
	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
				   next_lock, NULL, task);
1154 1155
}

D
Darren Hart 已提交
1156 1157 1158 1159
/**
 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
 * @lock:		 the rt_mutex to take
 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1160
 *			 or TASK_UNINTERRUPTIBLE)
D
Darren Hart 已提交
1161 1162 1163
 * @timeout:		 the pre-initialized and started timer, or NULL for none
 * @waiter:		 the pre-initialized rt_mutex_waiter
 *
1164
 * Must be called with lock->wait_lock held and interrupts disabled
I
Ingo Molnar 已提交
1165 1166
 */
static int __sched
D
Darren Hart 已提交
1167 1168
__rt_mutex_slowlock(struct rt_mutex *lock, int state,
		    struct hrtimer_sleeper *timeout,
1169
		    struct rt_mutex_waiter *waiter)
I
Ingo Molnar 已提交
1170 1171 1172 1173 1174
{
	int ret = 0;

	for (;;) {
		/* Try to acquire the lock: */
1175
		if (try_to_take_rt_mutex(lock, current, waiter))
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180 1181
			break;

		/*
		 * TASK_INTERRUPTIBLE checks for signals and
		 * timeout. Ignored otherwise.
		 */
1182
		if (likely(state == TASK_INTERRUPTIBLE)) {
I
Ingo Molnar 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
			/* Signal pending? */
			if (signal_pending(current))
				ret = -EINTR;
			if (timeout && !timeout->task)
				ret = -ETIMEDOUT;
			if (ret)
				break;
		}

1192
		raw_spin_unlock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1193

D
Darren Hart 已提交
1194
		debug_rt_mutex_print_deadlock(waiter);
I
Ingo Molnar 已提交
1195

1196
		schedule();
I
Ingo Molnar 已提交
1197

1198
		raw_spin_lock_irq(&lock->wait_lock);
I
Ingo Molnar 已提交
1199 1200 1201
		set_current_state(state);
	}

1202
	__set_current_state(TASK_RUNNING);
D
Darren Hart 已提交
1203 1204 1205
	return ret;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
				     struct rt_mutex_waiter *w)
{
	/*
	 * If the result is not -EDEADLOCK or the caller requested
	 * deadlock detection, nothing to do here.
	 */
	if (res != -EDEADLOCK || detect_deadlock)
		return;

	/*
	 * Yell lowdly and stop the task right here.
	 */
	rt_mutex_print_deadlock(w);
	while (1) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
	}
}

D
Darren Hart 已提交
1226 1227 1228 1229 1230 1231
/*
 * Slow path lock function:
 */
static int __sched
rt_mutex_slowlock(struct rt_mutex *lock, int state,
		  struct hrtimer_sleeper *timeout,
1232
		  enum rtmutex_chainwalk chwalk)
D
Darren Hart 已提交
1233 1234
{
	struct rt_mutex_waiter waiter;
1235
	unsigned long flags;
D
Darren Hart 已提交
1236 1237 1238
	int ret = 0;

	debug_rt_mutex_init_waiter(&waiter);
1239 1240
	RB_CLEAR_NODE(&waiter.pi_tree_entry);
	RB_CLEAR_NODE(&waiter.tree_entry);
D
Darren Hart 已提交
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
	 * be called in early boot if the cmpxchg() fast path is disabled
	 * (debug, no architecture support). In this case we will acquire the
	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
	 * enable interrupts in that early boot case. So we need to use the
	 * irqsave/restore variants.
	 */
	raw_spin_lock_irqsave(&lock->wait_lock, flags);
D
Darren Hart 已提交
1251 1252

	/* Try to acquire the lock again: */
1253
	if (try_to_take_rt_mutex(lock, current, NULL)) {
1254
		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
D
Darren Hart 已提交
1255 1256 1257 1258 1259 1260
		return 0;
	}

	set_current_state(state);

	/* Setup the timer, when timeout != NULL */
1261
	if (unlikely(timeout))
D
Darren Hart 已提交
1262 1263
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

1264
	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265 1266

	if (likely(!ret))
1267
		/* sleep on the mutex */
1268
		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
D
Darren Hart 已提交
1269

1270
	if (unlikely(ret)) {
1271
		__set_current_state(TASK_RUNNING);
1272 1273
		if (rt_mutex_has_waiters(lock))
			remove_waiter(lock, &waiter);
1274
		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1275
	}
I
Ingo Molnar 已提交
1276 1277 1278 1279 1280 1281 1282

	/*
	 * try_to_take_rt_mutex() sets the waiter bit
	 * unconditionally. We might have to fix that up.
	 */
	fixup_rt_mutex_waiters(lock);

1283
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/* Remove pending timer: */
	if (unlikely(timeout))
		hrtimer_cancel(&timeout->timer);

	debug_rt_mutex_free_waiter(&waiter);

	return ret;
}

/*
 * Slow path try-lock function:
 */
1297
static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
I
Ingo Molnar 已提交
1298
{
1299
	unsigned long flags;
1300 1301 1302 1303 1304 1305 1306 1307 1308
	int ret;

	/*
	 * If the lock already has an owner we fail to get the lock.
	 * This can be done without taking the @lock->wait_lock as
	 * it is only being read, and this is a trylock anyway.
	 */
	if (rt_mutex_owner(lock))
		return 0;
I
Ingo Molnar 已提交
1309

1310
	/*
1311 1312
	 * The mutex has currently no owner. Lock the wait lock and try to
	 * acquire the lock. We use irqsave here to support early boot calls.
1313
	 */
1314
	raw_spin_lock_irqsave(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1315

1316
	ret = try_to_take_rt_mutex(lock, current, NULL);
I
Ingo Molnar 已提交
1317

1318 1319 1320 1321 1322
	/*
	 * try_to_take_rt_mutex() sets the lock waiters bit
	 * unconditionally. Clean this up.
	 */
	fixup_rt_mutex_waiters(lock);
I
Ingo Molnar 已提交
1323

1324
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1325 1326 1327 1328 1329

	return ret;
}

/*
1330 1331
 * Slow path to release a rt-mutex.
 * Return whether the current task needs to undo a potential priority boosting.
I
Ingo Molnar 已提交
1332
 */
1333 1334
static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
					struct wake_q_head *wake_q)
I
Ingo Molnar 已提交
1335
{
1336 1337 1338 1339
	unsigned long flags;

	/* irqsave required to support early boot calls */
	raw_spin_lock_irqsave(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1340 1341 1342 1343 1344

	debug_rt_mutex_unlock(lock);

	rt_mutex_deadlock_account_unlock(current);

T
Thomas Gleixner 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * We must be careful here if the fast path is enabled. If we
	 * have no waiters queued we cannot set owner to NULL here
	 * because of:
	 *
	 * foo->lock->owner = NULL;
	 *			rtmutex_lock(foo->lock);   <- fast path
	 *			free = atomic_dec_and_test(foo->refcnt);
	 *			rtmutex_unlock(foo->lock); <- fast path
	 *			if (free)
	 *				kfree(foo);
	 * raw_spin_unlock(foo->lock->wait_lock);
	 *
	 * So for the fastpath enabled kernel:
	 *
	 * Nothing can set the waiters bit as long as we hold
	 * lock->wait_lock. So we do the following sequence:
	 *
	 *	owner = rt_mutex_owner(lock);
	 *	clear_rt_mutex_waiters(lock);
	 *	raw_spin_unlock(&lock->wait_lock);
	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
	 *		return;
	 *	goto retry;
	 *
	 * The fastpath disabled variant is simple as all access to
	 * lock->owner is serialized by lock->wait_lock:
	 *
	 *	lock->owner = NULL;
	 *	raw_spin_unlock(&lock->wait_lock);
	 */
	while (!rt_mutex_has_waiters(lock)) {
		/* Drops lock->wait_lock ! */
1378
		if (unlock_rt_mutex_safe(lock, flags) == true)
1379
			return false;
T
Thomas Gleixner 已提交
1380
		/* Relock the rtmutex and try again */
1381
		raw_spin_lock_irqsave(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1382 1383
	}

T
Thomas Gleixner 已提交
1384 1385 1386
	/*
	 * The wakeup next waiter path does not suffer from the above
	 * race. See the comments there.
1387 1388
	 *
	 * Queue the next waiter for wakeup once we release the wait_lock.
T
Thomas Gleixner 已提交
1389
	 */
1390
	mark_wakeup_next_waiter(wake_q, lock);
I
Ingo Molnar 已提交
1391

1392
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
1393

1394 1395
	/* check PI boosting */
	return true;
I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

/*
 * debug aware fast / slowpath lock,trylock,unlock
 *
 * The atomic acquire/release ops are compiled away, when either the
 * architecture does not support cmpxchg or when debugging is enabled.
 */
static inline int
rt_mutex_fastlock(struct rt_mutex *lock, int state,
		  int (*slowfn)(struct rt_mutex *lock, int state,
				struct hrtimer_sleeper *timeout,
1408
				enum rtmutex_chainwalk chwalk))
I
Ingo Molnar 已提交
1409
{
1410
	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
I
Ingo Molnar 已提交
1411 1412 1413
		rt_mutex_deadlock_account_lock(lock, current);
		return 0;
	} else
1414
		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
I
Ingo Molnar 已提交
1415 1416 1417 1418
}

static inline int
rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419 1420
			struct hrtimer_sleeper *timeout,
			enum rtmutex_chainwalk chwalk,
I
Ingo Molnar 已提交
1421 1422
			int (*slowfn)(struct rt_mutex *lock, int state,
				      struct hrtimer_sleeper *timeout,
1423
				      enum rtmutex_chainwalk chwalk))
I
Ingo Molnar 已提交
1424
{
1425
	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426
	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
I
Ingo Molnar 已提交
1427 1428 1429
		rt_mutex_deadlock_account_lock(lock, current);
		return 0;
	} else
1430
		return slowfn(lock, state, timeout, chwalk);
I
Ingo Molnar 已提交
1431 1432 1433 1434
}

static inline int
rt_mutex_fasttrylock(struct rt_mutex *lock,
1435
		     int (*slowfn)(struct rt_mutex *lock))
I
Ingo Molnar 已提交
1436
{
1437
	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
I
Ingo Molnar 已提交
1438 1439 1440
		rt_mutex_deadlock_account_lock(lock, current);
		return 1;
	}
1441
	return slowfn(lock);
I
Ingo Molnar 已提交
1442 1443 1444 1445
}

static inline void
rt_mutex_fastunlock(struct rt_mutex *lock,
1446 1447
		    bool (*slowfn)(struct rt_mutex *lock,
				   struct wake_q_head *wqh))
I
Ingo Molnar 已提交
1448
{
1449
	DEFINE_WAKE_Q(wake_q);
1450

1451
	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
I
Ingo Molnar 已提交
1452
		rt_mutex_deadlock_account_unlock(current);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

	} else {
		bool deboost = slowfn(lock, &wake_q);

		wake_up_q(&wake_q);

		/* Undo pi boosting if necessary: */
		if (deboost)
			rt_mutex_adjust_prio(current);
	}
I
Ingo Molnar 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
}

/**
 * rt_mutex_lock - lock a rt_mutex
 *
 * @lock: the rt_mutex to be locked
 */
void __sched rt_mutex_lock(struct rt_mutex *lock)
{
	might_sleep();

1474
	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
I
Ingo Molnar 已提交
1475 1476 1477 1478 1479 1480
}
EXPORT_SYMBOL_GPL(rt_mutex_lock);

/**
 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 *
1481
 * @lock:		the rt_mutex to be locked
I
Ingo Molnar 已提交
1482 1483
 *
 * Returns:
1484 1485
 *  0		on success
 * -EINTR	when interrupted by a signal
I
Ingo Molnar 已提交
1486
 */
1487
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
I
Ingo Molnar 已提交
1488 1489 1490
{
	might_sleep();

1491
	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
I
Ingo Molnar 已提交
1492 1493 1494
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);

1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Futex variant with full deadlock detection.
 */
int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
			      struct hrtimer_sleeper *timeout)
{
	might_sleep();

1503 1504
	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
				       RT_MUTEX_FULL_CHAINWALK,
1505 1506 1507
				       rt_mutex_slowlock);
}

I
Ingo Molnar 已提交
1508
/**
1509 1510 1511
 * rt_mutex_timed_lock - lock a rt_mutex interruptible
 *			the timeout structure is provided
 *			by the caller
I
Ingo Molnar 已提交
1512
 *
1513
 * @lock:		the rt_mutex to be locked
I
Ingo Molnar 已提交
1514 1515 1516
 * @timeout:		timeout structure or NULL (no timeout)
 *
 * Returns:
1517 1518
 *  0		on success
 * -EINTR	when interrupted by a signal
1519
 * -ETIMEDOUT	when the timeout expired
I
Ingo Molnar 已提交
1520 1521
 */
int
1522
rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
I
Ingo Molnar 已提交
1523 1524 1525
{
	might_sleep();

1526 1527
	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
				       RT_MUTEX_MIN_CHAINWALK,
1528
				       rt_mutex_slowlock);
I
Ingo Molnar 已提交
1529 1530 1531 1532 1533 1534 1535 1536
}
EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);

/**
 * rt_mutex_trylock - try to lock a rt_mutex
 *
 * @lock:	the rt_mutex to be locked
 *
1537 1538 1539 1540
 * This function can only be called in thread context. It's safe to
 * call it from atomic regions, but not from hard interrupt or soft
 * interrupt context.
 *
I
Ingo Molnar 已提交
1541 1542 1543 1544
 * Returns 1 on success and 0 on contention
 */
int __sched rt_mutex_trylock(struct rt_mutex *lock)
{
1545
	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1546 1547
		return 0;

I
Ingo Molnar 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
}
EXPORT_SYMBOL_GPL(rt_mutex_trylock);

/**
 * rt_mutex_unlock - unlock a rt_mutex
 *
 * @lock: the rt_mutex to be unlocked
 */
void __sched rt_mutex_unlock(struct rt_mutex *lock)
{
	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_unlock);

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
 * @lock: the rt_mutex to be unlocked
 *
 * Returns: true/false indicating whether priority adjustment is
 * required or not.
 */
bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
				   struct wake_q_head *wqh)
{
1573
	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1574 1575 1576 1577 1578 1579
		rt_mutex_deadlock_account_unlock(current);
		return false;
	}
	return rt_mutex_slowunlock(lock, wqh);
}

1580
/**
I
Ingo Molnar 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 * rt_mutex_destroy - mark a mutex unusable
 * @lock: the mutex to be destroyed
 *
 * This function marks the mutex uninitialized, and any subsequent
 * use of the mutex is forbidden. The mutex must not be locked when
 * this function is called.
 */
void rt_mutex_destroy(struct rt_mutex *lock)
{
	WARN_ON(rt_mutex_is_locked(lock));
#ifdef CONFIG_DEBUG_RT_MUTEXES
	lock->magic = NULL;
#endif
}

EXPORT_SYMBOL_GPL(rt_mutex_destroy);

/**
 * __rt_mutex_init - initialize the rt lock
 *
 * @lock: the rt lock to be initialized
 *
 * Initialize the rt lock to unlocked state.
 *
 * Initializing of a locked rt lock is not allowed
 */
void __rt_mutex_init(struct rt_mutex *lock, const char *name)
{
	lock->owner = NULL;
1610
	raw_spin_lock_init(&lock->wait_lock);
1611 1612
	lock->waiters = RB_ROOT;
	lock->waiters_leftmost = NULL;
I
Ingo Molnar 已提交
1613 1614 1615 1616

	debug_rt_mutex_init(lock, name);
}
EXPORT_SYMBOL_GPL(__rt_mutex_init);
1617 1618 1619 1620 1621

/**
 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
 *				proxy owner
 *
1622
 * @lock:	the rt_mutex to be locked
1623 1624 1625
 * @proxy_owner:the task to set as owner
 *
 * No locking. Caller has to do serializing itself
1626 1627 1628 1629 1630
 *
 * Special API call for PI-futex support. This initializes the rtmutex and
 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
 * possible at this point because the pi_state which contains the rtmutex
 * is not yet visible to other tasks.
1631 1632 1633 1634 1635
 */
void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
				struct task_struct *proxy_owner)
{
	__rt_mutex_init(lock, NULL);
1636
	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1637
	rt_mutex_set_owner(lock, proxy_owner);
1638 1639 1640 1641 1642 1643
	rt_mutex_deadlock_account_lock(lock, proxy_owner);
}

/**
 * rt_mutex_proxy_unlock - release a lock on behalf of owner
 *
1644
 * @lock:	the rt_mutex to be locked
1645 1646
 *
 * No locking. Caller has to do serializing itself
1647 1648 1649 1650 1651
 *
 * Special API call for PI-futex support. This merrily cleans up the rtmutex
 * (debugging) state. Concurrent operations on this rt_mutex are not
 * possible because it belongs to the pi_state which is about to be freed
 * and it is not longer visible to other tasks.
1652 1653 1654 1655 1656
 */
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
			   struct task_struct *proxy_owner)
{
	debug_rt_mutex_proxy_unlock(lock);
1657
	rt_mutex_set_owner(lock, NULL);
1658 1659 1660
	rt_mutex_deadlock_account_unlock(proxy_owner);
}

D
Darren Hart 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/**
 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
 * @lock:		the rt_mutex to take
 * @waiter:		the pre-initialized rt_mutex_waiter
 * @task:		the task to prepare
 *
 * Returns:
 *  0 - task blocked on lock
 *  1 - acquired the lock for task, caller should wake it up
 * <0 - error
 *
 * Special API call for FUTEX_REQUEUE_PI support.
 */
int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
			      struct rt_mutex_waiter *waiter,
1676
			      struct task_struct *task)
D
Darren Hart 已提交
1677 1678 1679
{
	int ret;

1680
	raw_spin_lock_irq(&lock->wait_lock);
D
Darren Hart 已提交
1681

1682
	if (try_to_take_rt_mutex(lock, task, NULL)) {
1683
		raw_spin_unlock_irq(&lock->wait_lock);
D
Darren Hart 已提交
1684 1685 1686
		return 1;
	}

1687
	/* We enforce deadlock detection for futexes */
1688 1689
	ret = task_blocks_on_rt_mutex(lock, waiter, task,
				      RT_MUTEX_FULL_CHAINWALK);
D
Darren Hart 已提交
1690

1691
	if (ret && !rt_mutex_owner(lock)) {
D
Darren Hart 已提交
1692 1693 1694 1695 1696 1697 1698 1699
		/*
		 * Reset the return value. We might have
		 * returned with -EDEADLK and the owner
		 * released the lock while we were walking the
		 * pi chain.  Let the waiter sort it out.
		 */
		ret = 0;
	}
1700 1701 1702 1703

	if (unlikely(ret))
		remove_waiter(lock, waiter);

1704
	raw_spin_unlock_irq(&lock->wait_lock);
D
Darren Hart 已提交
1705 1706 1707 1708 1709 1710

	debug_rt_mutex_print_deadlock(waiter);

	return ret;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 * rt_mutex_next_owner - return the next owner of the lock
 *
 * @lock: the rt lock query
 *
 * Returns the next owner of the lock or NULL
 *
 * Caller has to serialize against other accessors to the lock
 * itself.
 *
 * Special API call for PI-futex support
 */
struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
{
	if (!rt_mutex_has_waiters(lock))
		return NULL;

	return rt_mutex_top_waiter(lock)->task;
}
D
Darren Hart 已提交
1730 1731 1732 1733 1734

/**
 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
 * @lock:		the rt_mutex we were woken on
 * @to:			the timeout, null if none. hrtimer should already have
1735
 *			been started.
D
Darren Hart 已提交
1736 1737 1738 1739 1740 1741
 * @waiter:		the pre-initialized rt_mutex_waiter
 *
 * Complete the lock acquisition started our behalf by another thread.
 *
 * Returns:
 *  0 - success
1742
 * <0 - error, one of -EINTR, -ETIMEDOUT
D
Darren Hart 已提交
1743 1744 1745 1746 1747
 *
 * Special API call for PI-futex requeue support
 */
int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
			       struct hrtimer_sleeper *to,
1748
			       struct rt_mutex_waiter *waiter)
D
Darren Hart 已提交
1749 1750 1751
{
	int ret;

1752
	raw_spin_lock_irq(&lock->wait_lock);
D
Darren Hart 已提交
1753 1754 1755

	set_current_state(TASK_INTERRUPTIBLE);

1756
	/* sleep on the mutex */
1757
	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
D
Darren Hart 已提交
1758

1759
	if (unlikely(ret))
D
Darren Hart 已提交
1760 1761 1762 1763 1764 1765 1766 1767
		remove_waiter(lock, waiter);

	/*
	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
	 * have to fix that up.
	 */
	fixup_rt_mutex_waiters(lock);

1768
	raw_spin_unlock_irq(&lock->wait_lock);
D
Darren Hart 已提交
1769 1770 1771

	return ret;
}