idr.c 16.7 KB
Newer Older
1
#include <linux/bitmap.h>
M
Matthew Wilcox 已提交
2
#include <linux/bug.h>
3
#include <linux/export.h>
L
Linus Torvalds 已提交
4
#include <linux/idr.h>
5
#include <linux/slab.h>
6
#include <linux/spinlock.h>
L
Linus Torvalds 已提交
7

8
DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
9
static DEFINE_SPINLOCK(simple_ida_lock);
L
Linus Torvalds 已提交
10

M
Matthew Wilcox 已提交
11 12 13 14 15 16 17 18 19 20
/**
 * idr_alloc_u32() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @nextid: Pointer to an ID.
 * @max: The maximum ID to allocate (inclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @max.
 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
M
Matthew Wilcox 已提交
21 22 23
 * is exclusive.  The new ID is assigned to @nextid before the pointer
 * is inserted into the IDR, so if @nextid points into the object pointed
 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
M
Matthew Wilcox 已提交
24 25 26 27 28 29 30 31 32 33 34 35
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.  If an error occurred,
 * @nextid is unchanged.
 */
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
			unsigned long max, gfp_t gfp)
36
{
37
	struct radix_tree_iter iter;
38
	void __rcu **slot;
39

40 41
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;
M
Matthew Wilcox 已提交
42 43
	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
44

M
Matthew Wilcox 已提交
45 46
	radix_tree_iter_init(&iter, *nextid);
	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max);
47 48
	if (IS_ERR(slot))
		return PTR_ERR(slot);
49

M
Matthew Wilcox 已提交
50 51
	*nextid = iter.index;
	/* there is a memory barrier inside radix_tree_iter_replace() */
52 53
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 55

	return 0;
56
}
M
Matthew Wilcox 已提交
57
EXPORT_SYMBOL_GPL(idr_alloc_u32);
58

J
Jeff Layton 已提交
59
/**
M
Matthew Wilcox 已提交
60 61 62 63 64 65
 * idr_alloc() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
66
 *
M
Matthew Wilcox 已提交
67 68 69 70 71 72 73 74 75 76 77
 * Allocates an unused ID in the range specified by @start and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
A
Andrew Morton 已提交
78
 */
M
Matthew Wilcox 已提交
79
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
L
Linus Torvalds 已提交
80
{
M
Matthew Wilcox 已提交
81 82 83 84 85 86 87 88 89
	u32 id = start;
	int ret;

	if (WARN_ON_ONCE(start < 0))
		return -EINVAL;

	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
90

M
Matthew Wilcox 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);

/**
 * idr_alloc_cyclic() - Allocate an ID cyclically.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 * The search for an unused ID will start at the last ID allocated and will
 * wrap around to @start if no free IDs are found before reaching @end.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
	u32 id = idr->idr_next;
	int err, max = end > 0 ? end - 1 : INT_MAX;
121

M
Matthew Wilcox 已提交
122 123
	if ((int)id < start)
		id = start;
L
Linus Torvalds 已提交
124

M
Matthew Wilcox 已提交
125 126 127 128 129 130 131
	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	if ((err == -ENOSPC) && (id > start)) {
		id = start;
		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	}
	if (err)
		return err;
L
Linus Torvalds 已提交
132

M
Matthew Wilcox 已提交
133
	idr->idr_next = id + 1;
134
	return id;
L
Linus Torvalds 已提交
135
}
136
EXPORT_SYMBOL(idr_alloc_cyclic);
L
Linus Torvalds 已提交
137

K
Kristian Hoegsberg 已提交
138 139
/**
 * idr_for_each - iterate through all stored pointers
140
 * @idr: idr handle
K
Kristian Hoegsberg 已提交
141
 * @fn: function to be called for each pointer
142
 * @data: data passed to callback function
K
Kristian Hoegsberg 已提交
143
 *
144 145
 * The callback function will be called for each entry in @idr, passing
 * the id, the pointer and the data pointer passed to this function.
K
Kristian Hoegsberg 已提交
146
 *
147 148
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
K
Kristian Hoegsberg 已提交
149
 *
150 151 152 153
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
K
Kristian Hoegsberg 已提交
154
 */
155 156
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
K
Kristian Hoegsberg 已提交
157
{
158
	struct radix_tree_iter iter;
159
	void __rcu **slot;
K
Kristian Hoegsberg 已提交
160

161 162 163 164
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
K
Kristian Hoegsberg 已提交
165 166
	}

167
	return 0;
K
Kristian Hoegsberg 已提交
168 169 170
}
EXPORT_SYMBOL(idr_for_each);

K
KAMEZAWA Hiroyuki 已提交
171
/**
172 173 174 175 176 177 178 179
 * idr_get_next - Find next populated entry
 * @idr: idr handle
 * @nextid: Pointer to lowest possible ID to return
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
K
KAMEZAWA Hiroyuki 已提交
180
 */
181
void *idr_get_next(struct idr *idr, int *nextid)
K
KAMEZAWA Hiroyuki 已提交
182
{
183
	struct radix_tree_iter iter;
184
	void __rcu **slot;
K
KAMEZAWA Hiroyuki 已提交
185

186 187
	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
K
KAMEZAWA Hiroyuki 已提交
188 189
		return NULL;

190 191
	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
K
KAMEZAWA Hiroyuki 已提交
192
}
B
Ben Hutchings 已提交
193
EXPORT_SYMBOL(idr_get_next);
K
KAMEZAWA Hiroyuki 已提交
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208
void *idr_get_next_ext(struct idr *idr, unsigned long *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
EXPORT_SYMBOL(idr_get_next_ext);

J
Jeff Mahoney 已提交
209
/**
M
Matthew Wilcox 已提交
210 211 212 213
 * idr_replace() - replace pointer for given ID.
 * @idr: IDR handle.
 * @ptr: New pointer to associate with the ID.
 * @id: ID to change.
J
Jeff Mahoney 已提交
214
 *
215 216 217 218
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
J
Jeff Mahoney 已提交
219
 *
220
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
221
 * found.  %-EINVAL indicates that @ptr was not valid.
J
Jeff Mahoney 已提交
222
 */
223
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
J
Jeff Mahoney 已提交
224
{
225
	struct radix_tree_node *node;
226
	void __rcu **slot = NULL;
227
	void *entry;
J
Jeff Mahoney 已提交
228

229
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
230 231
		return ERR_PTR(-EINVAL);

232 233
	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
J
Jeff Mahoney 已提交
234 235
		return ERR_PTR(-ENOENT);

236
	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
J
Jeff Mahoney 已提交
237

238
	return entry;
J
Jeff Mahoney 已提交
239
}
240
EXPORT_SYMBOL(idr_replace);
J
Jeff Mahoney 已提交
241

242 243
/**
 * DOC: IDA description
244
 *
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
265 266
 */

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

M
Matthew Wilcox 已提交
300
#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
301

302 303
/**
 * ida_get_new_above - allocate new ID above or equal to a start id
304 305 306
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
307
 *
308 309 310 311 312
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
313
 *
314
 * If memory is required, it will return %-EAGAIN, you should unlock
315
 * and go back to the ida_pre_get() call.  If the ida is full, it will
316
 * return %-ENOSPC.  On success, it will return 0.
317
 *
318
 * @id returns a value in the range @start ... %0x7fffffff.
319
 */
320
int ida_get_new_above(struct ida *ida, int start, int *id)
321
{
322
	struct radix_tree_root *root = &ida->ida_rt;
323
	void __rcu **slot;
324
	struct radix_tree_iter iter;
325
	struct ida_bitmap *bitmap;
326
	unsigned long index;
327
	unsigned bit, ebit;
328 329 330 331
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
332
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
333 334 335 336 337 338 339 340 341 342 343 344 345 346

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
347
		if (iter.index > index) {
348
			bit = 0;
349 350
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
351 352
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

370 371 372 373 374 375 376 377
		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;
378

379 380 381 382 383 384 385 386
			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
387 388 389 390 391 392 393 394
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
395
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
396 397 398 399 400 401
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}
402

403 404
		*id = new;
		return 0;
405 406 407 408 409
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
410 411 412 413 414
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
415 416 417
 */
void ida_remove(struct ida *ida, int id)
{
418 419
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
420
	struct ida_bitmap *bitmap;
421
	unsigned long *btmp;
422
	struct radix_tree_iter iter;
423
	void __rcu **slot;
424

425 426
	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
427 428
		goto err;

429
	bitmap = rcu_dereference_raw(*slot);
430 431 432 433 434 435 436 437 438
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
439 440
		goto err;

441
	__clear_bit(offset, btmp);
442
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
443 444 445 446 447
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
448 449
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
450 451 452
	}
	return;
 err:
453
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
454 455 456 457
}
EXPORT_SYMBOL(ida_remove);

/**
458 459 460 461 462 463 464
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
465 466 467
 */
void ida_destroy(struct ida *ida)
{
468
	struct radix_tree_iter iter;
469
	void __rcu **slot;
470 471 472

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
473 474
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
475 476
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
477 478 479
}
EXPORT_SYMBOL(ida_destroy);

480 481 482 483 484 485 486 487 488 489
/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
490 491 492
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
493 494 495 496 497 498 499
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
500
	unsigned long flags;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

516
	spin_lock_irqsave(&simple_ida_lock, flags);
517 518 519 520 521 522 523 524 525
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
526
	spin_unlock_irqrestore(&simple_ida_lock, flags);
527 528 529 530 531 532 533 534 535 536 537 538

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
539 540 541 542 543
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
544 545 546
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
547 548
	unsigned long flags;

549
	BUG_ON((int)id < 0);
550
	spin_lock_irqsave(&simple_ida_lock, flags);
551
	ida_remove(ida, id);
552
	spin_unlock_irqrestore(&simple_ida_lock, flags);
553 554
}
EXPORT_SYMBOL(ida_simple_remove);