idr.c 15.0 KB
Newer Older
1
#include <linux/bitmap.h>
2
#include <linux/export.h>
L
Linus Torvalds 已提交
3
#include <linux/idr.h>
4
#include <linux/slab.h>
5
#include <linux/spinlock.h>
L
Linus Torvalds 已提交
6

7
DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
8
static DEFINE_SPINLOCK(simple_ida_lock);
L
Linus Torvalds 已提交
9

M
Matthew Wilcox 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/**
 * idr_alloc_u32() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @nextid: Pointer to an ID.
 * @max: The maximum ID to allocate (inclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @max.
 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
 * is exclusive.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.  If an error occurred,
 * @nextid is unchanged.
 */
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
			unsigned long max, gfp_t gfp)
{
	unsigned long tmp = *nextid;
	int ret = idr_alloc_ext(idr, ptr, &tmp, tmp, max + 1, gfp);
	*nextid = tmp;
	return ret;
}
EXPORT_SYMBOL_GPL(idr_alloc_u32);

41 42 43
int idr_alloc_cmn(struct idr *idr, void *ptr, unsigned long *index,
		  unsigned long start, unsigned long end, gfp_t gfp,
		  bool ext)
44
{
45
	struct radix_tree_iter iter;
46
	void __rcu **slot;
47

48 49
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;
50

51
	radix_tree_iter_init(&iter, start);
52 53 54 55
	if (ext)
		slot = idr_get_free_ext(&idr->idr_rt, &iter, gfp, end);
	else
		slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
56 57
	if (IS_ERR(slot))
		return PTR_ERR(slot);
58

59 60
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
61 62 63 64

	if (index)
		*index = iter.index;
	return 0;
65
}
66
EXPORT_SYMBOL_GPL(idr_alloc_cmn);
67

J
Jeff Layton 已提交
68 69
/**
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
70
 * @idr: idr handle
J
Jeff Layton 已提交
71 72
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
73 74
 * @end: the maximum id (exclusive)
 * @gfp: memory allocation flags
75
 *
76 77 78
 * Allocates an ID larger than the last ID allocated if one is available.
 * If not, it will attempt to allocate the smallest ID that is larger or
 * equal to @start.
A
Andrew Morton 已提交
79
 */
80
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
L
Linus Torvalds 已提交
81
{
82
	int id, curr = idr->idr_next;
L
Linus Torvalds 已提交
83

84 85
	if (curr < start)
		curr = start;
86

87 88 89
	id = idr_alloc(idr, ptr, curr, end, gfp);
	if ((id == -ENOSPC) && (curr > start))
		id = idr_alloc(idr, ptr, start, curr, gfp);
L
Linus Torvalds 已提交
90

91 92
	if (id >= 0)
		idr->idr_next = id + 1U;
L
Linus Torvalds 已提交
93

94
	return id;
L
Linus Torvalds 已提交
95
}
96
EXPORT_SYMBOL(idr_alloc_cyclic);
L
Linus Torvalds 已提交
97

K
Kristian Hoegsberg 已提交
98 99
/**
 * idr_for_each - iterate through all stored pointers
100
 * @idr: idr handle
K
Kristian Hoegsberg 已提交
101
 * @fn: function to be called for each pointer
102
 * @data: data passed to callback function
K
Kristian Hoegsberg 已提交
103
 *
104 105
 * The callback function will be called for each entry in @idr, passing
 * the id, the pointer and the data pointer passed to this function.
K
Kristian Hoegsberg 已提交
106
 *
107 108
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
K
Kristian Hoegsberg 已提交
109
 *
110 111 112 113
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
K
Kristian Hoegsberg 已提交
114
 */
115 116
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
K
Kristian Hoegsberg 已提交
117
{
118
	struct radix_tree_iter iter;
119
	void __rcu **slot;
K
Kristian Hoegsberg 已提交
120

121 122 123 124
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
K
Kristian Hoegsberg 已提交
125 126
	}

127
	return 0;
K
Kristian Hoegsberg 已提交
128 129 130
}
EXPORT_SYMBOL(idr_for_each);

K
KAMEZAWA Hiroyuki 已提交
131
/**
132 133 134 135 136 137 138 139
 * idr_get_next - Find next populated entry
 * @idr: idr handle
 * @nextid: Pointer to lowest possible ID to return
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
K
KAMEZAWA Hiroyuki 已提交
140
 */
141
void *idr_get_next(struct idr *idr, int *nextid)
K
KAMEZAWA Hiroyuki 已提交
142
{
143
	struct radix_tree_iter iter;
144
	void __rcu **slot;
K
KAMEZAWA Hiroyuki 已提交
145

146 147
	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
K
KAMEZAWA Hiroyuki 已提交
148 149
		return NULL;

150 151
	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
K
KAMEZAWA Hiroyuki 已提交
152
}
B
Ben Hutchings 已提交
153
EXPORT_SYMBOL(idr_get_next);
K
KAMEZAWA Hiroyuki 已提交
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168
void *idr_get_next_ext(struct idr *idr, unsigned long *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
EXPORT_SYMBOL(idr_get_next_ext);

J
Jeff Mahoney 已提交
169 170
/**
 * idr_replace - replace pointer for given id
171 172 173
 * @idr: idr handle
 * @ptr: New pointer to associate with the ID
 * @id: Lookup key
J
Jeff Mahoney 已提交
174
 *
175 176 177 178
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
J
Jeff Mahoney 已提交
179
 *
180
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
181
 * found.  %-EINVAL indicates that @ptr was not valid.
J
Jeff Mahoney 已提交
182
 */
183
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
J
Jeff Mahoney 已提交
184
{
185
	struct radix_tree_node *node;
186
	void __rcu **slot = NULL;
187
	void *entry;
J
Jeff Mahoney 已提交
188

189
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
190 191
		return ERR_PTR(-EINVAL);

192 193
	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
J
Jeff Mahoney 已提交
194 195
		return ERR_PTR(-ENOENT);

196
	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
J
Jeff Mahoney 已提交
197

198
	return entry;
J
Jeff Mahoney 已提交
199
}
200
EXPORT_SYMBOL(idr_replace);
J
Jeff Mahoney 已提交
201

202 203
/**
 * DOC: IDA description
204
 *
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
225 226
 */

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

260 261
#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)

262 263
/**
 * ida_get_new_above - allocate new ID above or equal to a start id
264 265 266
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
267
 *
268 269 270 271 272
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
273
 *
274
 * If memory is required, it will return %-EAGAIN, you should unlock
275
 * and go back to the ida_pre_get() call.  If the ida is full, it will
276
 * return %-ENOSPC.  On success, it will return 0.
277
 *
278
 * @id returns a value in the range @start ... %0x7fffffff.
279
 */
280
int ida_get_new_above(struct ida *ida, int start, int *id)
281
{
282
	struct radix_tree_root *root = &ida->ida_rt;
283
	void __rcu **slot;
284
	struct radix_tree_iter iter;
285
	struct ida_bitmap *bitmap;
286
	unsigned long index;
287
	unsigned bit, ebit;
288 289 290 291
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
292
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
293 294 295 296 297 298 299 300 301 302 303 304 305 306

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
307
		if (iter.index > index) {
308
			bit = 0;
309 310
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
311 312
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

330 331 332 333 334 335 336 337
		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;
338

339 340 341 342 343 344 345 346
			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
347 348 349 350 351 352 353 354
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
355
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
356 357 358 359 360 361
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}
362

363 364
		*id = new;
		return 0;
365 366 367 368 369
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
370 371 372 373 374
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
375 376 377
 */
void ida_remove(struct ida *ida, int id)
{
378 379
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
380
	struct ida_bitmap *bitmap;
381
	unsigned long *btmp;
382
	struct radix_tree_iter iter;
383
	void __rcu **slot;
384

385 386
	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
387 388
		goto err;

389
	bitmap = rcu_dereference_raw(*slot);
390 391 392 393 394 395 396 397 398
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
399 400
		goto err;

401
	__clear_bit(offset, btmp);
402
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
403 404 405 406 407
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
408 409
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
410 411 412
	}
	return;
 err:
413
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
414 415 416 417
}
EXPORT_SYMBOL(ida_remove);

/**
418 419 420 421 422 423 424
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
425 426 427
 */
void ida_destroy(struct ida *ida)
{
428
	struct radix_tree_iter iter;
429
	void __rcu **slot;
430 431 432

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
433 434
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
435 436
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
437 438 439
}
EXPORT_SYMBOL(ida_destroy);

440 441 442 443 444 445 446 447 448 449
/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
450 451 452
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
453 454 455 456 457 458 459
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
460
	unsigned long flags;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

476
	spin_lock_irqsave(&simple_ida_lock, flags);
477 478 479 480 481 482 483 484 485
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
486
	spin_unlock_irqrestore(&simple_ida_lock, flags);
487 488 489 490 491 492 493 494 495 496 497 498

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
499 500 501 502 503
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
504 505 506
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
507 508
	unsigned long flags;

509
	BUG_ON((int)id < 0);
510
	spin_lock_irqsave(&simple_ida_lock, flags);
511
	ida_remove(ida, id);
512
	spin_unlock_irqrestore(&simple_ida_lock, flags);
513 514
}
EXPORT_SYMBOL(ida_simple_remove);