gpmi-lib.c 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Freescale GPMI NAND Flash Driver
 *
 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/delay.h>
#include <linux/clk.h>
23
#include <linux/slab.h>
24 25 26 27 28

#include "gpmi-nand.h"
#include "gpmi-regs.h"
#include "bch-regs.h"

29
static struct timing_threshod timing_default_threshold = {
30 31 32 33 34 35 36 37 38
	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
						BP_GPMI_TIMING0_DATA_SETUP),
	.internal_data_setup_in_ns   = 0,
	.max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
						BP_GPMI_CTRL1_RDN_DELAY),
	.max_dll_clock_period_in_ns  = 32,
	.max_dll_delay_in_ns         = 16,
};

39 40
#define MXS_SET_ADDR		0x4
#define MXS_CLR_ADDR		0x8
41 42 43 44 45 46 47 48 49 50
/*
 * Clear the bit and poll it cleared.  This is usually called with
 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
 * (bit 30).
 */
static int clear_poll_bit(void __iomem *addr, u32 mask)
{
	int timeout = 0x400;

	/* clear the bit */
51
	writel(mask, addr + MXS_CLR_ADDR);
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

	/*
	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
	 * recommends to wait 1us.
	 */
	udelay(1);

	/* poll the bit becoming clear */
	while ((readl(addr) & mask) && --timeout)
		/* nothing */;

	return !timeout;
}

#define MODULE_CLKGATE		(1 << 30)
#define MODULE_SFTRST		(1 << 31)
/*
 * The current mxs_reset_block() will do two things:
 *  [1] enable the module.
 *  [2] reset the module.
 *
73 74
 * In most of the cases, it's ok.
 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 76 77 78
 * If you try to soft reset the BCH block, it becomes unusable until
 * the next hard reset. This case occurs in the NAND boot mode. When the board
 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 80
 * You will see a DMA timeout in this case. The bug has been fixed
 * in the following chips, such as MX28.
81 82 83 84
 *
 * To avoid this bug, just add a new parameter `just_enable` for
 * the mxs_reset_block(), and rewrite it here.
 */
85
static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 87 88 89 90 91 92 93 94 95
{
	int ret;
	int timeout = 0x400;

	/* clear and poll SFTRST */
	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
	if (unlikely(ret))
		goto error;

	/* clear CLKGATE */
96
	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97 98 99

	if (!just_enable) {
		/* set SFTRST to reset the block */
100
		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
		udelay(1);

		/* poll CLKGATE becoming set */
		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
			/* nothing */;
		if (unlikely(!timeout))
			goto error;
	}

	/* clear and poll SFTRST */
	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
	if (unlikely(ret))
		goto error;

	/* clear and poll CLKGATE */
	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
	if (unlikely(ret))
		goto error;

	return 0;

error:
	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
	return -ETIMEDOUT;
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
{
	struct clk *clk;
	int ret;
	int i;

	for (i = 0; i < GPMI_CLK_MAX; i++) {
		clk = this->resources.clock[i];
		if (!clk)
			break;

		if (v) {
			ret = clk_prepare_enable(clk);
			if (ret)
				goto err_clk;
		} else {
			clk_disable_unprepare(clk);
		}
	}
	return 0;

err_clk:
	for (; i > 0; i--)
		clk_disable_unprepare(this->resources.clock[i - 1]);
	return ret;
}

#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)

157 158 159 160 161
int gpmi_init(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	int ret;

162
	ret = gpmi_enable_clk(this);
163 164 165 166 167 168
	if (ret)
		goto err_out;
	ret = gpmi_reset_block(r->gpmi_regs, false);
	if (ret)
		goto err_out;

169 170 171 172 173 174 175 176 177
	/*
	 * Reset BCH here, too. We got failures otherwise :(
	 * See later BCH reset for explanation of MX23 handling
	 */
	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
	if (ret)
		goto err_out;


178 179 180 181 182 183 184 185 186 187 188 189 190
	/* Choose NAND mode. */
	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);

	/* Set the IRQ polarity. */
	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
				r->gpmi_regs + HW_GPMI_CTRL1_SET);

	/* Disable Write-Protection. */
	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);

	/* Select BCH ECC. */
	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);

191 192 193 194 195 196
	/*
	 * Decouple the chip select from dma channel. We use dma0 for all
	 * the chips.
	 */
	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);

197
	gpmi_disable_clk(this);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	return 0;
err_out:
	return ret;
}

/* This function is very useful. It is called only when the bug occur. */
void gpmi_dump_info(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	struct bch_geometry *geo = &this->bch_geometry;
	u32 reg;
	int i;

	pr_err("Show GPMI registers :\n");
	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
		reg = readl(r->gpmi_regs + i * 0x10);
		pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
	}

	/* start to print out the BCH info */
H
Huang Shijie 已提交
218 219 220 221 222
	pr_err("Show BCH registers :\n");
	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
		reg = readl(r->bch_regs + i * 0x10);
		pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
	}
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	pr_err("BCH Geometry :\n");
	pr_err("GF length              : %u\n", geo->gf_len);
	pr_err("ECC Strength           : %u\n", geo->ecc_strength);
	pr_err("Page Size in Bytes     : %u\n", geo->page_size);
	pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
	pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
	pr_err("ECC Chunk Count        : %u\n", geo->ecc_chunk_count);
	pr_err("Payload Size in Bytes  : %u\n", geo->payload_size);
	pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
	pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
	pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
	pr_err("Block Mark Bit Offset  : %u\n", geo->block_mark_bit_offset);
}

/* Configures the geometry for BCH.  */
int bch_set_geometry(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	struct bch_geometry *bch_geo = &this->bch_geometry;
	unsigned int block_count;
	unsigned int block_size;
	unsigned int metadata_size;
	unsigned int ecc_strength;
	unsigned int page_size;
247
	unsigned int gf_len;
248 249 250 251 252 253 254 255 256 257
	int ret;

	if (common_nfc_set_geometry(this))
		return !0;

	block_count   = bch_geo->ecc_chunk_count - 1;
	block_size    = bch_geo->ecc_chunk_size;
	metadata_size = bch_geo->metadata_size;
	ecc_strength  = bch_geo->ecc_strength >> 1;
	page_size     = bch_geo->page_size;
258
	gf_len        = bch_geo->gf_len;
259

260
	ret = gpmi_enable_clk(this);
261 262 263
	if (ret)
		goto err_out;

264 265 266 267 268
	/*
	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
	* On the other hand, the MX28 needs the reset, because one case has been
	* seen where the BCH produced ECC errors constantly after 10000
269 270
	* consecutive reboots. The latter case has not been seen on the MX23
	* yet, still we don't know if it could happen there as well.
271 272
	*/
	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
273 274 275 276 277 278
	if (ret)
		goto err_out;

	/* Configure layout 0. */
	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
279
			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
280
			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
281
			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
282 283 284
			r->bch_regs + HW_BCH_FLASH0LAYOUT0);

	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
285
			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
286
			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
287
			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
288 289 290 291 292 293 294 295 296
			r->bch_regs + HW_BCH_FLASH0LAYOUT1);

	/* Set *all* chip selects to use layout 0. */
	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);

	/* Enable interrupts. */
	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
				r->bch_regs + HW_BCH_CTRL_SET);

297
	gpmi_disable_clk(this);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	return 0;
err_out:
	return ret;
}

/* Converts time in nanoseconds to cycles. */
static unsigned int ns_to_cycles(unsigned int time,
			unsigned int period, unsigned int min)
{
	unsigned int k;

	k = (time + period - 1) / period;
	return max(k, min);
}

313 314
#define DEF_MIN_PROP_DELAY	5
#define DEF_MAX_PROP_DELAY	9
315 316 317 318 319
/* Apply timing to current hardware conditions. */
static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
					struct gpmi_nfc_hardware_timing *hw)
{
	struct timing_threshod *nfc = &timing_default_threshold;
320
	struct resources *r = &this->resources;
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	struct nand_chip *nand = &this->nand;
	struct nand_timing target = this->timing;
	bool improved_timing_is_available;
	unsigned long clock_frequency_in_hz;
	unsigned int clock_period_in_ns;
	bool dll_use_half_periods;
	unsigned int dll_delay_shift;
	unsigned int max_sample_delay_in_ns;
	unsigned int address_setup_in_cycles;
	unsigned int data_setup_in_ns;
	unsigned int data_setup_in_cycles;
	unsigned int data_hold_in_cycles;
	int ideal_sample_delay_in_ns;
	unsigned int sample_delay_factor;
	int tEYE;
336 337
	unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
	unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	/*
	 * If there are multiple chips, we need to relax the timings to allow
	 * for signal distortion due to higher capacitance.
	 */
	if (nand->numchips > 2) {
		target.data_setup_in_ns    += 10;
		target.data_hold_in_ns     += 10;
		target.address_setup_in_ns += 10;
	} else if (nand->numchips > 1) {
		target.data_setup_in_ns    += 5;
		target.data_hold_in_ns     += 5;
		target.address_setup_in_ns += 5;
	}

	/* Check if improved timing information is available. */
	improved_timing_is_available =
		(target.tREA_in_ns  >= 0) &&
		(target.tRLOH_in_ns >= 0) &&
357
		(target.tRHOH_in_ns >= 0);
358 359

	/* Inspect the clock. */
360
	nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
361
	clock_frequency_in_hz = nfc->clock_frequency_in_hz;
362
	clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

	/*
	 * The NFC quantizes setup and hold parameters in terms of clock cycles.
	 * Here, we quantize the setup and hold timing parameters to the
	 * next-highest clock period to make sure we apply at least the
	 * specified times.
	 *
	 * For data setup and data hold, the hardware interprets a value of zero
	 * as the largest possible delay. This is not what's intended by a zero
	 * in the input parameter, so we impose a minimum of one cycle.
	 */
	data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
							clock_period_in_ns, 1);
	data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
							clock_period_in_ns, 1);
	address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
							clock_period_in_ns, 0);

	/*
	 * The clock's period affects the sample delay in a number of ways:
	 *
	 * (1) The NFC HAL tells us the maximum clock period the sample delay
	 *     DLL can tolerate. If the clock period is greater than half that
	 *     maximum, we must configure the DLL to be driven by half periods.
	 *
	 * (2) We need to convert from an ideal sample delay, in ns, to a
	 *     "sample delay factor," which the NFC uses. This factor depends on
	 *     whether we're driving the DLL with full or half periods.
	 *     Paraphrasing the reference manual:
	 *
	 *         AD = SDF x 0.125 x RP
	 *
	 * where:
	 *
	 *     AD   is the applied delay, in ns.
	 *     SDF  is the sample delay factor, which is dimensionless.
	 *     RP   is the reference period, in ns, which is a full clock period
	 *          if the DLL is being driven by full periods, or half that if
	 *          the DLL is being driven by half periods.
	 *
	 * Let's re-arrange this in a way that's more useful to us:
	 *
	 *                        8
	 *         SDF  =  AD x ----
	 *                       RP
	 *
	 * The reference period is either the clock period or half that, so this
	 * is:
	 *
	 *                        8       AD x DDF
	 *         SDF  =  AD x -----  =  --------
	 *                      f x P        P
	 *
	 * where:
	 *
	 *       f  is 1 or 1/2, depending on how we're driving the DLL.
	 *       P  is the clock period.
	 *     DDF  is the DLL Delay Factor, a dimensionless value that
	 *          incorporates all the constants in the conversion.
	 *
	 * DDF will be either 8 or 16, both of which are powers of two. We can
	 * reduce the cost of this conversion by using bit shifts instead of
	 * multiplication or division. Thus:
	 *
	 *                 AD << DDS
	 *         SDF  =  ---------
	 *                     P
	 *
	 *     or
	 *
	 *         AD  =  (SDF >> DDS) x P
	 *
	 * where:
	 *
	 *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
	 */
	if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
		dll_use_half_periods = true;
		dll_delay_shift      = 3 + 1;
	} else {
		dll_use_half_periods = false;
		dll_delay_shift      = 3;
	}

	/*
	 * Compute the maximum sample delay the NFC allows, under current
	 * conditions. If the clock is running too slowly, no sample delay is
	 * possible.
	 */
	if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
		max_sample_delay_in_ns = 0;
	else {
		/*
		 * Compute the delay implied by the largest sample delay factor
		 * the NFC allows.
		 */
		max_sample_delay_in_ns =
			(nfc->max_sample_delay_factor * clock_period_in_ns) >>
								dll_delay_shift;

		/*
		 * Check if the implied sample delay larger than the NFC
		 * actually allows.
		 */
		if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
			max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
	}

	/*
	 * Check if improved timing information is available. If not, we have to
	 * use a less-sophisticated algorithm.
	 */
	if (!improved_timing_is_available) {
		/*
		 * Fold the read setup time required by the NFC into the ideal
		 * sample delay.
		 */
		ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
						nfc->internal_data_setup_in_ns;

		/*
		 * The ideal sample delay may be greater than the maximum
		 * allowed by the NFC. If so, we can trade off sample delay time
		 * for more data setup time.
		 *
		 * In each iteration of the following loop, we add a cycle to
		 * the data setup time and subtract a corresponding amount from
		 * the sample delay until we've satisified the constraints or
		 * can't do any better.
		 */
		while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {

			data_setup_in_cycles++;
			ideal_sample_delay_in_ns -= clock_period_in_ns;

			if (ideal_sample_delay_in_ns < 0)
				ideal_sample_delay_in_ns = 0;

		}

		/*
		 * Compute the sample delay factor that corresponds most closely
		 * to the ideal sample delay. If the result is too large for the
		 * NFC, use the maximum value.
		 *
		 * Notice that we use the ns_to_cycles function to compute the
		 * sample delay factor. We do this because the form of the
		 * computation is the same as that for calculating cycles.
		 */
		sample_delay_factor =
			ns_to_cycles(
				ideal_sample_delay_in_ns << dll_delay_shift,
							clock_period_in_ns, 0);

		if (sample_delay_factor > nfc->max_sample_delay_factor)
			sample_delay_factor = nfc->max_sample_delay_factor;

		/* Skip to the part where we return our results. */
		goto return_results;
	}

	/*
	 * If control arrives here, we have more detailed timing information,
	 * so we can use a better algorithm.
	 */

	/*
	 * Fold the read setup time required by the NFC into the maximum
	 * propagation delay.
	 */
	max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;

	/*
	 * Earlier, we computed the number of clock cycles required to satisfy
	 * the data setup time. Now, we need to know the actual nanoseconds.
	 */
	data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;

	/*
	 * Compute tEYE, the width of the data eye when reading from the NAND
	 * Flash. The eye width is fundamentally determined by the data setup
	 * time, perturbed by propagation delays and some characteristics of the
	 * NAND Flash device.
	 *
	 * start of the eye = max_prop_delay + tREA
	 * end of the eye   = min_prop_delay + tRHOH + data_setup
	 */
	tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
							(int)data_setup_in_ns;

	tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;

	/*
	 * The eye must be open. If it's not, we can try to open it by
	 * increasing its main forcer, the data setup time.
	 *
	 * In each iteration of the following loop, we increase the data setup
	 * time by a single clock cycle. We do this until either the eye is
	 * open or we run into NFC limits.
	 */
	while ((tEYE <= 0) &&
			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
		/* Give a cycle to data setup. */
		data_setup_in_cycles++;
		/* Synchronize the data setup time with the cycles. */
		data_setup_in_ns += clock_period_in_ns;
		/* Adjust tEYE accordingly. */
		tEYE += clock_period_in_ns;
	}

	/*
	 * When control arrives here, the eye is open. The ideal time to sample
	 * the data is in the center of the eye:
	 *
	 *     end of the eye + start of the eye
	 *     ---------------------------------  -  data_setup
	 *                    2
	 *
	 * After some algebra, this simplifies to the code immediately below.
	 */
	ideal_sample_delay_in_ns =
		((int)max_prop_delay_in_ns +
			(int)target.tREA_in_ns +
				(int)min_prop_delay_in_ns +
					(int)target.tRHOH_in_ns -
						(int)data_setup_in_ns) >> 1;

	/*
	 * The following figure illustrates some aspects of a NAND Flash read:
	 *
	 *
	 *           __                   _____________________________________
	 * RDN         \_________________/
	 *
	 *                                         <---- tEYE ----->
	 *                                        /-----------------\
	 * Read Data ----------------------------<                   >---------
	 *                                        \-----------------/
	 *             ^                 ^                 ^              ^
	 *             |                 |                 |              |
	 *             |<--Data Setup -->|<--Delay Time -->|              |
	 *             |                 |                 |              |
	 *             |                 |                                |
	 *             |                 |<--   Quantized Delay Time   -->|
	 *             |                 |                                |
	 *
	 *
	 * We have some issues we must now address:
	 *
	 * (1) The *ideal* sample delay time must not be negative. If it is, we
	 *     jam it to zero.
	 *
	 * (2) The *ideal* sample delay time must not be greater than that
	 *     allowed by the NFC. If it is, we can increase the data setup
	 *     time, which will reduce the delay between the end of the data
	 *     setup and the center of the eye. It will also make the eye
	 *     larger, which might help with the next issue...
	 *
	 * (3) The *quantized* sample delay time must not fall either before the
	 *     eye opens or after it closes (the latter is the problem
	 *     illustrated in the above figure).
	 */

	/* Jam a negative ideal sample delay to zero. */
	if (ideal_sample_delay_in_ns < 0)
		ideal_sample_delay_in_ns = 0;

	/*
	 * Extend the data setup as needed to reduce the ideal sample delay
	 * below the maximum permitted by the NFC.
	 */
	while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {

		/* Give a cycle to data setup. */
		data_setup_in_cycles++;
		/* Synchronize the data setup time with the cycles. */
		data_setup_in_ns += clock_period_in_ns;
		/* Adjust tEYE accordingly. */
		tEYE += clock_period_in_ns;

		/*
		 * Decrease the ideal sample delay by one half cycle, to keep it
		 * in the middle of the eye.
		 */
		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);

		/* Jam a negative ideal sample delay to zero. */
		if (ideal_sample_delay_in_ns < 0)
			ideal_sample_delay_in_ns = 0;
	}

	/*
	 * Compute the sample delay factor that corresponds to the ideal sample
	 * delay. If the result is too large, then use the maximum allowed
	 * value.
	 *
	 * Notice that we use the ns_to_cycles function to compute the sample
	 * delay factor. We do this because the form of the computation is the
	 * same as that for calculating cycles.
	 */
	sample_delay_factor =
		ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
							clock_period_in_ns, 0);

	if (sample_delay_factor > nfc->max_sample_delay_factor)
		sample_delay_factor = nfc->max_sample_delay_factor;

	/*
	 * These macros conveniently encapsulate a computation we'll use to
	 * continuously evaluate whether or not the data sample delay is inside
	 * the eye.
	 */
	#define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)

	#define QUANTIZED_DELAY  \
		((int) ((sample_delay_factor * clock_period_in_ns) >> \
							dll_delay_shift))

	#define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))

	#define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))

	/*
	 * While the quantized sample time falls outside the eye, reduce the
	 * sample delay or extend the data setup to move the sampling point back
	 * toward the eye. Do not allow the number of data setup cycles to
	 * exceed the maximum allowed by the NFC.
	 */
	while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
		/*
		 * If control arrives here, the quantized sample delay falls
		 * outside the eye. Check if it's before the eye opens, or after
		 * the eye closes.
		 */
		if (QUANTIZED_DELAY > IDEAL_DELAY) {
			/*
			 * If control arrives here, the quantized sample delay
			 * falls after the eye closes. Decrease the quantized
			 * delay time and then go back to re-evaluate.
			 */
			if (sample_delay_factor != 0)
				sample_delay_factor--;
			continue;
		}

		/*
		 * If control arrives here, the quantized sample delay falls
		 * before the eye opens. Shift the sample point by increasing
		 * data setup time. This will also make the eye larger.
		 */

		/* Give a cycle to data setup. */
		data_setup_in_cycles++;
		/* Synchronize the data setup time with the cycles. */
		data_setup_in_ns += clock_period_in_ns;
		/* Adjust tEYE accordingly. */
		tEYE += clock_period_in_ns;

		/*
		 * Decrease the ideal sample delay by one half cycle, to keep it
		 * in the middle of the eye.
		 */
		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);

		/* ...and one less period for the delay time. */
		ideal_sample_delay_in_ns -= clock_period_in_ns;

		/* Jam a negative ideal sample delay to zero. */
		if (ideal_sample_delay_in_ns < 0)
			ideal_sample_delay_in_ns = 0;

		/*
		 * We have a new ideal sample delay, so re-compute the quantized
		 * delay.
		 */
		sample_delay_factor =
			ns_to_cycles(
				ideal_sample_delay_in_ns << dll_delay_shift,
							clock_period_in_ns, 0);

		if (sample_delay_factor > nfc->max_sample_delay_factor)
			sample_delay_factor = nfc->max_sample_delay_factor;
	}

	/* Control arrives here when we're ready to return our results. */
return_results:
	hw->data_setup_in_cycles    = data_setup_in_cycles;
	hw->data_hold_in_cycles     = data_hold_in_cycles;
	hw->address_setup_in_cycles = address_setup_in_cycles;
	hw->use_half_periods        = dll_use_half_periods;
	hw->sample_delay_factor     = sample_delay_factor;
757
	hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
758
	hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
759 760 761 762 763

	/* Return success. */
	return 0;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/*
 * <1> Firstly, we should know what's the GPMI-clock means.
 *     The GPMI-clock is the internal clock in the gpmi nand controller.
 *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
 *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
 *
 * <2> Secondly, we should know what's the frequency on the nand chip pins.
 *     The frequency on the nand chip pins is derived from the GPMI-clock.
 *     We can get it from the following equation:
 *
 *         F = G / (DS + DH)
 *
 *         F  : the frequency on the nand chip pins.
 *         G  : the GPMI clock, such as 100MHz.
 *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
 *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
 *
 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
 *     the nand EDO(extended Data Out) timing could be applied.
 *     The GPMI implements a feedback read strobe to sample the read data.
 *     The feedback read strobe can be delayed to support the nand EDO timing
 *     where the read strobe may deasserts before the read data is valid, and
 *     read data is valid for some time after read strobe.
 *
 *     The following figure illustrates some aspects of a NAND Flash read:
 *
 *                   |<---tREA---->|
 *                   |             |
 *                   |         |   |
 *                   |<--tRP-->|   |
 *                   |         |   |
 *                  __          ___|__________________________________
 *     RDN            \________/   |
 *                                 |
 *                                 /---------\
 *     Read Data    --------------<           >---------
 *                                 \---------/
 *                                |     |
 *                                |<-D->|
 *     FeedbackRDN  ________             ____________
 *                          \___________/
 *
 *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
 *
 *
 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
 *
 *  4.1) From the aspect of the nand chip pins:
 *        Delay = (tREA + C - tRP)               {1}
 *
 *        tREA : the maximum read access time. From the ONFI nand standards,
 *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
 *               Please check it in : www.onfi.org
 *        C    : a constant for adjust the delay. default is 4.
 *        tRP  : the read pulse width.
 *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
 *                    tRP = (GPMI-clock-period) * DATA_SETUP
 *
 *  4.2) From the aspect of the GPMI nand controller:
 *         Delay = RDN_DELAY * 0.125 * RP        {2}
 *
 *         RP   : the DLL reference period.
 *            if (GPMI-clock-period > DLL_THRETHOLD)
 *                   RP = GPMI-clock-period / 2;
 *            else
 *                   RP = GPMI-clock-period;
 *
 *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
 *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
 *            is 16ns, but in mx6q, we use 12ns.
 *
 *  4.3) since {1} equals {2}, we get:
 *
 *                    (tREA + 4 - tRP) * 8
 *         RDN_DELAY = ---------------------     {3}
 *                           RP
 *
 *  4.4) We only support the fastest asynchronous mode of ONFI nand.
 *       For some ONFI nand, the mode 4 is the fastest mode;
 *       while for some ONFI nand, the mode 5 is the fastest mode.
 *       So we only support the mode 4 and mode 5. It is no need to
 *       support other modes.
 */
static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
			struct gpmi_nfc_hardware_timing *hw)
{
	struct resources *r = &this->resources;
	unsigned long rate = clk_get_rate(r->clock[0]);
	int mode = this->timing_mode;
	int dll_threshold = 16; /* in ns */
	unsigned long delay;
	unsigned long clk_period;
	int t_rea;
	int c = 4;
	int t_rp;
	int rp;

	/*
	 * [1] for GPMI_HW_GPMI_TIMING0:
	 *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
	 *     The GPMI can support 100MHz at most. So if we want to
	 *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
	 *     Set the ADDRESS_SETUP to 0 in mode 4.
	 */
	hw->data_setup_in_cycles = 1;
	hw->data_hold_in_cycles = 1;
	hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);

	/* [2] for GPMI_HW_GPMI_TIMING1 */
	hw->device_busy_timeout = 0x9000;

	/* [3] for GPMI_HW_GPMI_CTRL1 */
	hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;

	if (GPMI_IS_MX6Q(this))
		dll_threshold = 12;

	/*
	 * Enlarge 10 times for the numerator and denominator in {3}.
	 * This make us to get more accurate result.
	 */
	clk_period = NSEC_PER_SEC / (rate / 10);
	dll_threshold *= 10;
	t_rea = ((mode == 5) ? 16 : 20) * 10;
	c *= 10;

	t_rp = clk_period * 1; /* DATA_SETUP is 1 */

	if (clk_period > dll_threshold) {
		hw->use_half_periods = 1;
		rp = clk_period / 2;
	} else {
		hw->use_half_periods = 0;
		rp = clk_period;
	}

	/*
	 * Multiply the numerator with 10, we could do a round off:
	 *      7.8 round up to 8; 7.4 round down to 7.
	 */
	delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
	delay = (delay + 5) / 10;

	hw->sample_delay_factor = delay;
}

static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
{
	struct resources  *r = &this->resources;
	struct nand_chip *nand = &this->nand;
	struct mtd_info	 *mtd = &this->mtd;
915
	uint8_t *feature;
916 917 918
	unsigned long rate;
	int ret;

919 920 921 922
	feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
	if (!feature)
		return -ENOMEM;

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	nand->select_chip(mtd, 0);

	/* [1] send SET FEATURE commond to NAND */
	feature[0] = mode;
	ret = nand->onfi_set_features(mtd, nand,
				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
	if (ret)
		goto err_out;

	/* [2] send GET FEATURE command to double-check the timing mode */
	memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
	ret = nand->onfi_get_features(mtd, nand,
				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
	if (ret || feature[0] != mode)
		goto err_out;

	nand->select_chip(mtd, -1);

	/* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
	rate = (mode == 5) ? 100000000 : 80000000;
	clk_set_rate(r->clock[0], rate);

945 946 947
	/* Let the gpmi_begin() re-compute the timing again. */
	this->flags &= ~GPMI_TIMING_INIT_OK;

948 949
	this->flags |= GPMI_ASYNC_EDO_ENABLED;
	this->timing_mode = mode;
950
	kfree(feature);
951 952 953 954 955
	dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
	return 0;

err_out:
	nand->select_chip(mtd, -1);
956
	kfree(feature);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
	return -EINVAL;
}

int gpmi_extra_init(struct gpmi_nand_data *this)
{
	struct nand_chip *chip = &this->nand;

	/* Enable the asynchronous EDO feature. */
	if (GPMI_IS_MX6Q(this) && chip->onfi_version) {
		int mode = onfi_get_async_timing_mode(chip);

		/* We only support the timing mode 4 and mode 5. */
		if (mode & ONFI_TIMING_MODE_5)
			mode = 5;
		else if (mode & ONFI_TIMING_MODE_4)
			mode = 4;
		else
			return 0;

		return enable_edo_mode(this, mode);
	}
	return 0;
}

982 983 984 985
/* Begin the I/O */
void gpmi_begin(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
986
	void __iomem *gpmi_regs = r->gpmi_regs;
987 988 989 990 991 992 993
	unsigned int   clock_period_in_ns;
	uint32_t       reg;
	unsigned int   dll_wait_time_in_us;
	struct gpmi_nfc_hardware_timing  hw;
	int ret;

	/* Enable the clock. */
994
	ret = gpmi_enable_clk(this);
995 996 997 998 999
	if (ret) {
		pr_err("We failed in enable the clk\n");
		goto err_out;
	}

1000 1001 1002 1003 1004
	/* Only initialize the timing once */
	if (this->flags & GPMI_TIMING_INIT_OK)
		return;
	this->flags |= GPMI_TIMING_INIT_OK;

1005 1006 1007 1008
	if (this->flags & GPMI_ASYNC_EDO_ENABLED)
		gpmi_compute_edo_timing(this, &hw);
	else
		gpmi_nfc_compute_hardware_timing(this, &hw);
1009

1010
	/* [1] Set HW_GPMI_TIMING0 */
1011 1012
	reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
		BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1013
		BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1014 1015 1016

	writel(reg, gpmi_regs + HW_GPMI_TIMING0);

1017 1018 1019 1020 1021 1022
	/* [2] Set HW_GPMI_TIMING1 */
	writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
		gpmi_regs + HW_GPMI_TIMING1);

	/* [3] The following code is to set the HW_GPMI_CTRL1. */

1023 1024 1025 1026 1027
	/* Set the WRN_DLY_SEL */
	writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
	writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
					gpmi_regs + HW_GPMI_CTRL1_SET);

1028
	/* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1029 1030 1031
	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);

	/* Clear out the DLL control fields. */
1032 1033
	reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
	writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1034 1035 1036 1037 1038

	/* If no sample delay is called for, return immediately. */
	if (!hw.sample_delay_factor)
		return;

1039 1040 1041
	/* Set RDN_DELAY or HALF_PERIOD. */
	reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
		| BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1042

1043
	writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1044

1045
	/* At last, we enable the DLL. */
1046 1047 1048 1049
	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);

	/*
	 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1050 1051
	 * we can use the GPMI. Calculate the amount of time we need to wait,
	 * in microseconds.
1052
	 */
1053
	clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;

	if (!dll_wait_time_in_us)
		dll_wait_time_in_us = 1;

	/* Wait for the DLL to settle. */
	udelay(dll_wait_time_in_us);

err_out:
	return;
}

void gpmi_end(struct gpmi_nand_data *this)
{
1068
	gpmi_disable_clk(this);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

/* Clears a BCH interrupt. */
void gpmi_clear_bch(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
}

/* Returns the Ready/Busy status of the given chip. */
int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
{
	struct resources *r = &this->resources;
	uint32_t mask = 0;
	uint32_t reg = 0;

	if (GPMI_IS_MX23(this)) {
		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1088
	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
1089 1090 1091 1092 1093 1094 1095
		/*
		 * In the imx6, all the ready/busy pins are bound
		 * together. So we only need to check chip 0.
		 */
		if (GPMI_IS_MX6Q(this))
			chip = 0;

1096
		/* MX28 shares the same R/B register as MX6Q. */
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
	} else
		pr_err("unknow arch.\n");
	return reg & mask;
}

static inline void set_dma_type(struct gpmi_nand_data *this,
					enum dma_ops_type type)
{
	this->last_dma_type = this->dma_type;
	this->dma_type = type;
}

int gpmi_send_command(struct gpmi_nand_data *this)
{
	struct dma_chan *channel = get_dma_chan(this);
	struct dma_async_tx_descriptor *desc;
	struct scatterlist *sgl;
	int chip = this->current_chip;
	u32 pio[3];

	/* [1] send out the PIO words */
	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
	pio[1] = pio[2] = 0;
1128
	desc = dmaengine_prep_slave_sg(channel,
1129
					(struct scatterlist *)pio,
1130
					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1131 1132
	if (!desc)
		return -EINVAL;
1133 1134 1135 1136 1137 1138

	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
	sgl = &this->cmd_sgl;

	sg_init_one(sgl, this->cmd_buffer, this->command_length);
	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1139
	desc = dmaengine_prep_slave_sg(channel,
1140 1141
				sgl, 1, DMA_MEM_TO_DEV,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1142 1143
	if (!desc)
		return -EINVAL;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	/* [3] submit the DMA */
	set_dma_type(this, DMA_FOR_COMMAND);
	return start_dma_without_bch_irq(this, desc);
}

int gpmi_send_data(struct gpmi_nand_data *this)
{
	struct dma_async_tx_descriptor *desc;
	struct dma_chan *channel = get_dma_chan(this);
	int chip = this->current_chip;
	uint32_t command_mode;
	uint32_t address;
	u32 pio[2];

	/* [1] PIO */
	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;

	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(address)
		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
	pio[1] = 0;
1170
	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1171
					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1172 1173
	if (!desc)
		return -EINVAL;
1174 1175 1176

	/* [2] send DMA request */
	prepare_data_dma(this, DMA_TO_DEVICE);
1177
	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1178 1179
					1, DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1180 1181 1182
	if (!desc)
		return -EINVAL;

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* [3] submit the DMA */
	set_dma_type(this, DMA_FOR_WRITE_DATA);
	return start_dma_without_bch_irq(this, desc);
}

int gpmi_read_data(struct gpmi_nand_data *this)
{
	struct dma_async_tx_descriptor *desc;
	struct dma_chan *channel = get_dma_chan(this);
	int chip = this->current_chip;
	u32 pio[2];

	/* [1] : send PIO */
	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
	pio[1] = 0;
1203
	desc = dmaengine_prep_slave_sg(channel,
1204
					(struct scatterlist *)pio,
1205
					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1206 1207
	if (!desc)
		return -EINVAL;
1208 1209 1210

	/* [2] : send DMA request */
	prepare_data_dma(this, DMA_FROM_DEVICE);
1211
	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1212 1213
					1, DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1214 1215
	if (!desc)
		return -EINVAL;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

	/* [3] : submit the DMA */
	set_dma_type(this, DMA_FOR_READ_DATA);
	return start_dma_without_bch_irq(this, desc);
}

int gpmi_send_page(struct gpmi_nand_data *this,
			dma_addr_t payload, dma_addr_t auxiliary)
{
	struct bch_geometry *geo = &this->bch_geometry;
	uint32_t command_mode;
	uint32_t address;
	uint32_t ecc_command;
	uint32_t buffer_mask;
	struct dma_async_tx_descriptor *desc;
	struct dma_chan *channel = get_dma_chan(this);
	int chip = this->current_chip;
	u32 pio[6];

	/* A DMA descriptor that does an ECC page read. */
	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;

	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(address)
		| BF_GPMI_CTRL0_XFER_COUNT(0);
	pio[1] = 0;
	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
	pio[3] = geo->page_size;
	pio[4] = payload;
	pio[5] = auxiliary;

1256
	desc = dmaengine_prep_slave_sg(channel,
1257
					(struct scatterlist *)pio,
1258 1259
					ARRAY_SIZE(pio), DMA_TRANS_NONE,
					DMA_CTRL_ACK);
1260 1261 1262
	if (!desc)
		return -EINVAL;

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
	return start_dma_with_bch_irq(this, desc);
}

int gpmi_read_page(struct gpmi_nand_data *this,
				dma_addr_t payload, dma_addr_t auxiliary)
{
	struct bch_geometry *geo = &this->bch_geometry;
	uint32_t command_mode;
	uint32_t address;
	uint32_t ecc_command;
	uint32_t buffer_mask;
	struct dma_async_tx_descriptor *desc;
	struct dma_chan *channel = get_dma_chan(this);
	int chip = this->current_chip;
	u32 pio[6];

	/* [1] Wait for the chip to report ready. */
	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;

	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(address)
		| BF_GPMI_CTRL0_XFER_COUNT(0);
	pio[1] = 0;
1291
	desc = dmaengine_prep_slave_sg(channel,
1292 1293
				(struct scatterlist *)pio, 2,
				DMA_TRANS_NONE, 0);
1294 1295
	if (!desc)
		return -EINVAL;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/* [2] Enable the BCH block and read. */
	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;

	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(address)
		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);

	pio[1] = 0;
	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
	pio[3] = geo->page_size;
	pio[4] = payload;
	pio[5] = auxiliary;
1318
	desc = dmaengine_prep_slave_sg(channel,
1319
					(struct scatterlist *)pio,
1320 1321
					ARRAY_SIZE(pio), DMA_TRANS_NONE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1322 1323
	if (!desc)
		return -EINVAL;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	/* [3] Disable the BCH block */
	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;

	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(address)
		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
	pio[1] = 0;
1336
	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1337
	desc = dmaengine_prep_slave_sg(channel,
1338
				(struct scatterlist *)pio, 3,
1339 1340
				DMA_TRANS_NONE,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1341 1342
	if (!desc)
		return -EINVAL;
1343 1344 1345 1346 1347

	/* [4] submit the DMA */
	set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
	return start_dma_with_bch_irq(this, desc);
}