i915_gem.c 136.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38 39 40 41 42 43
struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

44 45
static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
46 47 48

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
49 50 51 52 53 54 55 56
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
57 58
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
59
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
60
				       unsigned alignment,
61
				       bool map_and_fenceable);
62
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
63 64 65
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
66
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
67

68 69 70 71
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
89
				  struct drm_i915_gem_object *obj)
90 91
{
	dev_priv->mm.gtt_count++;
92 93
	dev_priv->mm.gtt_memory += obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
94
		dev_priv->mm.mappable_gtt_used +=
95 96
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
97
	}
98 99 100
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
101
				     struct drm_i915_gem_object *obj)
102 103
{
	dev_priv->mm.gtt_count--;
104 105
	dev_priv->mm.gtt_memory -= obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
106
		dev_priv->mm.mappable_gtt_used -=
107 108
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
109 110 111 112 113 114 115 116 117 118
	}
}

/**
 * Update the mappable working set counters. Call _only_ when there is a change
 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
 * @mappable: new state the changed mappable flag (either pin_ or fault_).
 */
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
119
			      struct drm_i915_gem_object *obj,
120 121 122
			      bool mappable)
{
	if (mappable) {
123
		if (obj->pin_mappable && obj->fault_mappable)
124 125 126
			/* Combined state was already mappable. */
			return;
		dev_priv->mm.gtt_mappable_count++;
127
		dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
128
	} else {
129
		if (obj->pin_mappable || obj->fault_mappable)
130 131 132
			/* Combined state still mappable. */
			return;
		dev_priv->mm.gtt_mappable_count--;
133
		dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
134
	}
135 136 137
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
138
				  struct drm_i915_gem_object *obj,
139
				  bool mappable)
140 141
{
	dev_priv->mm.pin_count++;
142
	dev_priv->mm.pin_memory += obj->gtt_space->size;
143
	if (mappable) {
144
		obj->pin_mappable = true;
145 146
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}
147 148 149
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
150
				     struct drm_i915_gem_object *obj)
151 152
{
	dev_priv->mm.pin_count--;
153 154 155
	dev_priv->mm.pin_memory -= obj->gtt_space->size;
	if (obj->pin_mappable) {
		obj->pin_mappable = false;
156 157
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

208
	WARN_ON(i915_verify_lists(dev));
209 210
	return 0;
}
211

212 213 214 215 216 217 218 219
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

220 221
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
D
Daniel Vetter 已提交
222
		     unsigned long mappable_end,
J
Jesse Barnes 已提交
223
		     unsigned long end)
224 225 226
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
227 228 229
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
230 231 232
		return -EINVAL;
	}

J
Jesse Barnes 已提交
233 234
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
235

236
	dev_priv->mm.gtt_total = end - start;
237
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
238
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
239 240 241

	return 0;
}
242

J
Jesse Barnes 已提交
243 244 245 246 247 248 249 250
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
251
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
252 253
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
254
	return ret;
255 256
}

257 258 259 260
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
261
	struct drm_i915_private *dev_priv = dev->dev_private;
262 263 264 265 266
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

267 268 269 270
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
271 272 273 274

	return 0;
}

275 276 277 278 279 280 281 282 283 284

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
285 286
	int ret;
	u32 handle;
287 288 289 290

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
291
	obj = i915_gem_alloc_object(dev, args->size);
292 293 294 295
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
296
	if (ret) {
297 298 299
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
300
		return ret;
301
	}
302

303 304 305 306
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

307
	args->handle = handle;
308 309 310
	return 0;
}

311 312 313
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
314
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
315 316 317 318 319

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

320
static inline void
321 322 323 324 325 326 327 328
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

329 330
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
331 332 333

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

334 335
	kunmap(src_page);
	kunmap(dst_page);
336 337
}

338
static inline void
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

358 359
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

383 384
	kunmap(cpu_page);
	kunmap(gpu_page);
385 386
}

387 388 389 390 391 392 393 394 395 396
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
397
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
398
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
399
	ssize_t remain;
400
	loff_t offset;
401 402 403 404 405 406
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

407
	obj_priv = to_intel_bo(obj);
408 409 410
	offset = args->offset;

	while (remain > 0) {
411 412 413 414
		struct page *page;
		char *vaddr;
		int ret;

415 416 417 418 419 420 421 422 423 424
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

425 426 427 428 429 430 431 432 433 434 435 436 437 438
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
439
			return -EFAULT;
440 441 442 443 444 445

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

446
	return 0;
447 448 449 450 451 452 453 454 455 456 457 458 459
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
460
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
461
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
462 463 464 465 466
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
467 468
	int shmem_page_offset;
	int data_page_index, data_page_offset;
469 470 471
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
472
	int do_bit17_swizzling;
473 474 475 476 477 478 479 480 481 482 483

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

484
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
485 486 487
	if (user_pages == NULL)
		return -ENOMEM;

488
	mutex_unlock(&dev->struct_mutex);
489 490
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
491
				      num_pages, 1, 0, user_pages, NULL);
492
	up_read(&mm->mmap_sem);
493
	mutex_lock(&dev->struct_mutex);
494 495
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
496
		goto out;
497 498
	}

499 500 501
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
502
	if (ret)
503
		goto out;
504

505
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
506

507
	obj_priv = to_intel_bo(obj);
508 509 510
	offset = args->offset;

	while (remain > 0) {
511 512
		struct page *page;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

530 531 532 533 534
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

535
		if (do_bit17_swizzling) {
536
			slow_shmem_bit17_copy(page,
537
					      shmem_page_offset,
538 539 540 541 542 543 544
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
545
					page,
546 547
					shmem_page_offset,
					page_length);
548
		}
549

550 551 552
		mark_page_accessed(page);
		page_cache_release(page);

553 554 555 556 557
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

558
out:
559 560
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
561
		mark_page_accessed(user_pages[i]);
562 563
		page_cache_release(user_pages[i]);
	}
564
	drm_free_large(user_pages);
565 566 567 568

	return ret;
}

569 570 571 572 573 574 575 576 577 578 579 580
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
581
	int ret = 0;
582

583 584 585 586 587 588 589 590 591 592 593 594 595
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

596
	ret = i915_mutex_lock_interruptible(dev);
597
	if (ret)
598
		return ret;
599 600

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
601 602 603
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
604
	}
605
	obj_priv = to_intel_bo(obj);
606

607 608
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
609
		ret = -EINVAL;
610
		goto out;
C
Chris Wilson 已提交
611 612
	}

613 614 615 616
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
617
		goto out;
618 619 620

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
621
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
622 623
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
624

625
out:
626
	drm_gem_object_unreference(obj);
627
unlock:
628
	mutex_unlock(&dev->struct_mutex);
629
	return ret;
630 631
}

632 633
/* This is the fast write path which cannot handle
 * page faults in the source data
634
 */
635 636 637 638 639 640

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
641 642
{
	char *vaddr_atomic;
643
	unsigned long unwritten;
644

P
Peter Zijlstra 已提交
645
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
646 647
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
648
	io_mapping_unmap_atomic(vaddr_atomic);
649
	return unwritten;
650 651 652 653 654 655
}

/* Here's the write path which can sleep for
 * page faults
 */

656
static inline void
657 658 659 660
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
661
{
662 663
	char __iomem *dst_vaddr;
	char *src_vaddr;
664

665 666 667 668 669 670 671 672 673
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
674 675
}

676 677 678 679
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
680
static int
681 682 683
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
684
{
685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
686
	drm_i915_private_t *dev_priv = dev->dev_private;
687
	ssize_t remain;
688
	loff_t offset, page_base;
689
	char __user *user_data;
690
	int page_offset, page_length;
691 692 693 694

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

695
	obj_priv = to_intel_bo(obj);
696 697 698 699 700
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
701 702 703
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
704
		 */
705 706 707 708 709 710 711
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
712 713
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
714
		 */
715 716 717 718
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
719

720 721 722
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
723 724
	}

725
	return 0;
726 727
}

728 729 730 731 732 733 734
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
735
static int
736 737 738
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
739
{
740
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
741 742 743 744 745 746 747 748
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
749
	int ret;
750 751 752 753 754 755 756 757 758 759 760 761
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

762
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
763 764 765
	if (user_pages == NULL)
		return -ENOMEM;

766
	mutex_unlock(&dev->struct_mutex);
767 768 769 770
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
771
	mutex_lock(&dev->struct_mutex);
772 773 774 775
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
776

777 778
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
779
		goto out_unpin_pages;
780

781
	obj_priv = to_intel_bo(obj);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

804 805 806 807 808
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
809 810 811 812 813 814 815 816 817

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
818
	drm_free_large(user_pages);
819 820 821 822

	return ret;
}

823 824 825 826
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
827
static int
828 829 830
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
831
{
832
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
833
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
834
	ssize_t remain;
835
	loff_t offset;
836 837 838 839 840
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
841

842
	obj_priv = to_intel_bo(obj);
843 844 845 846
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
847 848 849 850
		struct page *page;
		char *vaddr;
		int ret;

851 852 853 854 855 856 857 858 859 860
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
881
			return -EFAULT;
882 883 884 885 886 887

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

888
	return 0;
889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
903
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
904
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
905 906 907 908 909
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
910
	int shmem_page_offset;
911 912 913 914
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
915
	int do_bit17_swizzling;
916 917 918 919 920 921 922 923 924 925 926

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

927
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
928 929 930
	if (user_pages == NULL)
		return -ENOMEM;

931
	mutex_unlock(&dev->struct_mutex);
932 933 934 935
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
936
	mutex_lock(&dev->struct_mutex);
937 938
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
939
		goto out;
940 941
	}

942
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
943
	if (ret)
944
		goto out;
945

946
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
947

948
	obj_priv = to_intel_bo(obj);
949
	offset = args->offset;
950
	obj_priv->dirty = 1;
951

952
	while (remain > 0) {
953 954
		struct page *page;

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

972 973 974 975 976 977 978
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

979
		if (do_bit17_swizzling) {
980
			slow_shmem_bit17_copy(page,
981 982 983
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
984 985 986
					      page_length,
					      0);
		} else {
987
			slow_shmem_copy(page,
988 989 990 991
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
992
		}
993

994 995 996 997
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

998 999 1000
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1001 1002
	}

1003
out:
1004 1005
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1006
	drm_free_large(user_pages);
1007

1008
	return ret;
1009 1010 1011 1012 1013 1014 1015 1016 1017
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1018
		      struct drm_file *file)
1019 1020 1021 1022
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
1037

1038
	ret = i915_mutex_lock_interruptible(dev);
1039
	if (ret)
1040
		return ret;
1041 1042 1043 1044 1045

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1046
	}
1047
	obj_priv = to_intel_bo(obj);
1048

1049 1050
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1051
		ret = -EINVAL;
1052
		goto out;
C
Chris Wilson 已提交
1053 1054
	}

1055 1056 1057 1058 1059 1060
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1061
	if (obj_priv->phys_obj)
1062
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1063
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1064
		 obj_priv->gtt_space &&
1065
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1066
		ret = i915_gem_object_pin(obj, 0, true);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1080
	} else {
1081 1082
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1083
			goto out;
1084

1085 1086 1087 1088 1089 1090
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1091

1092
out:
1093
	drm_gem_object_unreference(obj);
1094
unlock:
1095
	mutex_unlock(&dev->struct_mutex);
1096 1097 1098 1099
	return ret;
}

/**
1100 1101
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1102 1103 1104 1105 1106
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1107
	struct drm_i915_private *dev_priv = dev->dev_private;
1108 1109
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1110
	struct drm_i915_gem_object *obj_priv;
1111 1112
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1113 1114 1115 1116 1117
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1118
	/* Only handle setting domains to types used by the CPU. */
1119
	if (write_domain & I915_GEM_GPU_DOMAINS)
1120 1121
		return -EINVAL;

1122
	if (read_domains & I915_GEM_GPU_DOMAINS)
1123 1124 1125 1126 1127 1128 1129 1130
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1131
	ret = i915_mutex_lock_interruptible(dev);
1132
	if (ret)
1133
		return ret;
1134

1135
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1136 1137 1138
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1139
	}
1140
	obj_priv = to_intel_bo(obj);
1141

1142 1143
	intel_mark_busy(dev, obj);

1144 1145
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1146

1147 1148 1149 1150
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1151 1152 1153
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1154 1155 1156
				       &dev_priv->mm.fence_list);
		}

1157 1158 1159 1160 1161 1162
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1163
	} else {
1164
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1165 1166
	}

1167 1168
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1169
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1170

1171
	drm_gem_object_unreference(obj);
1172
unlock:
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1191
	ret = i915_mutex_lock_interruptible(dev);
1192
	if (ret)
1193
		return ret;
1194

1195 1196
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1197 1198
		ret = -ENOENT;
		goto unlock;
1199 1200 1201
	}

	/* Pinned buffers may be scanout, so flush the cache */
1202
	if (to_intel_bo(obj)->pin_count)
1203 1204
		i915_gem_object_flush_cpu_write_domain(obj);

1205
	drm_gem_object_unreference(obj);
1206
unlock:
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
1222
	struct drm_i915_private *dev_priv = dev->dev_private;
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1233
		return -ENOENT;
1234

1235 1236 1237 1238 1239
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1240 1241 1242 1243 1244 1245 1246
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1247
	drm_gem_object_unreference_unlocked(obj);
1248 1249 1250 1251 1252 1253 1254 1255
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1276
	drm_i915_private_t *dev_priv = dev->dev_private;
1277
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1278 1279 1280
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1281
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1282 1283 1284 1285 1286 1287 1288

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1289
	BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1290 1291

	if (obj_priv->gtt_space) {
1292
		if (!obj_priv->map_and_fenceable) {
1293 1294 1295 1296 1297
			ret = i915_gem_object_unbind(obj);
			if (ret)
				goto unlock;
		}
	}
1298

1299
	if (!obj_priv->gtt_space) {
1300
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1301 1302
		if (ret)
			goto unlock;
1303 1304
	}

1305 1306 1307 1308
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1309 1310
	if (!obj_priv->fault_mappable) {
		obj_priv->fault_mappable = true;
1311
		i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1312 1313
	}

1314
	/* Need a new fence register? */
1315
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1316
		ret = i915_gem_object_get_fence_reg(obj, true);
1317 1318
		if (ret)
			goto unlock;
1319
	}
1320

1321
	if (i915_gem_object_is_inactive(obj_priv))
1322
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1323

1324 1325 1326 1327 1328
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1329
unlock:
1330 1331 1332
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1333 1334
	case -EAGAIN:
		set_need_resched();
1335 1336 1337
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1338 1339 1340
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1341
		return VM_FAULT_SIGBUS;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1362
	struct drm_local_map *map;
1363 1364 1365 1366
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1367
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1381
		ret = -ENOSPC;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1393 1394
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1395 1396 1397 1398 1399 1400 1401 1402 1403
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1404
	kfree(list->map);
C
Chris Wilson 已提交
1405
	list->map = NULL;
1406 1407 1408 1409

	return ret;
}

1410 1411 1412 1413
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1414
 * Preserve the reservation of the mmapping with the DRM core code, but
1415 1416 1417 1418 1419 1420 1421 1422 1423
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1424
void
1425 1426 1427
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1428
	struct drm_i915_private *dev_priv = dev->dev_private;
1429
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1430

C
Chris Wilson 已提交
1431
	if (unlikely(obj->map_list.map && dev->dev_mapping))
1432
		unmap_mapping_range(dev->dev_mapping,
C
Chris Wilson 已提交
1433 1434
				    (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
				    obj->size, 1);
1435 1436 1437

	if (obj_priv->fault_mappable) {
		obj_priv->fault_mappable = false;
1438
		i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1439
	}
1440 1441
}

1442 1443 1444 1445 1446
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
C
Chris Wilson 已提交
1447
	struct drm_map_list *list = &obj->map_list;
1448 1449

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1450 1451 1452
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1453 1454
}

1455 1456 1457 1458 1459
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1460
 * potential fence register mapping.
1461 1462
 */
static uint32_t
1463
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1464
{
1465
	struct drm_device *dev = obj_priv->base.dev;
1466 1467 1468 1469 1470

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1471 1472
	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj_priv->tiling_mode == I915_TILING_NONE)
1473 1474
		return 4096;

1475 1476 1477 1478 1479 1480 1481
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	return i915_gem_get_gtt_size(obj_priv);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
{
	struct drm_device *dev = obj_priv->base.dev;
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
	    obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
	    (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
		tile_height = 32;
	else
		tile_height = 8;

	return tile_height * obj_priv->stride * 2;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
{
	struct drm_device *dev = obj_priv->base.dev;
	uint32_t size;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (INTEL_INFO(dev)->gen >= 4)
		return obj_priv->base.size;

1530 1531 1532 1533
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1534
	if (INTEL_INFO(dev)->gen == 3)
1535
		size = 1024*1024;
1536
	else
1537
		size = 512*1024;
1538

1539 1540
	while (size < obj_priv->base.size)
		size <<= 1;
1541

1542
	return size;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
1564
	struct drm_i915_private *dev_priv = dev->dev_private;
1565 1566 1567 1568 1569 1570 1571 1572
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1573
	ret = i915_mutex_lock_interruptible(dev);
1574
	if (ret)
1575
		return ret;
1576

1577 1578 1579 1580 1581
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1582
	obj_priv = to_intel_bo(obj);
1583

1584 1585 1586 1587 1588
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		ret = -E2BIG;
		goto unlock;
	}

1589 1590
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1591 1592
		ret = -EINVAL;
		goto out;
1593 1594
	}

C
Chris Wilson 已提交
1595
	if (!obj->map_list.map) {
1596
		ret = i915_gem_create_mmap_offset(obj);
1597 1598
		if (ret)
			goto out;
1599 1600
	}

C
Chris Wilson 已提交
1601
	args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1602

1603
out:
1604
	drm_gem_object_unreference(obj);
1605
unlock:
1606
	mutex_unlock(&dev->struct_mutex);
1607
	return ret;
1608 1609
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
			      gfp_t gfpmask)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
	BUG_ON(obj_priv->pages != NULL);
	obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj_priv->pages == NULL)
		return -ENOMEM;

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

		obj_priv->pages[i] = page;
	}

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	return PTR_ERR(page);
}

1657
static void
1658
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1659
{
1660
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1661 1662 1663
	int page_count = obj->size / PAGE_SIZE;
	int i;

C
Chris Wilson 已提交
1664
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1665

1666 1667 1668
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1669
	if (obj_priv->madv == I915_MADV_DONTNEED)
1670
		obj_priv->dirty = 0;
1671 1672 1673 1674 1675 1676

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1677
			mark_page_accessed(obj_priv->pages[i]);
1678 1679 1680

		page_cache_release(obj_priv->pages[i]);
	}
1681 1682
	obj_priv->dirty = 0;

1683
	drm_free_large(obj_priv->pages);
1684
	obj_priv->pages = NULL;
1685 1686
}

1687 1688 1689 1690 1691
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1692
	return ring->outstanding_lazy_request = dev_priv->next_seqno;
1693 1694
}

1695
static void
1696
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1697
			       struct intel_ring_buffer *ring)
1698 1699
{
	struct drm_device *dev = obj->dev;
1700
	struct drm_i915_private *dev_priv = dev->dev_private;
1701
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1702
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1703

1704 1705
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1706 1707 1708 1709 1710 1711

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1712

1713
	/* Move from whatever list we were on to the tail of execution. */
1714 1715
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1716
	obj_priv->last_rendering_seqno = seqno;
1717 1718
}

1719 1720 1721 1722 1723
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1724
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1725 1726

	BUG_ON(!obj_priv->active);
1727 1728
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1729 1730
	obj_priv->last_rendering_seqno = 0;
}
1731

1732 1733 1734 1735
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1736
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1737
	struct inode *inode;
1738

1739 1740 1741 1742 1743 1744
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1745
	inode = obj->filp->f_path.dentry->d_inode;
1746 1747 1748
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1749 1750

	obj_priv->madv = __I915_MADV_PURGED;
1751 1752 1753 1754 1755 1756 1757 1758
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1759 1760 1761 1762 1763
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1764
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1765 1766

	if (obj_priv->pin_count != 0)
1767
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1768
	else
1769 1770
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1771

1772 1773
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1774
	obj_priv->last_rendering_seqno = 0;
1775
	obj_priv->ring = NULL;
1776 1777 1778 1779
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1780
	WARN_ON(i915_verify_lists(dev));
1781 1782
}

1783 1784
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1785
			       uint32_t flush_domains,
1786
			       struct intel_ring_buffer *ring)
1787 1788 1789 1790 1791
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1792
				 &ring->gpu_write_list,
1793
				 gpu_write_list) {
1794
		struct drm_gem_object *obj = &obj_priv->base;
1795

1796
		if (obj->write_domain & flush_domains) {
1797 1798 1799 1800
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1801
			i915_gem_object_move_to_active(obj, ring);
1802 1803

			/* update the fence lru list */
1804 1805 1806 1807
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1808
						&dev_priv->mm.fence_list);
1809
			}
1810 1811 1812 1813 1814 1815 1816

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1817

1818
int
1819
i915_add_request(struct drm_device *dev,
1820
		 struct drm_file *file,
C
Chris Wilson 已提交
1821
		 struct drm_i915_gem_request *request,
1822
		 struct intel_ring_buffer *ring)
1823 1824
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1825
	struct drm_i915_file_private *file_priv = NULL;
1826 1827
	uint32_t seqno;
	int was_empty;
1828 1829 1830
	int ret;

	BUG_ON(request == NULL);
1831

1832 1833
	if (file != NULL)
		file_priv = file->driver_priv;
1834

1835 1836 1837
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1838

1839
	ring->outstanding_lazy_request = false;
1840 1841

	request->seqno = seqno;
1842
	request->ring = ring;
1843
	request->emitted_jiffies = jiffies;
1844 1845 1846
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1847
	if (file_priv) {
1848
		spin_lock(&file_priv->mm.lock);
1849
		request->file_priv = file_priv;
1850
		list_add_tail(&request->client_list,
1851
			      &file_priv->mm.request_list);
1852
		spin_unlock(&file_priv->mm.lock);
1853
	}
1854

B
Ben Gamari 已提交
1855
	if (!dev_priv->mm.suspended) {
1856 1857
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1858
		if (was_empty)
1859 1860
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1861
	}
1862
	return 0;
1863 1864 1865 1866 1867 1868 1869 1870
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1871
static void
1872
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1873 1874 1875 1876
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1877
	if (INTEL_INFO(dev)->gen >= 4)
1878
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1879

1880
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1881 1882
}

1883 1884
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1885
{
1886
	struct drm_i915_file_private *file_priv = request->file_priv;
1887

1888 1889
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1890

1891 1892 1893 1894
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1895 1896
}

1897 1898
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1899
{
1900 1901
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1902

1903 1904 1905
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1906

1907
		list_del(&request->list);
1908
		i915_gem_request_remove_from_client(request);
1909 1910
		kfree(request);
	}
1911

1912
	while (!list_empty(&ring->active_list)) {
1913 1914
		struct drm_i915_gem_object *obj_priv;

1915
		obj_priv = list_first_entry(&ring->active_list,
1916
					    struct drm_i915_gem_object,
1917
					    ring_list);
1918 1919

		obj_priv->base.write_domain = 0;
1920
		list_del_init(&obj_priv->gpu_write_list);
1921
		i915_gem_object_move_to_inactive(&obj_priv->base);
1922 1923 1924
	}
}

1925
void i915_gem_reset(struct drm_device *dev)
1926
{
1927 1928
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1929
	int i;
1930

1931
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1932
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1933
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1934 1935 1936 1937 1938 1939 1940 1941

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1942
					    mm_list);
1943 1944 1945 1946 1947 1948 1949 1950 1951

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1952 1953
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1954
			    mm_list)
1955 1956 1957
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1969 1970 1971 1972 1973
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1974 1975 1976
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1977 1978 1979 1980
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1981 1982
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1983 1984
		return;

1985
	WARN_ON(i915_verify_lists(dev));
1986

1987
	seqno = ring->get_seqno(ring);
1988
	while (!list_empty(&ring->request_list)) {
1989 1990
		struct drm_i915_gem_request *request;

1991
		request = list_first_entry(&ring->request_list,
1992 1993 1994
					   struct drm_i915_gem_request,
					   list);

1995
		if (!i915_seqno_passed(seqno, request->seqno))
1996 1997 1998 1999 2000
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
2001
		i915_gem_request_remove_from_client(request);
2002 2003
		kfree(request);
	}
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
2014
					    ring_list);
2015

2016
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
2017
			break;
2018 2019 2020 2021 2022 2023

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
2024
	}
2025 2026 2027

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2028
		ring->user_irq_put(ring);
2029 2030
		dev_priv->trace_irq_seqno = 0;
	}
2031 2032

	WARN_ON(i915_verify_lists(dev));
2033 2034
}

2035 2036 2037 2038 2039
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
2050
				     mm_list)
2051 2052 2053
		    i915_gem_free_object_tail(&obj_priv->base);
	}

2054
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2055
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2056
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2057 2058
}

2059
static void
2060 2061 2062 2063 2064 2065 2066 2067 2068
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2069 2070 2071 2072 2073 2074
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2075
	i915_gem_retire_requests(dev);
2076

2077
	if (!dev_priv->mm.suspended &&
2078
		(!list_empty(&dev_priv->render_ring.request_list) ||
2079 2080
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
2081
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2082 2083 2084
	mutex_unlock(&dev->struct_mutex);
}

2085
int
2086
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2087
		     bool interruptible, struct intel_ring_buffer *ring)
2088 2089
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2090
	u32 ier;
2091 2092 2093 2094
	int ret = 0;

	BUG_ON(seqno == 0);

2095
	if (atomic_read(&dev_priv->mm.wedged))
2096 2097
		return -EAGAIN;

2098
	if (seqno == ring->outstanding_lazy_request) {
2099 2100 2101 2102
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2103
			return -ENOMEM;
2104 2105 2106 2107 2108 2109 2110 2111

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2112
	}
2113

2114
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2115
		if (HAS_PCH_SPLIT(dev))
2116 2117 2118
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2119 2120 2121 2122 2123 2124 2125
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2126 2127
		trace_i915_gem_request_wait_begin(dev, seqno);

2128
		ring->waiting_seqno = seqno;
2129
		ring->user_irq_get(ring);
2130
		if (interruptible)
2131
			ret = wait_event_interruptible(ring->irq_queue,
2132
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2133
				|| atomic_read(&dev_priv->mm.wedged));
2134
		else
2135
			wait_event(ring->irq_queue,
2136
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2137
				|| atomic_read(&dev_priv->mm.wedged));
2138

2139
		ring->user_irq_put(ring);
2140
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2141 2142

		trace_i915_gem_request_wait_end(dev, seqno);
2143
	}
2144
	if (atomic_read(&dev_priv->mm.wedged))
2145
		ret = -EAGAIN;
2146 2147

	if (ret && ret != -ERESTARTSYS)
2148
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2149
			  __func__, ret, seqno, ring->get_seqno(ring),
2150
			  dev_priv->next_seqno);
2151 2152 2153 2154 2155 2156 2157

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2158
		i915_gem_retire_requests_ring(dev, ring);
2159 2160 2161 2162

	return ret;
}

2163 2164 2165 2166 2167
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2168
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2169
		  struct intel_ring_buffer *ring)
2170
{
2171
	return i915_do_wait_request(dev, seqno, 1, ring);
2172 2173
}

2174
static void
2175
i915_gem_flush_ring(struct drm_device *dev,
2176
		    struct drm_file *file_priv,
2177 2178 2179 2180
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2181
	ring->flush(ring, invalidate_domains, flush_domains);
2182 2183 2184
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2185 2186
static void
i915_gem_flush(struct drm_device *dev,
2187
	       struct drm_file *file_priv,
2188
	       uint32_t invalidate_domains,
2189 2190
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2191 2192
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2193

2194
	if (flush_domains & I915_GEM_DOMAIN_CPU)
2195
		intel_gtt_chipset_flush();
2196

2197 2198
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2199
			i915_gem_flush_ring(dev, file_priv,
2200 2201 2202
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2203
			i915_gem_flush_ring(dev, file_priv,
2204 2205
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2206 2207 2208 2209
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2210
	}
2211 2212
}

2213 2214 2215 2216 2217
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2218 2219
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2220 2221
{
	struct drm_device *dev = obj->dev;
2222
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2223 2224
	int ret;

2225 2226
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2227
	 */
2228
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2229 2230 2231 2232 2233

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2234 2235 2236 2237 2238
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2239 2240 2241 2242 2243 2244 2245 2246 2247
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2248
int
2249 2250 2251
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2252
	struct drm_i915_private *dev_priv = dev->dev_private;
2253
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2264 2265 2266
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2267 2268 2269 2270 2271 2272
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2273
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2274
	if (ret == -ERESTARTSYS)
2275
		return ret;
2276 2277 2278 2279
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2280 2281 2282 2283
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2284

2285 2286 2287 2288
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2289 2290
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2291

2292
	i915_gem_object_put_pages_gtt(obj);
2293

2294
	i915_gem_info_remove_gtt(dev_priv, obj_priv);
2295
	list_del_init(&obj_priv->mm_list);
2296 2297
	/* Avoid an unnecessary call to unbind on rebind. */
	obj_priv->map_and_fenceable = true;
2298

2299 2300
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2301
	obj_priv->gtt_offset = 0;
2302

2303 2304 2305
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2306 2307
	trace_i915_gem_object_unbind(obj);

2308
	return ret;
2309 2310
}

2311 2312 2313
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2314
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2315 2316
		return 0;

2317 2318 2319 2320 2321 2322 2323
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2324
int
2325 2326 2327 2328
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2329
	int ret;
2330

2331
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2332
		       list_empty(&dev_priv->mm.active_list));
2333 2334 2335 2336
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2337
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2338 2339
	if (ret)
		return ret;
2340

2341 2342 2343
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2344

2345 2346 2347
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2348

2349
	return 0;
2350 2351
}

2352
static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2353 2354 2355
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2356
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2357
	u32 size = i915_gem_get_gtt_size(obj_priv);
2358 2359 2360
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2361
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2374
static void i965_write_fence_reg(struct drm_gem_object *obj)
2375 2376 2377
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2378
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2379
	u32 size = i915_gem_get_gtt_size(obj_priv);
2380 2381 2382
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2383
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

2394
static void i915_write_fence_reg(struct drm_gem_object *obj)
2395 2396 2397
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2398
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2399 2400
	u32 size = i915_gem_get_gtt_size(obj_priv);
	uint32_t fence_reg, val, pitch_val;
2401
	int tile_width;
2402 2403

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2404 2405
	    (obj_priv->gtt_offset & (size - 1))) {
		WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2406
		     __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2407
		     obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2408 2409 2410
		return;
	}

2411 2412 2413
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2414
	else
2415 2416 2417 2418 2419
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2420

2421 2422 2423 2424 2425 2426
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2427 2428 2429
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2430
	val |= I915_FENCE_SIZE_BITS(size);
2431 2432 2433
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2434 2435 2436
	fence_reg = obj_priv->fence_reg;
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2437
	else
2438
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2439
	I915_WRITE(fence_reg, val);
2440 2441
}

2442
static void i830_write_fence_reg(struct drm_gem_object *obj)
2443 2444 2445
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2446
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2447
	u32 size = i915_gem_get_gtt_size(obj_priv);
2448 2449 2450
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2451
	uint32_t fence_size_bits;
2452

2453
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2454
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2455
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2456
		     __func__, obj_priv->gtt_offset);
2457 2458 2459
		return;
	}

2460 2461 2462 2463
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2464 2465 2466
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2467
	fence_size_bits = I830_FENCE_SIZE_BITS(size);
2468 2469
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2470 2471 2472 2473 2474 2475
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2476 2477
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2478 2479
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2480 2481
	struct drm_i915_fence_reg *reg;
	struct drm_i915_gem_object *obj_priv = NULL;
2482 2483 2484 2485 2486 2487 2488 2489 2490
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2491
		obj_priv = to_intel_bo(reg->obj);
2492 2493 2494 2495 2496 2497 2498 2499
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
2500
	avail = I915_FENCE_REG_NONE;
2501 2502
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
2503
		obj_priv = to_intel_bo(reg->obj);
2504 2505 2506 2507
		if (obj_priv->pin_count)
			continue;

		/* found one! */
2508
		avail = obj_priv->fence_reg;
2509 2510 2511
		break;
	}

2512
	BUG_ON(avail == I915_FENCE_REG_NONE);
2513 2514 2515 2516 2517

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
2518 2519 2520
	drm_gem_object_reference(&obj_priv->base);
	ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
	drm_gem_object_unreference(&obj_priv->base);
2521 2522 2523
	if (ret != 0)
		return ret;

2524
	return avail;
2525 2526
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2540
int
2541 2542
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2543 2544
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2545
	struct drm_i915_private *dev_priv = dev->dev_private;
2546
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2547
	struct drm_i915_fence_reg *reg = NULL;
2548
	int ret;
2549

2550 2551
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2552 2553
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2554 2555 2556
		return 0;
	}

2557 2558 2559 2560 2561
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2562 2563 2564 2565 2566
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2567 2568
		break;
	case I915_TILING_Y:
2569 2570 2571 2572 2573
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2574 2575 2576
		break;
	}

2577
	ret = i915_find_fence_reg(dev, interruptible);
2578 2579
	if (ret < 0)
		return ret;
2580

2581 2582
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2583
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2584

2585 2586
	reg->obj = obj;

2587 2588
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2589
		sandybridge_write_fence_reg(obj);
2590 2591 2592
		break;
	case 5:
	case 4:
2593
		i965_write_fence_reg(obj);
2594 2595
		break;
	case 3:
2596
		i915_write_fence_reg(obj);
2597 2598
		break;
	case 2:
2599
		i830_write_fence_reg(obj);
2600 2601
		break;
	}
2602

2603 2604 2605
	trace_i915_gem_object_get_fence(obj,
					obj_priv->fence_reg,
					obj_priv->tiling_mode);
C
Chris Wilson 已提交
2606

2607
	return 0;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2621
	drm_i915_private_t *dev_priv = dev->dev_private;
2622
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2623 2624
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2625
	uint32_t fence_reg;
2626

2627 2628
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2629 2630
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2631 2632 2633
		break;
	case 5:
	case 4:
2634
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2635 2636
		break;
	case 3:
2637
		if (obj_priv->fence_reg >= 8)
2638
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2639
		else
2640 2641
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2642 2643

		I915_WRITE(fence_reg, 0);
2644
		break;
2645
	}
2646

2647
	reg->obj = NULL;
2648
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2649
	list_del_init(&reg->lru_list);
2650 2651
}

2652 2653 2654 2655
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2656
 * @bool: whether the wait upon the fence is interruptible
2657 2658 2659 2660 2661
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2662 2663
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2664 2665
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2666
	struct drm_i915_private *dev_priv = dev->dev_private;
2667
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2668
	struct drm_i915_fence_reg *reg;
2669 2670 2671 2672

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2673 2674 2675 2676 2677 2678
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2679 2680 2681 2682
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2683 2684
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2685 2686
		int ret;

2687
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2688
		if (ret)
2689 2690
			return ret;

2691
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2692
		if (ret)
2693
			return ret;
C
Chris Wilson 已提交
2694 2695

		reg->gpu = false;
2696 2697
	}

2698
	i915_gem_object_flush_gtt_write_domain(obj);
2699
	i915_gem_clear_fence_reg(obj);
2700 2701 2702 2703

	return 0;
}

2704 2705 2706 2707
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2708 2709
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
			    unsigned alignment,
2710
			    bool map_and_fenceable)
2711 2712 2713
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2714
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2715
	struct drm_mm_node *free_space;
2716
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2717
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2718
	bool mappable, fenceable;
2719
	int ret;
2720

C
Chris Wilson 已提交
2721
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2722 2723 2724 2725
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2726 2727
	fence_size = i915_gem_get_gtt_size(obj_priv);
	fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2728
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
2729

2730
	if (alignment == 0)
2731 2732
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2733
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2734 2735 2736 2737
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2738
	size = map_and_fenceable ? fence_size : obj->size;
2739

2740 2741 2742
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2743
	if (obj->size >
2744
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2745 2746 2747 2748
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2749
 search_free:
2750
	if (map_and_fenceable)
2751 2752
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2753
						    size, alignment, 0,
2754 2755 2756 2757
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2758
						size, alignment, 0);
2759 2760

	if (free_space != NULL) {
2761
		if (map_and_fenceable)
2762 2763
			obj_priv->gtt_space =
				drm_mm_get_block_range_generic(free_space,
2764
							       size, alignment, 0,
2765 2766 2767 2768
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
			obj_priv->gtt_space =
2769
				drm_mm_get_block(free_space, size, alignment);
2770
	}
2771 2772 2773 2774
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2775 2776
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2777
		if (ret)
2778
			return ret;
2779

2780 2781 2782
		goto search_free;
	}

2783
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2784 2785 2786
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2787 2788 2789

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2790
			ret = i915_gem_evict_something(dev, size,
2791 2792
						       alignment,
						       map_and_fenceable);
2793 2794
			if (ret) {
				/* now try to shrink everyone else */
2795 2796 2797
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2798 2799 2800 2801 2802 2803 2804 2805
				}

				return ret;
			}

			goto search_free;
		}

2806 2807 2808 2809 2810 2811 2812
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2813
					       obj_priv->pages,
2814
					       obj->size >> PAGE_SHIFT,
2815
					       obj_priv->gtt_space->start,
2816
					       obj_priv->agp_type);
2817
	if (obj_priv->agp_mem == NULL) {
2818
		i915_gem_object_put_pages_gtt(obj);
2819 2820
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2821

2822
		ret = i915_gem_evict_something(dev, size,
2823
					       alignment, map_and_fenceable);
2824
		if (ret)
2825 2826 2827
			return ret;

		goto search_free;
2828 2829
	}

2830 2831
	obj_priv->gtt_offset = obj_priv->gtt_space->start;

2832
	/* keep track of bounds object by adding it to the inactive list */
2833
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2834
	i915_gem_info_add_gtt(dev_priv, obj_priv);
2835

2836 2837 2838 2839
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2840 2841
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2842

2843
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
C
Chris Wilson 已提交
2844

2845
	fenceable =
2846 2847 2848
		obj_priv->gtt_space->size == fence_size &&
		(obj_priv->gtt_space->start & (fence_alignment -1)) == 0;

2849
	mappable =
2850 2851
		obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;

2852 2853
	obj_priv->map_and_fenceable = mappable && fenceable;

2854 2855 2856 2857 2858 2859
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2860
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2861 2862 2863 2864 2865

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2866
	if (obj_priv->pages == NULL)
2867 2868
		return;

C
Chris Wilson 已提交
2869
	trace_i915_gem_object_clflush(obj);
2870

2871
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2872 2873
}

2874
/** Flushes any GPU write domain for the object if it's dirty. */
2875
static int
2876 2877
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2878 2879 2880 2881
{
	struct drm_device *dev = obj->dev;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2882
		return 0;
2883 2884

	/* Queue the GPU write cache flushing we need. */
2885
	i915_gem_flush_ring(dev, NULL,
2886 2887
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2888
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2889

2890 2891 2892
	if (pipelined)
		return 0;

2893
	return i915_gem_object_wait_rendering(obj, true);
2894 2895 2896 2897 2898 2899
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2900 2901
	uint32_t old_write_domain;

2902 2903 2904 2905 2906 2907 2908
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
2909 2910
	i915_gem_release_mmap(obj);

C
Chris Wilson 已提交
2911
	old_write_domain = obj->write_domain;
2912
	obj->write_domain = 0;
C
Chris Wilson 已提交
2913 2914 2915 2916

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2917 2918 2919 2920 2921 2922
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2923
	uint32_t old_write_domain;
2924 2925 2926 2927 2928

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
2929
	intel_gtt_chipset_flush();
C
Chris Wilson 已提交
2930
	old_write_domain = obj->write_domain;
2931
	obj->write_domain = 0;
C
Chris Wilson 已提交
2932 2933 2934 2935

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2936 2937
}

2938 2939 2940 2941 2942 2943
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2944
int
2945 2946
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2947
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2948
	uint32_t old_write_domain, old_read_domains;
2949
	int ret;
2950

2951 2952 2953 2954
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2955
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2956 2957 2958
	if (ret != 0)
		return ret;

2959
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2960

2961
	if (write) {
2962
		ret = i915_gem_object_wait_rendering(obj, true);
2963 2964 2965
		if (ret)
			return ret;
	}
2966

C
Chris Wilson 已提交
2967 2968 2969
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2970 2971 2972 2973 2974 2975
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2976
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2977 2978
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2979 2980
	}

C
Chris Wilson 已提交
2981 2982 2983 2984
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2985 2986 2987
	return 0;
}

2988 2989 2990 2991 2992
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2993 2994
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2995
{
2996
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2997
	uint32_t old_read_domains;
2998 2999 3000 3001 3002 3003
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

3004
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
3005 3006
	if (ret)
		return ret;
3007

3008 3009 3010 3011
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
3012 3013 3014
			return ret;
	}

3015 3016
	i915_gem_object_flush_cpu_write_domain(obj);

3017
	old_read_domains = obj->read_domains;
3018
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3019 3020 3021

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3022
					    obj->write_domain);
3023 3024 3025 3026

	return 0;
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
	if (!obj->active)
		return 0;

	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
		i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
				    0, obj->base.write_domain);

	return i915_gem_object_wait_rendering(&obj->base, interruptible);
}

3041 3042 3043 3044 3045 3046 3047 3048 3049
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
3050
	uint32_t old_write_domain, old_read_domains;
3051 3052
	int ret;

3053
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3054 3055
	if (ret != 0)
		return ret;
3056

3057
	i915_gem_object_flush_gtt_write_domain(obj);
3058

3059 3060
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3061
	 */
3062
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3063

3064
	if (write) {
3065
		ret = i915_gem_object_wait_rendering(obj, true);
3066 3067 3068 3069
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
3070 3071 3072
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

3073 3074
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3075 3076
		i915_gem_clflush_object(obj);

3077
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3078 3079 3080 3081 3082
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3083 3084 3085 3086 3087 3088
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3089
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3090 3091
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3092

C
Chris Wilson 已提交
3093 3094 3095 3096
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3097 3098 3099
	return 0;
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3211
static void
3212
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3213 3214
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
3215
{
3216
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3217 3218
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3219

3220 3221 3222 3223
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3224 3225
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3226 3227 3228 3229 3230 3231 3232

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3233
	if (obj->write_domain &&
3234 3235
	    (obj->write_domain != obj->pending_read_domains ||
	     obj_priv->ring != ring)) {
3236
		flush_domains |= obj->write_domain;
3237 3238
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3239 3240 3241 3242 3243
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3244
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3245
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3246 3247
		i915_gem_clflush_object(obj);

3248 3249 3250 3251
	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

3252 3253 3254 3255 3256 3257 3258 3259
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3260

3261 3262
	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
3263
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3264
		cd->flush_rings |= obj_priv->ring->id;
3265
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3266
		cd->flush_rings |= ring->id;
3267 3268 3269
}

/**
3270
 * Moves the object from a partially CPU read to a full one.
3271
 *
3272 3273
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3274
 */
3275 3276
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3277
{
3278
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3279

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3291
			drm_clflush_pages(obj_priv->pages + i, 1);
3292 3293 3294 3295 3296 3297
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3298
	kfree(obj_priv->page_cpu_valid);
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3318
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3319
	uint32_t old_read_domains;
3320
	int i, ret;
3321

3322 3323
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3324

3325
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3326
	if (ret != 0)
3327
		return ret;
3328 3329 3330 3331 3332 3333
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3334

3335 3336 3337
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3338
	if (obj_priv->page_cpu_valid == NULL) {
3339 3340
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3341 3342 3343 3344
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3345 3346 3347 3348

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3349 3350
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3351 3352 3353
		if (obj_priv->page_cpu_valid[i])
			continue;

3354
		drm_clflush_pages(obj_priv->pages + i, 1);
3355 3356 3357 3358

		obj_priv->page_cpu_valid[i] = 1;
	}

3359 3360 3361 3362 3363
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3364
	old_read_domains = obj->read_domains;
3365 3366
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3367 3368 3369 3370
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3371 3372 3373 3374
	return 0;
}

static int
3375 3376 3377 3378
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
				   struct drm_file *file_priv,
				   struct drm_i915_gem_exec_object2 *entry,
				   struct drm_i915_gem_relocation_entry *reloc)
3379
{
3380
	struct drm_device *dev = obj->base.dev;
3381 3382 3383
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;
3384

3385 3386 3387 3388
	target_obj = drm_gem_object_lookup(dev, file_priv,
					   reloc->target_handle);
	if (target_obj == NULL)
		return -ENOENT;
3389

3390
	target_offset = to_intel_bo(target_obj)->gtt_offset;
J
Jesse Barnes 已提交
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
#if WATCH_RELOC
	DRM_INFO("%s: obj %p offset %08x target %d "
		 "read %08x write %08x gtt %08x "
		 "presumed %08x delta %08x\n",
		 __func__,
		 obj,
		 (int) reloc->offset,
		 (int) reloc->target_handle,
		 (int) reloc->read_domains,
		 (int) reloc->write_domain,
		 (int) target_offset,
		 (int) reloc->presumed_offset,
		 reloc->delta);
#endif
3406

3407 3408 3409 3410 3411 3412 3413 3414
	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
	if (target_offset == 0) {
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
		goto err;
	}
3415

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	/* Validate that the target is in a valid r/w GPU domain */
	if (reloc->write_domain & (reloc->write_domain - 1)) {
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
	    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain && target_obj->pending_write_domain &&
	    reloc->write_domain != target_obj->pending_write_domain) {
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
		goto err;
	}
3449

3450 3451
	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;
3452

3453 3454 3455 3456 3457
	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
		goto out;
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	/* Check that the relocation address is valid... */
	if (reloc->offset > obj->base.size - 4) {
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
		goto err;
	}
	if (reloc->offset & 3) {
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
		goto err;
	}
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484
	/* and points to somewhere within the target object. */
	if (reloc->delta >= target_obj->size) {
		DRM_ERROR("Relocation beyond target object bounds: "
			  "obj %p target %d delta %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->delta,
			  (int) target_obj->size);
		goto err;
	}
3485

3486 3487 3488 3489
	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;
3490

3491 3492 3493 3494 3495 3496 3497
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;
3498

3499 3500 3501
		ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
		if (ret)
			goto err;
3502

3503 3504 3505 3506 3507 3508 3509 3510 3511
		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}
3512

3513 3514
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;
3515

3516 3517 3518 3519 3520 3521
out:
	ret = 0;
err:
	drm_gem_object_unreference(target_obj);
	return ret;
}
3522

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
				    struct drm_file *file_priv,
				    struct drm_i915_gem_exec_object2 *entry)
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
		if (ret)
			return ret;
3543

3544
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3545 3546 3547
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
3548 3549
	}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
					 struct drm_file *file_priv,
					 struct drm_i915_gem_exec_object2 *entry,
					 struct drm_i915_gem_relocation_entry *relocs)
{
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
		if (ret)
			return ret;
	}

	return 0;
3568 3569
}

3570
static int
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
i915_gem_execbuffer_relocate(struct drm_device *dev,
			     struct drm_file *file,
			     struct drm_gem_object **object_list,
			     struct drm_i915_gem_exec_object2 *exec_list,
			     int count)
{
	int i, ret;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate_object(obj, file,
							  &exec_list[i]);
		if (ret)
			return ret;
	}

	return 0;
3590 3591
}

3592
static int
3593 3594 3595 3596 3597
i915_gem_execbuffer_reserve(struct drm_device *dev,
			    struct drm_file *file,
			    struct drm_gem_object **object_list,
			    struct drm_i915_gem_exec_object2 *exec_list,
			    int count)
3598
{
3599 3600
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3601

3602
	/* attempt to pin all of the buffers into the GTT */
3603 3604
	retry = 0;
	do {
3605 3606 3607
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3608
			struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3609 3610 3611 3612
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

3613 3614 3615 3616
			/* g33/pnv can't fence buffers in the unmappable part */
			bool need_mappable =
				entry->relocation_count ? true : need_fence;

3617
			/* Check fence reg constraints and rebind if necessary */
3618
			if (need_mappable && !obj->map_and_fenceable) {
3619 3620 3621 3622
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3623

3624
			ret = i915_gem_object_pin(&obj->base,
3625
						  entry->alignment,
3626
						  need_mappable);
3627 3628
			if (ret)
				break;
3629

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3640

3641 3642
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3643

3644
			entry->offset = obj->gtt_offset;
3645 3646
		}

3647 3648 3649
		while (i--)
			i915_gem_object_unpin(object_list[i]);

3650
		if (ret != -ENOSPC || retry > 1)
3651 3652
			return ret;

3653 3654 3655 3656
		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
		ret = i915_gem_evict_everything(dev, retry == 0);
3657 3658
		if (ret)
			return ret;
3659

3660 3661
		retry++;
	} while (1);
3662 3663
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
				  struct drm_gem_object **object_list,
				  struct drm_i915_gem_exec_object2 *exec_list,
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
	int i, total, ret;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->in_execbuffer = false;
	}

	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
		total += exec_list[i].relocation_count;

	reloc = drm_malloc_ab(total, sizeof(*reloc));
	if (reloc == NULL) {
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		if (copy_from_user(reloc+total, user_relocs,
				   exec_list[i].relocation_count *
				   sizeof(*reloc))) {
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

		total += exec_list[i].relocation_count;
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

	ret = i915_gem_execbuffer_reserve(dev, file,
					  object_list, exec_list,
					  count);
	if (ret)
		goto err;

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
							       &exec_list[i],
							       reloc + total);
		if (ret)
			goto err;

		total += exec_list[i].relocation_count;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
	return ret;
}

3745 3746 3747 3748 3749 3750 3751
static int
i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
				struct drm_file *file,
				struct intel_ring_buffer *ring,
				struct drm_gem_object **objects,
				int count)
{
3752
	struct change_domains cd;
3753 3754
	int ret, i;

3755 3756 3757
	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
3758
	for (i = 0; i < count; i++)
3759
		i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3760

3761
	if (cd.invalidate_domains | cd.flush_domains) {
3762 3763 3764
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
3765 3766
			 cd.invalidate_domains,
			 cd.flush_domains);
3767 3768
#endif
		i915_gem_flush(dev, file,
3769 3770 3771
			       cd.invalidate_domains,
			       cd.flush_domains,
			       cd.flush_rings);
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	}

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
		/* XXX replace with semaphores */
		if (obj->ring && ring != obj->ring) {
			ret = i915_gem_object_wait_rendering(&obj->base, true);
			if (ret)
				return ret;
		}
	}

	return 0;
}

3787 3788 3789
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3790 3791 3792 3793
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3794 3795 3796
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3797
static int
3798
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3799
{
3800 3801
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3802
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3803 3804 3805 3806
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3807

3808
	spin_lock(&file_priv->mm.lock);
3809
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3810 3811
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3812

3813 3814
		ring = request->ring;
		seqno = request->seqno;
3815
	}
3816
	spin_unlock(&file_priv->mm.lock);
3817

3818 3819
	if (seqno == 0)
		return 0;
3820

3821
	ret = 0;
3822
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3823 3824 3825 3826 3827
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3828
		ring->user_irq_get(ring);
3829
		ret = wait_event_interruptible(ring->irq_queue,
3830
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3831
					       || atomic_read(&dev_priv->mm.wedged));
3832
		ring->user_irq_put(ring);
3833

3834 3835
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3836 3837
	}

3838 3839
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3840 3841 3842 3843

	return ret;
}

3844
static int
3845 3846
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3862
static int
3863 3864
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3865
{
3866
	int i;
3867

3868 3869
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3870
		int length; /* limited by fault_in_pages_readable() */
3871

3872 3873 3874 3875
		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;
3876

3877 3878
		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
3879 3880
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3881

3882 3883 3884 3885
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3886 3887
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3888 3889
	}

3890
	return 0;
3891 3892
}

C
Chris Wilson 已提交
3893
static int
J
Jesse Barnes 已提交
3894
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3895
		       struct drm_file *file,
J
Jesse Barnes 已提交
3896 3897
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3898 3899 3900 3901
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3902
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3903
	struct drm_i915_gem_request *request = NULL;
3904
	int ret, i, flips;
3905 3906
	uint64_t exec_offset;

3907 3908
	struct intel_ring_buffer *ring = NULL;

3909 3910 3911 3912
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3913 3914 3915 3916
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3917 3918 3919 3920
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3921 3922 3923 3924 3925 3926
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3927
		if (!HAS_BSD(dev)) {
3928
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3929 3930 3931
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3944 3945
	}

3946 3947 3948 3949
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3950
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3951 3952
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3953 3954 3955 3956 3957
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3958
	if (args->num_cliprects != 0) {
3959 3960
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3961 3962
		if (cliprects == NULL) {
			ret = -ENOMEM;
3963
			goto pre_mutex_err;
3964
		}
3965 3966 3967 3968 3969 3970 3971 3972

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3973
			ret = -EFAULT;
3974 3975 3976 3977
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3978 3979 3980
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3981
		goto pre_mutex_err;
C
Chris Wilson 已提交
3982
	}
3983

3984 3985
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3986
		goto pre_mutex_err;
3987 3988 3989

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3990 3991
		ret = -EBUSY;
		goto pre_mutex_err;
3992 3993
	}

3994
	/* Look up object handles */
3995
	for (i = 0; i < args->buffer_count; i++) {
3996 3997
		struct drm_i915_gem_object *obj_priv;

3998
		object_list[i] = drm_gem_object_lookup(dev, file,
3999 4000 4001 4002
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
4003 4004
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
4005
			ret = -ENOENT;
4006 4007
			goto err;
		}
4008

4009
		obj_priv = to_intel_bo(object_list[i]);
4010 4011 4012
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
4013 4014
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
4015
			ret = -EINVAL;
4016 4017 4018
			goto err;
		}
		obj_priv->in_execbuffer = true;
4019
	}
4020

4021
	/* Move the objects en-masse into the GTT, evicting if necessary. */
4022 4023 4024
	ret = i915_gem_execbuffer_reserve(dev, file,
					  object_list, exec_list,
					  args->buffer_count);
4025 4026
	if (ret)
		goto err;
4027

4028
	/* The objects are in their final locations, apply the relocations. */
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	ret = i915_gem_execbuffer_relocate(dev, file,
					   object_list, exec_list,
					   args->buffer_count);
	if (ret) {
		if (ret == -EFAULT) {
			ret = i915_gem_execbuffer_relocate_slow(dev, file,
								object_list,
								exec_list,
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
4040
		if (ret)
4041
			goto err;
4042 4043 4044 4045
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
4046 4047 4048 4049 4050 4051
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
4052

4053 4054 4055
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
4056 4057 4058 4059 4060
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

4061 4062 4063 4064
	ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
					      object_list, args->buffer_count);
	if (ret)
		goto err;
4065 4066 4067 4068 4069 4070 4071 4072 4073

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
4074
	i915_gem_dump_object(batch_obj,
4075 4076 4077 4078 4079
			      args->batch_len,
			      __func__,
			      ~0);
#endif

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

4101 4102 4103 4104
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

4105 4106 4107
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
4108 4109 4110
		}
	}

4111
	/* Exec the batchbuffer */
4112
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
4113 4114 4115 4116 4117 4118 4119 4120
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

4121 4122 4123
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

4124
		i915_gem_object_move_to_active(obj, ring);
4125 4126 4127 4128
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
4129
				       &ring->gpu_write_list);
4130 4131 4132 4133 4134 4135
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
4136 4137
	}

4138 4139 4140 4141 4142 4143
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

4144
	if (i915_add_request(dev, file, request, ring))
4145
		i915_gem_next_request_seqno(dev, ring);
4146 4147
	else
		request = NULL;
4148 4149

err:
4150
	for (i = 0; i < args->buffer_count; i++) {
4151 4152 4153 4154
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
4155
		drm_gem_object_unreference(object_list[i]);
4156
	}
4157 4158 4159

	mutex_unlock(&dev->struct_mutex);

4160
pre_mutex_err:
4161
	drm_free_large(object_list);
4162
	kfree(cliprects);
C
Chris Wilson 已提交
4163
	kfree(request);
4164 4165 4166 4167

	return ret;
}

J
Jesse Barnes 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
4220
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4234
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4313
int
4314
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4315
		    bool map_and_fenceable)
4316 4317
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4318
	struct drm_i915_private *dev_priv = dev->dev_private;
4319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4320 4321
	int ret;

4322
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4323
	BUG_ON(map_and_fenceable && !map_and_fenceable);
4324
	WARN_ON(i915_verify_lists(dev));
4325 4326

	if (obj_priv->gtt_space != NULL) {
4327
		if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4328
		    (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4329 4330
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
4331 4332
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
4333
			     obj_priv->gtt_offset, alignment,
4334 4335
			     map_and_fenceable,
			     obj_priv->map_and_fenceable);
4336 4337 4338 4339 4340 4341
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4342
	if (obj_priv->gtt_space == NULL) {
4343
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
4344
						  map_and_fenceable);
4345
		if (ret)
4346
			return ret;
4347
	}
J
Jesse Barnes 已提交
4348

4349
	if (obj_priv->pin_count++ == 0) {
4350
		i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
C
Chris Wilson 已提交
4351
		if (!obj_priv->active)
4352
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4353
				       &dev_priv->mm.pinned_list);
4354
	}
4355
	BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4356

4357
	WARN_ON(i915_verify_lists(dev));
4358 4359 4360 4361 4362 4363 4364 4365
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4366
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4367

4368
	WARN_ON(i915_verify_lists(dev));
4369
	BUG_ON(obj_priv->pin_count == 0);
4370 4371
	BUG_ON(obj_priv->gtt_space == NULL);

4372
	if (--obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4373
		if (!obj_priv->active)
4374
			list_move_tail(&obj_priv->mm_list,
4375
				       &dev_priv->mm.inactive_list);
4376
		i915_gem_info_remove_pin(dev_priv, obj_priv);
4377
	}
4378
	WARN_ON(i915_verify_lists(dev));
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4390 4391 4392
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4393 4394 4395

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4396 4397
		ret = -ENOENT;
		goto unlock;
4398
	}
4399
	obj_priv = to_intel_bo(obj);
4400

C
Chris Wilson 已提交
4401 4402
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4403 4404
		ret = -EINVAL;
		goto out;
4405 4406
	}

J
Jesse Barnes 已提交
4407 4408 4409
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4410 4411
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4412 4413 4414 4415 4416
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
4417
		ret = i915_gem_object_pin(obj, args->alignment, true);
4418 4419
		if (ret)
			goto out;
4420 4421 4422 4423 4424
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4425
	i915_gem_object_flush_cpu_write_domain(obj);
4426
	args->offset = obj_priv->gtt_offset;
4427
out:
4428
	drm_gem_object_unreference(obj);
4429
unlock:
4430
	mutex_unlock(&dev->struct_mutex);
4431
	return ret;
4432 4433 4434 4435 4436 4437 4438 4439
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4440
	struct drm_i915_gem_object *obj_priv;
4441
	int ret;
4442

4443 4444 4445
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4446 4447 4448

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4449 4450
		ret = -ENOENT;
		goto unlock;
4451
	}
4452
	obj_priv = to_intel_bo(obj);
4453

J
Jesse Barnes 已提交
4454 4455 4456
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4457 4458
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4459 4460 4461 4462 4463 4464
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4465

4466
out:
4467
	drm_gem_object_unreference(obj);
4468
unlock:
4469
	mutex_unlock(&dev->struct_mutex);
4470
	return ret;
4471 4472 4473 4474 4475 4476 4477 4478 4479
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4480 4481
	int ret;

4482
	ret = i915_mutex_lock_interruptible(dev);
4483
	if (ret)
4484
		return ret;
4485 4486 4487

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4488 4489
		ret = -ENOENT;
		goto unlock;
4490
	}
4491
	obj_priv = to_intel_bo(obj);
4492

4493 4494 4495 4496
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4497
	 */
4498 4499 4500 4501 4502 4503 4504
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4505 4506
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4507 4508
					    obj_priv->ring,
					    0, obj->write_domain);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4519 4520

	drm_gem_object_unreference(obj);
4521
unlock:
4522
	mutex_unlock(&dev->struct_mutex);
4523
	return ret;
4524 4525 4526 4527 4528 4529 4530 4531 4532
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4533 4534 4535 4536 4537 4538 4539
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4540
	int ret;
4541 4542 4543 4544 4545 4546 4547 4548 4549

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4550 4551 4552 4553
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4554 4555
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4556 4557
		ret = -ENOENT;
		goto unlock;
4558
	}
4559
	obj_priv = to_intel_bo(obj);
4560 4561

	if (obj_priv->pin_count) {
4562 4563
		ret = -EINVAL;
		goto out;
4564 4565
	}

C
Chris Wilson 已提交
4566 4567
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4568

4569 4570 4571 4572 4573
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4574 4575
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4576
out:
4577
	drm_gem_object_unreference(obj);
4578
unlock:
4579
	mutex_unlock(&dev->struct_mutex);
4580
	return ret;
4581 4582
}

4583 4584 4585
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4586
	struct drm_i915_private *dev_priv = dev->dev_private;
4587
	struct drm_i915_gem_object *obj;
4588

4589 4590 4591
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4592

4593 4594 4595 4596
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4597

4598 4599
	i915_gem_info_add_obj(dev_priv, size);

4600 4601
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4602

4603
	obj->agp_type = AGP_USER_MEMORY;
4604
	obj->base.driver_private = NULL;
4605
	obj->fence_reg = I915_FENCE_REG_NONE;
4606 4607
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4608 4609
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4610 4611
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
4612

4613 4614 4615 4616 4617 4618
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4619

4620 4621 4622
	return 0;
}

4623
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4624
{
4625
	struct drm_device *dev = obj->dev;
4626
	drm_i915_private_t *dev_priv = dev->dev_private;
4627
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4628
	int ret;
4629

4630 4631
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4632
		list_move(&obj_priv->mm_list,
4633 4634 4635
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4636

C
Chris Wilson 已提交
4637
	if (obj->map_list.map)
4638
		i915_gem_free_mmap_offset(obj);
4639

4640
	drm_gem_object_release(obj);
4641
	i915_gem_info_remove_obj(dev_priv, obj->size);
4642

4643
	kfree(obj_priv->page_cpu_valid);
4644
	kfree(obj_priv->bit_17);
4645
	kfree(obj_priv);
4646 4647
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4664 4665 4666 4667 4668
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4669

4670
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4671

4672
	if (dev_priv->mm.suspended) {
4673 4674
		mutex_unlock(&dev->struct_mutex);
		return 0;
4675 4676
	}

4677
	ret = i915_gpu_idle(dev);
4678 4679
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4680
		return ret;
4681
	}
4682

4683 4684
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4685
		ret = i915_gem_evict_inactive(dev, false);
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4697
	del_timer_sync(&dev_priv->hangcheck_timer);
4698 4699

	i915_kernel_lost_context(dev);
4700
	i915_gem_cleanup_ringbuffer(dev);
4701

4702 4703
	mutex_unlock(&dev->struct_mutex);

4704 4705 4706
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4707 4708 4709
	return 0;
}

4710 4711 4712 4713
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4714
static int
4715 4716 4717 4718 4719 4720 4721
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4722
	obj = i915_gem_alloc_object(dev, 4096);
4723 4724 4725 4726 4727 4728 4729 4730
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

4731
	ret = i915_gem_object_pin(obj, 4096, true);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4753 4754

static void
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4769 4770
}

4771 4772 4773 4774 4775
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4776

4777 4778 4779 4780 4781
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4782

4783
	ret = intel_init_render_ring_buffer(dev);
4784 4785 4786 4787
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4788
		ret = intel_init_bsd_ring_buffer(dev);
4789 4790
		if (ret)
			goto cleanup_render_ring;
4791
	}
4792

4793 4794 4795 4796 4797 4798
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4799 4800
	dev_priv->next_seqno = 1;

4801 4802
	return 0;

4803
cleanup_bsd_ring:
4804
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4805
cleanup_render_ring:
4806
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4807 4808 4809
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4810 4811 4812 4813 4814 4815 4816 4817
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4818 4819 4820
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4821 4822 4823 4824
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4825 4826 4827 4828 4829 4830 4831
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4832 4833 4834
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4835
	if (atomic_read(&dev_priv->mm.wedged)) {
4836
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4837
		atomic_set(&dev_priv->mm.wedged, 0);
4838 4839 4840
	}

	mutex_lock(&dev->struct_mutex);
4841 4842 4843
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4844 4845
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4846
		return ret;
4847
	}
4848

4849
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4850
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4851
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4852
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4853 4854
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4855
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4856
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4857
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4858
	mutex_unlock(&dev->struct_mutex);
4859

4860 4861 4862
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4863

4864
	return 0;
4865 4866 4867 4868 4869 4870 4871 4872

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4873 4874 4875 4876 4877 4878
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4879 4880 4881
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4882
	drm_irq_uninstall(dev);
4883
	return i915_gem_idle(dev);
4884 4885 4886 4887 4888 4889 4890
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4891 4892 4893
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4894 4895 4896
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4897 4898
}

4899 4900 4901 4902 4903 4904 4905 4906
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4907 4908 4909
void
i915_gem_load(struct drm_device *dev)
{
4910
	int i;
4911 4912
	drm_i915_private_t *dev_priv = dev->dev_private;

4913
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4914 4915
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4916
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4917
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4918
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4919 4920 4921
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4922 4923
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4924 4925
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4926
	init_completion(&dev_priv->error_completion);
4927

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4938
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4939 4940
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4941

4942
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4943 4944 4945 4946
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4947
	/* Initialize fence registers to zero */
4948 4949 4950 4951 4952 4953 4954
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4955 4956
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4957 4958
		break;
	case 3:
4959 4960 4961
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4962 4963 4964 4965
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4966
	}
4967
	i915_gem_detect_bit_6_swizzle(dev);
4968
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4969 4970 4971 4972

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4973
}
4974 4975 4976 4977 4978

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4979 4980
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4981 4982 4983 4984 4985 4986 4987 4988
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4989
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4990 4991 4992 4993 4994
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4995
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
5008
	kfree(phys_obj);
5009 5010 5011
	return ret;
}

5012
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

5037
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5038 5039 5040 5041 5042 5043
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
5044 5045 5046
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	char *vaddr;
5047 5048 5049 5050 5051
	int i;
	int page_count;

	if (!obj_priv->phys_obj)
		return;
5052
	vaddr = obj_priv->phys_obj->handle->vaddr;
5053 5054 5055 5056

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
5070
	}
5071
	intel_gtt_chipset_flush();
5072

5073 5074 5075 5076 5077 5078
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
5079 5080 5081
			    struct drm_gem_object *obj,
			    int id,
			    int align)
5082
{
5083
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5084 5085 5086 5087 5088 5089 5090 5091 5092
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

5093
	obj_priv = to_intel_bo(obj);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
5104
						obj->size, align);
5105
		if (ret) {
5106
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5107
			return ret;
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
5118 5119 5120 5121 5122 5123 5124
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
5125

5126
		src = kmap_atomic(page);
5127
		dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5128
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
5129
		kunmap_atomic(src);
5130

5131 5132 5133
		mark_page_accessed(page);
		page_cache_release(page);
	}
5134

5135 5136 5137 5138 5139 5140 5141 5142
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
5143
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5144 5145
	void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5146

5147
	DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5148

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
5162

5163
	intel_gtt_chipset_flush();
5164 5165
	return 0;
}
5166

5167
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5168
{
5169
	struct drm_i915_file_private *file_priv = file->driver_priv;
5170 5171 5172 5173 5174

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5175
	spin_lock(&file_priv->mm.lock);
5176 5177 5178 5179 5180 5181 5182 5183 5184
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5185
	spin_unlock(&file_priv->mm.lock);
5186
}
5187

5188 5189 5190 5191 5192 5193 5194
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5195
		      list_empty(&dev_priv->mm.active_list);
5196 5197 5198 5199

	return !lists_empty;
}

5200
static int
5201 5202 5203
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
5204
{
5205 5206 5207 5208 5209 5210 5211 5212 5213
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
5214
		return 0;
5215 5216 5217

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
5218 5219 5220 5221 5222 5223 5224
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
5225 5226
	}

5227
rescan:
5228
	/* first scan for clean buffers */
5229
	i915_gem_retire_requests(dev);
5230

5231 5232 5233 5234 5235 5236 5237
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
			i915_gem_object_unbind(&obj->base);
			if (--nr_to_scan == 0)
				break;
5238 5239 5240 5241
		}
	}

	/* second pass, evict/count anything still on the inactive list */
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (nr_to_scan) {
			i915_gem_object_unbind(&obj->base);
			nr_to_scan--;
		} else
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
5254 5255 5256 5257 5258 5259
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
5260
		if (i915_gpu_idle(dev) == 0)
5261 5262
			goto rescan;
	}
5263 5264
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
5265
}