cpuset.c 75.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
255
 *
256
 * A task must hold both locks to modify cpusets.  If a task holds
257
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258
 * is the only task able to also acquire callback_lock and be able to
259 260 261
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
262 263
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
264
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_lock, as that would risk double tripping on callback_lock
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_lock, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_lock across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_SPINLOCK(callback_lock);
288

289 290 291 292 293 294
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

295 296
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

297 298
/*
 * This is ugly, but preserves the userspace API for existing cpuset
299
 * users. If someone tries to mount the "cpuset" filesystem, we
300 301
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
302 303
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
304
{
305
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
306
	struct dentry *ret = ERR_PTR(-ENODEV);
307 308 309 310
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
311 312
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
313 314 315
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
320
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
321 322 323
};

/*
324
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
325
 * are online.  If none are online, walk up the cpuset hierarchy
326 327
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
328 329
 *
 * One way or another, we guarantee to return some non-empty subset
330
 * of cpu_online_mask.
L
Linus Torvalds 已提交
331
 *
332
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
333
 */
334
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
335
{
336
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
T
Tejun Heo 已提交
337
		cs = parent_cs(cs);
338
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
345
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
346 347
 *
 * One way or another, we guarantee to return some non-empty subset
348
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
349
 *
350
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
351
 */
352
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
353
{
354
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
355
		cs = parent_cs(cs);
356
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
357 358
}

359 360 361
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
362
 * Call with callback_lock or cpuset_mutex held.
363 364 365 366 367
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
368
		task_set_spread_page(tsk);
369
	else
370 371
		task_clear_spread_page(tsk);

372
	if (is_spread_slab(cs))
373
		task_set_spread_slab(tsk);
374
	else
375
		task_clear_spread_slab(tsk);
376 377
}

L
Linus Torvalds 已提交
378 379 380 381 382
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
383
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
384 385 386 387
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
388
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
389 390 391 392 393
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

394 395 396 397
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
398
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399
{
400 401 402 403 404 405
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

406 407 408 409
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
410

411 412
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413
	return trial;
414 415 416 417 418 419

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
420 421 422 423 424 425 426 427
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
428
	free_cpumask_var(trial->effective_cpus);
429
	free_cpumask_var(trial->cpus_allowed);
430 431 432
	kfree(trial);
}

L
Linus Torvalds 已提交
433 434 435 436 437 438 439
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
440
 * cpuset_mutex held.
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448 449 450 451 452
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

453
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
454
{
455
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
456
	struct cpuset *c, *par;
457 458 459
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
460 461

	/* Each of our child cpusets must be a subset of us */
462
	ret = -EBUSY;
463
	cpuset_for_each_child(c, css, cur)
464 465
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
466 467

	/* Remaining checks don't apply to root cpuset */
468
	ret = 0;
469
	if (cur == &top_cpuset)
470
		goto out;
L
Linus Torvalds 已提交
471

T
Tejun Heo 已提交
472
	par = parent_cs(cur);
473

474
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
475
	ret = -EACCES;
476 477
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
478
		goto out;
L
Linus Torvalds 已提交
479

480 481 482 483
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
484
	ret = -EINVAL;
485
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
486 487
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
488
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
489
			goto out;
L
Linus Torvalds 已提交
490 491 492
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
493
			goto out;
L
Linus Torvalds 已提交
494 495
	}

496 497
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
498
	 * be changed to have empty cpus_allowed or mems_allowed.
499
	 */
500
	ret = -ENOSPC;
501
	if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
502 503 504 505 506 507 508
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
509

510 511 512 513 514 515 516 517 518 519
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

520 521 522 523
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
524 525
}

526
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
527
/*
528
 * Helper routine for generate_sched_domains().
529
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
530 531 532
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
533
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
534 535
}

536 537 538 539 540 541 542 543
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

544 545
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
546
{
547
	struct cpuset *cp;
548
	struct cgroup_subsys_state *pos_css;
549

550
	rcu_read_lock();
551
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
552 553
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
554
			pos_css = css_rightmost_descendant(pos_css);
555
			continue;
556
		}
557 558 559 560

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
561
	rcu_read_unlock();
562 563
}

P
Paul Jackson 已提交
564
/*
565 566 567 568 569
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
570
 * The output of this function needs to be passed to kernel/sched/core.c
571 572 573
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
574
 *
L
Li Zefan 已提交
575
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
576 577 578 579 580 581 582
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
583
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
584 585
 *
 * The three key local variables below are:
586
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
587 588 589 590 591 592 593 594 595 596 597 598
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
599
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
618
static int generate_sched_domains(cpumask_var_t **domains,
619
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
620 621 622 623 624
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
625
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
626
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
627
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
628
	int ndoms = 0;		/* number of sched domains in result */
629
	int nslot;		/* next empty doms[] struct cpumask slot */
630
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
631 632

	doms = NULL;
633
	dattr = NULL;
634
	csa = NULL;
P
Paul Jackson 已提交
635

636 637 638 639
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
640 641
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
642 643
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
644
		if (!doms)
645 646
			goto done;

647 648 649
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
650
			update_domain_attr_tree(dattr, &top_cpuset);
651
		}
652 653
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
654 655

		goto done;
P
Paul Jackson 已提交
656 657
	}

658
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
659 660 661 662
	if (!csa)
		goto done;
	csn = 0;

663
	rcu_read_lock();
664
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
665 666
		if (cp == &top_cpuset)
			continue;
667
		/*
668 669 670 671 672 673
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
674
		 */
675
		if (!cpumask_empty(cp->cpus_allowed) &&
676 677
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
678
			continue;
679

680 681 682 683
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
684
		pos_css = css_rightmost_descendant(pos_css);
685 686
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

715 716 717 718
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
719
	doms = alloc_sched_domains(ndoms);
720
	if (!doms)
721 722 723 724 725 726
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
727
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
728 729 730

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
731
		struct cpumask *dp;
P
Paul Jackson 已提交
732 733
		int apn = a->pn;

734 735 736 737 738
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

739
		dp = doms[nslot];
740 741 742 743

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
744 745
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
746
				warnings--;
P
Paul Jackson 已提交
747
			}
748 749
			continue;
		}
P
Paul Jackson 已提交
750

751
		cpumask_clear(dp);
752 753 754 755 756 757
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
758
				cpumask_or(dp, dp, b->effective_cpus);
759
				cpumask_and(dp, dp, non_isolated_cpus);
760 761 762 763 764
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
765 766
			}
		}
767
		nslot++;
P
Paul Jackson 已提交
768 769 770
	}
	BUG_ON(nslot != ndoms);

771
done:
772
	free_cpumask_var(non_isolated_cpus);
773 774
	kfree(csa);

775 776 777 778 779 780 781
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

782 783 784 785 786 787 788 789
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
790 791 792 793 794
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
795
 *
796
 * Call with cpuset_mutex held.  Takes get_online_cpus().
797
 */
798
static void rebuild_sched_domains_locked(void)
799 800
{
	struct sched_domain_attr *attr;
801
	cpumask_var_t *doms;
802 803
	int ndoms;

804
	lockdep_assert_held(&cpuset_mutex);
805
	get_online_cpus();
806

807 808 809 810 811
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
812
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
813 814
		goto out;

815 816 817 818 819
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
820
out:
821
	put_online_cpus();
822
}
823
#else /* !CONFIG_SMP */
824
static void rebuild_sched_domains_locked(void)
825 826 827
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
828

829 830
void rebuild_sched_domains(void)
{
831
	mutex_lock(&cpuset_mutex);
832
	rebuild_sched_domains_locked();
833
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
834 835
}

836 837 838 839
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
840 841 842
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
843
 */
844
static void update_tasks_cpumask(struct cpuset *cs)
845
{
846 847 848 849 850
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
851
		set_cpus_allowed_ptr(task, cs->effective_cpus);
852
	css_task_iter_end(&it);
853 854
}

855
/*
856 857 858 859 860 861
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
862
 *
863
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
864 865 866
 *
 * Called with cpuset_mutex held
 */
867
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
868 869
{
	struct cpuset *cp;
870
	struct cgroup_subsys_state *pos_css;
871
	bool need_rebuild_sched_domains = false;
872 873

	rcu_read_lock();
874 875 876 877 878
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

879 880 881 882
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
883 884
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
885 886
			cpumask_copy(new_cpus, parent->effective_cpus);

887 888 889 890
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
891
		}
892

893
		if (!css_tryget_online(&cp->css))
894 895 896
			continue;
		rcu_read_unlock();

897
		spin_lock_irq(&callback_lock);
898
		cpumask_copy(cp->effective_cpus, new_cpus);
899
		spin_unlock_irq(&callback_lock);
900

901
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
902 903
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

904
		update_tasks_cpumask(cp);
905

906 907 908 909 910 911 912 913
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

914 915 916 917
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
918 919 920

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
921 922
}

C
Cliff Wickman 已提交
923 924 925
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
926
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
927 928
 * @buf: buffer of cpu numbers written to this cpuset
 */
929 930
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
931
{
C
Cliff Wickman 已提交
932
	int retval;
L
Linus Torvalds 已提交
933

934
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
935 936 937
	if (cs == &top_cpuset)
		return -EACCES;

938
	/*
939
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
940 941 942
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
943
	 */
944
	if (!*buf) {
945
		cpumask_clear(trialcs->cpus_allowed);
946
	} else {
947
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
948 949
		if (retval < 0)
			return retval;
950

951 952
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
953
			return -EINVAL;
954
	}
P
Paul Jackson 已提交
955

P
Paul Menage 已提交
956
	/* Nothing to do if the cpus didn't change */
957
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
958
		return 0;
C
Cliff Wickman 已提交
959

960 961 962 963
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

964
	spin_lock_irq(&callback_lock);
965
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
966
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
967

968 969
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
970
	return 0;
L
Linus Torvalds 已提交
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

996
	rcu_read_lock();
997
	guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
998
	rcu_read_unlock();
999 1000
}

1001
/*
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1013
	bool need_loop;
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1025 1026
	/*
	 * Determine if a loop is necessary if another thread is doing
1027
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1028 1029 1030 1031 1032
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1033

1034 1035
	if (need_loop) {
		local_irq_disable();
1036
		write_seqcount_begin(&tsk->mems_allowed_seq);
1037
	}
1038

1039 1040
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1041 1042

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1043
	tsk->mems_allowed = *newmems;
1044

1045
	if (need_loop) {
1046
		write_seqcount_end(&tsk->mems_allowed_seq);
1047 1048
		local_irq_enable();
	}
1049

1050
	task_unlock(tsk);
1051 1052
}

1053 1054
static void *cpuset_being_rebound;

1055 1056 1057 1058
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1059 1060 1061
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1062
 */
1063
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1064
{
1065
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1066 1067
	struct css_task_iter it;
	struct task_struct *task;
1068

1069
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1070

1071
	guarantee_online_mems(cs, &newmems);
1072

1073
	/*
1074 1075 1076 1077
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1078
	 * the global cpuset_mutex, we know that no other rebind effort
1079
	 * will be contending for the global variable cpuset_being_rebound.
1080
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1081
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1082
	 */
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
		mmput(mm);
	}
	css_task_iter_end(&it);
1102

1103 1104 1105 1106 1107 1108
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1109
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1110
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1111 1112
}

1113
/*
1114 1115 1116
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1117
 *
1118 1119
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1120
 *
1121
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1122 1123 1124
 *
 * Called with cpuset_mutex held
 */
1125
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1126 1127
{
	struct cpuset *cp;
1128
	struct cgroup_subsys_state *pos_css;
1129 1130

	rcu_read_lock();
1131 1132 1133 1134 1135
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1136 1137 1138 1139
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1140 1141
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1142 1143
			*new_mems = parent->effective_mems;

1144 1145 1146 1147
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1148
		}
1149

1150
		if (!css_tryget_online(&cp->css))
1151 1152 1153
			continue;
		rcu_read_unlock();

1154
		spin_lock_irq(&callback_lock);
1155
		cp->effective_mems = *new_mems;
1156
		spin_unlock_irq(&callback_lock);
1157

1158
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1159
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1160

1161
		update_tasks_nodemask(cp);
1162 1163 1164 1165 1166 1167 1168

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1169 1170 1171
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1172 1173 1174 1175
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1176
 *
1177
 * Call with cpuset_mutex held. May take callback_lock during call.
1178 1179 1180 1181
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1182 1183
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1184 1185 1186 1187
{
	int retval;

	/*
1188
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1189 1190
	 * it's read-only
	 */
1191 1192 1193 1194
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1195 1196 1197 1198 1199 1200 1201 1202

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1203
		nodes_clear(trialcs->mems_allowed);
1204
	} else {
1205
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1206 1207 1208
		if (retval < 0)
			goto done;

1209
		if (!nodes_subset(trialcs->mems_allowed,
1210 1211
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1212 1213
			goto done;
		}
1214
	}
1215 1216

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1217 1218 1219
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1220
	retval = validate_change(cs, trialcs);
1221 1222 1223
	if (retval < 0)
		goto done;

1224
	spin_lock_irq(&callback_lock);
1225
	cs->mems_allowed = trialcs->mems_allowed;
1226
	spin_unlock_irq(&callback_lock);
1227

1228
	/* use trialcs->mems_allowed as a temp variable */
1229
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1230 1231 1232 1233
done:
	return retval;
}

1234 1235
int current_cpuset_is_being_rebound(void)
{
1236 1237 1238 1239 1240 1241 1242
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1243 1244
}

1245
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1246
{
1247
#ifdef CONFIG_SMP
1248
	if (val < -1 || val >= sched_domain_level_max)
1249
		return -EINVAL;
1250
#endif
1251 1252 1253

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1254 1255
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1256
			rebuild_sched_domains_locked();
1257 1258 1259 1260 1261
	}

	return 0;
}

1262
/**
1263 1264 1265
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1266 1267 1268
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1269
 */
1270
static void update_tasks_flags(struct cpuset *cs)
1271
{
1272 1273 1274 1275 1276 1277 1278
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1279 1280
}

L
Linus Torvalds 已提交
1281 1282
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1283 1284 1285
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1286
 *
1287
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1288 1289
 */

1290 1291
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1292
{
1293
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1294
	int balance_flag_changed;
1295 1296
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1297

1298 1299 1300 1301
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1302
	if (turning_on)
1303
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1304
	else
1305
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1306

1307
	err = validate_change(cs, trialcs);
1308
	if (err < 0)
1309
		goto out;
P
Paul Jackson 已提交
1310 1311

	balance_flag_changed = (is_sched_load_balance(cs) !=
1312
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1313

1314 1315 1316
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1317
	spin_lock_irq(&callback_lock);
1318
	cs->flags = trialcs->flags;
1319
	spin_unlock_irq(&callback_lock);
1320

1321
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1322
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1323

1324
	if (spread_flag_changed)
1325
		update_tasks_flags(cs);
1326 1327 1328
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1329 1330
}

1331
/*
A
Adrian Bunk 已提交
1332
 * Frequency meter - How fast is some event occurring?
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1429 1430
static struct cpuset *cpuset_attach_old_cs;

1431
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1432 1433
static int cpuset_can_attach(struct cgroup_subsys_state *css,
			     struct cgroup_taskset *tset)
1434
{
1435
	struct cpuset *cs = css_cs(css);
1436 1437
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1438

1439 1440 1441
	/* used later by cpuset_attach() */
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));

1442 1443
	mutex_lock(&cpuset_mutex);

1444
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1445
	ret = -ENOSPC;
1446
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1447
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1448
		goto out_unlock;
1449

1450
	cgroup_taskset_for_each(task, tset) {
1451 1452
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1453 1454 1455 1456
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1457
	}
1458

1459 1460 1461 1462 1463
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1464 1465 1466 1467
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1468
}
1469

1470
static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1471 1472
				 struct cgroup_taskset *tset)
{
1473
	mutex_lock(&cpuset_mutex);
1474
	css_cs(css)->attach_in_progress--;
1475
	mutex_unlock(&cpuset_mutex);
1476
}
L
Linus Torvalds 已提交
1477

1478
/*
1479
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1480 1481 1482 1483 1484
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1485 1486
static void cpuset_attach(struct cgroup_subsys_state *css,
			  struct cgroup_taskset *tset)
1487
{
1488
	/* static buf protected by cpuset_mutex */
1489
	static nodemask_t cpuset_attach_nodemask_to;
1490 1491
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1492
	struct cpuset *cs = css_cs(css);
1493
	struct cpuset *oldcs = cpuset_attach_old_cs;
1494

1495 1496
	mutex_lock(&cpuset_mutex);

1497 1498 1499 1500
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1501
		guarantee_online_cpus(cs, cpus_attach);
1502

1503
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1504

1505
	cgroup_taskset_for_each(task, tset) {
1506 1507 1508 1509 1510 1511 1512 1513 1514
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1515

1516
	/*
1517 1518 1519
	 * Change mm, possibly for multiple threads in a threadgroup. This
	 * is expensive and may sleep and should be moved outside migration
	 * path proper.
1520
	 */
1521
	cpuset_attach_nodemask_to = cs->effective_mems;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	if (thread_group_leader(leader)) {
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
			if (is_memory_migrate(cs)) {
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
			}
			mmput(mm);
1541
		}
1542
	}
1543

1544
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1545

1546
	cs->attach_in_progress--;
1547 1548
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1549 1550

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1556
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1557 1558
	FILE_CPULIST,
	FILE_MEMLIST,
1559 1560
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1561 1562
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1563
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1564
	FILE_SCHED_LOAD_BALANCE,
1565
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1566 1567
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1568 1569
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1570 1571
} cpuset_filetype_t;

1572 1573
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1574
{
1575
	struct cpuset *cs = css_cs(css);
1576
	cpuset_filetype_t type = cft->private;
1577
	int retval = 0;
1578

1579
	mutex_lock(&cpuset_mutex);
1580 1581
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1582
		goto out_unlock;
1583
	}
1584 1585

	switch (type) {
L
Linus Torvalds 已提交
1586
	case FILE_CPU_EXCLUSIVE:
1587
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1588 1589
		break;
	case FILE_MEM_EXCLUSIVE:
1590
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1591
		break;
1592 1593 1594
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1595
	case FILE_SCHED_LOAD_BALANCE:
1596
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1597
		break;
1598
	case FILE_MEMORY_MIGRATE:
1599
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1600
		break;
1601
	case FILE_MEMORY_PRESSURE_ENABLED:
1602
		cpuset_memory_pressure_enabled = !!val;
1603
		break;
1604
	case FILE_SPREAD_PAGE:
1605
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1606 1607
		break;
	case FILE_SPREAD_SLAB:
1608
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1609
		break;
L
Linus Torvalds 已提交
1610 1611
	default:
		retval = -EINVAL;
1612
		break;
L
Linus Torvalds 已提交
1613
	}
1614 1615
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1616 1617 1618
	return retval;
}

1619 1620
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1621
{
1622
	struct cpuset *cs = css_cs(css);
1623
	cpuset_filetype_t type = cft->private;
1624
	int retval = -ENODEV;
1625

1626 1627 1628
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1629

1630 1631 1632 1633 1634 1635 1636 1637
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1638 1639
out_unlock:
	mutex_unlock(&cpuset_mutex);
1640 1641 1642
	return retval;
}

1643 1644 1645
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1646 1647
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1648
{
1649
	struct cpuset *cs = css_cs(of_css(of));
1650
	struct cpuset *trialcs;
1651
	int retval = -ENODEV;
1652

1653 1654
	buf = strstrip(buf);

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1665 1666 1667 1668 1669 1670 1671 1672
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1673
	 */
1674 1675
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1676 1677
	flush_work(&cpuset_hotplug_work);

1678 1679 1680
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1681

1682
	trialcs = alloc_trial_cpuset(cs);
1683 1684
	if (!trialcs) {
		retval = -ENOMEM;
1685
		goto out_unlock;
1686
	}
1687

1688
	switch (of_cft(of)->private) {
1689
	case FILE_CPULIST:
1690
		retval = update_cpumask(cs, trialcs, buf);
1691 1692
		break;
	case FILE_MEMLIST:
1693
		retval = update_nodemask(cs, trialcs, buf);
1694 1695 1696 1697 1698
		break;
	default:
		retval = -EINVAL;
		break;
	}
1699 1700

	free_trial_cpuset(trialcs);
1701 1702
out_unlock:
	mutex_unlock(&cpuset_mutex);
1703 1704
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1705
	return retval ?: nbytes;
1706 1707
}

L
Linus Torvalds 已提交
1708 1709 1710 1711 1712 1713 1714 1715
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1716
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1717
{
1718 1719
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1720
	int ret = 0;
L
Linus Torvalds 已提交
1721

1722
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1723 1724 1725

	switch (type) {
	case FILE_CPULIST:
1726
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1727 1728
		break;
	case FILE_MEMLIST:
1729
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1730
		break;
1731
	case FILE_EFFECTIVE_CPULIST:
1732
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1733 1734
		break;
	case FILE_EFFECTIVE_MEMLIST:
1735
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1736
		break;
L
Linus Torvalds 已提交
1737
	default:
1738
		ret = -EINVAL;
L
Linus Torvalds 已提交
1739 1740
	}

1741
	spin_unlock_irq(&callback_lock);
1742
	return ret;
L
Linus Torvalds 已提交
1743 1744
}

1745
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1746
{
1747
	struct cpuset *cs = css_cs(css);
1748 1749 1750 1751 1752 1753
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1754 1755
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1771 1772 1773

	/* Unreachable but makes gcc happy */
	return 0;
1774
}
L
Linus Torvalds 已提交
1775

1776
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1777
{
1778
	struct cpuset *cs = css_cs(css);
1779 1780 1781 1782 1783 1784 1785
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1786 1787 1788

	/* Unrechable but makes gcc happy */
	return 0;
1789 1790
}

L
Linus Torvalds 已提交
1791 1792 1793 1794 1795

/*
 * for the common functions, 'private' gives the type of file
 */

1796 1797 1798
static struct cftype files[] = {
	{
		.name = "cpus",
1799
		.seq_show = cpuset_common_seq_show,
1800
		.write = cpuset_write_resmask,
1801
		.max_write_len = (100U + 6 * NR_CPUS),
1802 1803 1804 1805 1806
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1807
		.seq_show = cpuset_common_seq_show,
1808
		.write = cpuset_write_resmask,
1809
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1810 1811 1812
		.private = FILE_MEMLIST,
	},

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1839 1840 1841 1842 1843 1844 1845
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1846 1847 1848 1849 1850 1851 1852 1853 1854
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1855 1856
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1885

1886 1887 1888 1889 1890 1891 1892
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1893

1894 1895
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1896 1897

/*
1898
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1899
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1900 1901
 */

1902 1903
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1904
{
T
Tejun Heo 已提交
1905
	struct cpuset *cs;
L
Linus Torvalds 已提交
1906

1907
	if (!parent_css)
1908
		return &top_cpuset.css;
1909

T
Tejun Heo 已提交
1910
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1911
	if (!cs)
1912
		return ERR_PTR(-ENOMEM);
1913 1914 1915 1916
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1917

P
Paul Jackson 已提交
1918
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1919
	cpumask_clear(cs->cpus_allowed);
1920
	nodes_clear(cs->mems_allowed);
1921 1922
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1923
	fmeter_init(&cs->fmeter);
1924
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1925

T
Tejun Heo 已提交
1926
	return &cs->css;
1927 1928 1929 1930 1931 1932

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1933 1934
}

1935
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1936
{
1937
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1938
	struct cpuset *parent = parent_cs(cs);
1939
	struct cpuset *tmp_cs;
1940
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1941 1942 1943 1944

	if (!parent)
		return 0;

1945 1946
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1947
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1948 1949 1950 1951
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1952

1953
	cpuset_inc();
1954

1955
	spin_lock_irq(&callback_lock);
1956
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1957 1958 1959
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1960
	spin_unlock_irq(&callback_lock);
1961

1962
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1963
		goto out_unlock;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1978
	rcu_read_lock();
1979
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
1980 1981
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1982
			goto out_unlock;
1983
		}
1984
	}
1985
	rcu_read_unlock();
1986

1987
	spin_lock_irq(&callback_lock);
1988
	cs->mems_allowed = parent->mems_allowed;
1989
	cs->effective_mems = parent->mems_allowed;
1990
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1991
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
1992
	spin_unlock_irq(&callback_lock);
1993 1994
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1995 1996 1997
	return 0;
}

1998 1999 2000 2001 2002 2003
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2004
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2005
{
2006
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2007

2008
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2009 2010 2011 2012

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2013
	cpuset_dec();
T
Tejun Heo 已提交
2014
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2015

2016
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2017 2018
}

2019
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2020
{
2021
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2022

2023
	free_cpumask_var(cs->effective_cpus);
2024
	free_cpumask_var(cs->cpus_allowed);
2025
	kfree(cs);
L
Linus Torvalds 已提交
2026 2027
}

2028 2029 2030
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2031
	spin_lock_irq(&callback_lock);
2032

2033
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2034 2035 2036 2037 2038 2039 2040 2041
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2042
	spin_unlock_irq(&callback_lock);
2043 2044 2045
	mutex_unlock(&cpuset_mutex);
}

2046
struct cgroup_subsys cpuset_cgrp_subsys = {
2047 2048 2049 2050 2051 2052 2053 2054
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
	.bind		= cpuset_bind,
2055
	.legacy_cftypes	= files,
2056
	.early_init	= 1,
2057 2058
};

L
Linus Torvalds 已提交
2059 2060 2061 2062 2063 2064 2065 2066
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2067
	int err = 0;
L
Linus Torvalds 已提交
2068

2069 2070
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2071 2072
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2073

2074
	cpumask_setall(top_cpuset.cpus_allowed);
2075
	nodes_setall(top_cpuset.mems_allowed);
2076 2077
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2078

2079
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2080
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2081
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2082 2083 2084

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2085 2086
		return err;

2087 2088 2089
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2090
	return 0;
L
Linus Torvalds 已提交
2091 2092
}

2093
/*
2094
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2095 2096
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2097 2098
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2099
 */
2100 2101 2102 2103 2104 2105 2106 2107
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2108
	parent = parent_cs(cs);
2109
	while (cpumask_empty(parent->cpus_allowed) ||
2110
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2111
		parent = parent_cs(parent);
2112

2113
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2114
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2115 2116
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2117
	}
2118 2119
}

2120 2121 2122 2123
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2124 2125 2126
{
	bool is_empty;

2127
	spin_lock_irq(&callback_lock);
2128 2129 2130 2131
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2132
	spin_unlock_irq(&callback_lock);
2133 2134 2135 2136 2137

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2138
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2139
		update_tasks_cpumask(cs);
2140
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2159 2160 2161 2162
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2163
{
2164 2165 2166 2167 2168
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2169
	spin_lock_irq(&callback_lock);
2170 2171
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2172
	spin_unlock_irq(&callback_lock);
2173

2174
	if (cpus_updated)
2175
		update_tasks_cpumask(cs);
2176
	if (mems_updated)
2177 2178 2179
		update_tasks_nodemask(cs);
}

2180
/**
2181
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2182
 * @cs: cpuset in interest
2183
 *
2184 2185 2186
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2187
 */
2188
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2189
{
2190 2191 2192 2193
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2194 2195
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2196

2197
	mutex_lock(&cpuset_mutex);
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2208 2209
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2210

2211 2212
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2213

2214
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2215 2216
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2217
	else
2218 2219
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2220

2221
	mutex_unlock(&cpuset_mutex);
2222 2223
}

2224
/**
2225
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2226
 *
2227 2228 2229 2230 2231
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2232
 *
2233
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2234 2235
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2236
 *
2237 2238
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2239
 */
2240
static void cpuset_hotplug_workfn(struct work_struct *work)
2241
{
2242 2243
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2244
	bool cpus_updated, mems_updated;
2245
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2246

2247
	mutex_lock(&cpuset_mutex);
2248

2249 2250 2251
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2252

2253 2254
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2255

2256 2257
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2258
		spin_lock_irq(&callback_lock);
2259 2260
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2261
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2262
		spin_unlock_irq(&callback_lock);
2263 2264
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2265

2266 2267
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2268
		spin_lock_irq(&callback_lock);
2269 2270
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2271
		top_cpuset.effective_mems = new_mems;
2272
		spin_unlock_irq(&callback_lock);
2273
		update_tasks_nodemask(&top_cpuset);
2274
	}
2275

2276 2277
	mutex_unlock(&cpuset_mutex);

2278 2279
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2280
		struct cpuset *cs;
2281
		struct cgroup_subsys_state *pos_css;
2282

2283
		rcu_read_lock();
2284
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2285
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2286 2287
				continue;
			rcu_read_unlock();
2288

2289
			cpuset_hotplug_update_tasks(cs);
2290

2291 2292 2293 2294 2295
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2296

2297
	/* rebuild sched domains if cpus_allowed has changed */
2298 2299
	if (cpus_updated)
		rebuild_sched_domains();
2300 2301
}

2302
void cpuset_update_active_cpus(bool cpu_online)
2303
{
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2316 2317
}

2318
/*
2319 2320
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2321
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2322
 */
2323 2324
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2325
{
2326
	schedule_work(&cpuset_hotplug_work);
2327
	return NOTIFY_OK;
2328
}
2329 2330 2331 2332 2333

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2334

L
Linus Torvalds 已提交
2335 2336 2337 2338
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2339
 */
L
Linus Torvalds 已提交
2340 2341
void __init cpuset_init_smp(void)
{
2342
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2343
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2344
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2345

2346 2347 2348
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2349
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2355
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2356
 *
2357
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2358
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2359
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2360 2361 2362
 * tasks cpuset.
 **/

2363
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2364
{
2365 2366 2367
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2368
	rcu_read_lock();
2369
	guarantee_online_cpus(task_cs(tsk), pmask);
2370
	rcu_read_unlock();
2371
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2372 2373
}

2374
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2375 2376
{
	rcu_read_lock();
2377
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2393 2394 2395
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2396 2397 2398
	 */
}

2399
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2400
{
2401
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2402 2403
}

2404 2405 2406 2407 2408 2409
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2410
 * subset of node_states[N_MEMORY], even if this means going outside the
2411 2412 2413 2414 2415 2416
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2417
	unsigned long flags;
2418

2419
	spin_lock_irqsave(&callback_lock, flags);
2420
	rcu_read_lock();
2421
	guarantee_online_mems(task_cs(tsk), &mask);
2422
	rcu_read_unlock();
2423
	spin_unlock_irqrestore(&callback_lock, flags);
2424 2425 2426 2427

	return mask;
}

2428
/**
2429 2430
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2431
 *
2432
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2433
 */
2434
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2435
{
2436
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2437 2438
}

2439
/*
2440 2441
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2442
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2443
 * (an unusual configuration), then returns the root cpuset.
2444
 */
2445
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2446
{
T
Tejun Heo 已提交
2447 2448
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2449 2450 2451
	return cs;
}

2452
/**
2453
 * cpuset_node_allowed - Can we allocate on a memory node?
2454
 * @node: is this an allowed node?
2455
 * @gfp_mask: memory allocation flags
2456
 *
2457 2458 2459 2460
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2461 2462 2463
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2464 2465
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2466
 * GFP_KERNEL allocations are not so marked, so can escape to the
2467
 * nearest enclosing hardwalled ancestor cpuset.
2468
 *
2469
 * Scanning up parent cpusets requires callback_lock.  The
2470 2471 2472 2473
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2474
 * cpuset are short of memory, might require taking the callback_lock.
2475
 *
2476
 * The first call here from mm/page_alloc:get_page_from_freelist()
2477 2478 2479
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2480 2481 2482 2483 2484 2485
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2486 2487
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2488
 *	TIF_MEMDIE   - any node ok
2489
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2490
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2491
 */
2492
int __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2493
{
2494
	struct cpuset *cs;		/* current cpuset ancestors */
2495
	int allowed;			/* is allocation in zone z allowed? */
2496
	unsigned long flags;
2497

2498
	if (in_interrupt())
2499 2500 2501
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
2502 2503 2504 2505 2506 2507
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2508 2509 2510
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2511 2512 2513
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2514
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2515
	spin_lock_irqsave(&callback_lock, flags);
2516

2517
	rcu_read_lock();
2518
	cs = nearest_hardwall_ancestor(task_cs(current));
2519
	allowed = node_isset(node, cs->mems_allowed);
2520
	rcu_read_unlock();
2521

2522
	spin_unlock_irqrestore(&callback_lock, flags);
2523
	return allowed;
L
Linus Torvalds 已提交
2524 2525
}

2526
/**
2527 2528
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2553
static int cpuset_spread_node(int *rotor)
2554 2555 2556
{
	int node;

2557
	node = next_node(*rotor, current->mems_allowed);
2558 2559
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2560
	*rotor = node;
2561 2562
	return node;
}
2563 2564 2565

int cpuset_mem_spread_node(void)
{
2566 2567 2568 2569
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2570 2571 2572 2573 2574
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2575 2576 2577 2578
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2579 2580 2581
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2582 2583
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2584
/**
2585 2586 2587 2588 2589 2590 2591 2592
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2593 2594
 **/

2595 2596
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2597
{
2598
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2599 2600
}

2601 2602
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2603
 * @tsk: pointer to task_struct of some task.
2604 2605
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
2606
 * mems_allowed to the kernel log.
2607 2608 2609
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2610
	struct cgroup *cgrp;
2611

2612
	rcu_read_lock();
2613

2614
	cgrp = task_cs(tsk)->css.cgroup;
2615
	pr_info("%s cpuset=", tsk->comm);
T
Tejun Heo 已提交
2616
	pr_cont_cgroup_name(cgrp);
2617
	pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2618

2619
	rcu_read_unlock();
2620 2621
}

2622 2623 2624 2625 2626 2627
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2628
int cpuset_memory_pressure_enabled __read_mostly;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2650
	rcu_read_lock();
2651
	fmeter_markevent(&task_cs(current)->fmeter);
2652
	rcu_read_unlock();
2653 2654
}

2655
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2656 2657 2658 2659
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2660 2661
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2662
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2663
 *    anyway.
L
Linus Torvalds 已提交
2664
 */
Z
Zefan Li 已提交
2665 2666
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2667
{
T
Tejun Heo 已提交
2668
	char *buf, *p;
2669
	struct cgroup_subsys_state *css;
2670
	int retval;
L
Linus Torvalds 已提交
2671

2672
	retval = -ENOMEM;
T
Tejun Heo 已提交
2673
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2674
	if (!buf)
2675 2676
		goto out;

T
Tejun Heo 已提交
2677
	retval = -ENAMETOOLONG;
L
Li Zefan 已提交
2678
	rcu_read_lock();
2679
	css = task_css(tsk, cpuset_cgrp_id);
T
Tejun Heo 已提交
2680
	p = cgroup_path(css->cgroup, buf, PATH_MAX);
L
Li Zefan 已提交
2681
	rcu_read_unlock();
T
Tejun Heo 已提交
2682
	if (!p)
Z
Zefan Li 已提交
2683
		goto out_free;
T
Tejun Heo 已提交
2684
	seq_puts(m, p);
L
Linus Torvalds 已提交
2685
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2686
	retval = 0;
2687
out_free:
L
Linus Torvalds 已提交
2688
	kfree(buf);
2689
out:
L
Linus Torvalds 已提交
2690 2691
	return retval;
}
2692
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2693

2694
/* Display task mems_allowed in /proc/<pid>/status file. */
2695 2696
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2697 2698 2699 2700
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2701
}