netdev.c 179.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
166 167
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 174 175
}

/*
176
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 178 179 180 181 182 183 184
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
185 186 187 188
	struct my_u0 {
		u64 a;
		u64 b;
	} *u0;
189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
192
	union e1000_rx_desc_extended *rx_desc;
193 194 195 196 197 198
	struct my_u1 {
		u64 a;
		u64 b;
		u64 c;
		u64 d;
	} *u1;
199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 209 210 211
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
212 213 214 215
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
216
	pr_info(" Register Name   Value\n");
217 218 219 220 221
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223 224 225
	if (!netdev || !netif_running(netdev))
		goto exit;

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 230 231 232 233 234
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
235

236
	/* Print Tx Ring */
237 238 239
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

240
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
269 270 271
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273
		const char *next_desc;
274 275 276 277
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278
			next_desc = " NTC/U";
279
		else if (i == tx_ring->next_to_use)
280
			next_desc = " NTU";
281
		else if (i == tx_ring->next_to_clean)
282
			next_desc = " NTC";
283
		else
284 285 286 287 288 289 290 291 292 293 294
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
295 296 297

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 299
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
300 301
	}

302
	/* Print Rx Ring Summary */
303
rx_ring_summary:
304
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 306 307
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308

309
	/* Print Rx Ring */
310 311 312
	if (!netif_msg_rx_status(adapter))
		goto exit;

313
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
330
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 332 333 334 335 336 337 338 339 340 341
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
342
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343
		for (i = 0; i < rx_ring->count; i++) {
344
			const char *next_desc;
345 346 347 348
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
349
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 351 352 353 354 355 356 357

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

358 359
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
360 361 362 363 364 365 366
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
367
			} else {
368 369 370 371 372 373 374 375
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
376 377 378 379 380 381 382 383 384 385 386

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
387
		/* Extended Receive Descriptor (Read) Format
388
		 *
389 390 391 392 393
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
394
		 */
395
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 397 398 399 400 401 402 403 404 405 406 407 408
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
409
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 411

		for (i = 0; i < rx_ring->count; i++) {
412 413
			const char *next_desc;

414
			buffer_info = &rx_ring->buffer_info[i];
415 416 417
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 419 420 421 422 423 424 425

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

426 427
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
428 429 430 431 432
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
433
			} else {
434 435 436 437 438 439
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
440 441 442 443 444 445 446 447 448 449

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
450 451 452 453 454 455 456
		}
	}

exit:
	return;
}

457 458 459 460 461 462 463 464 465 466 467 468
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
469
 * e1000_receive_skb - helper function to handle Rx indications
470 471 472 473 474 475
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
476
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
477
			      u8 status, __le16 vlan)
478
{
J
Jeff Kirsher 已提交
479
	u16 tag = le16_to_cpu(vlan);
480 481
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
482 483 484 485
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
486 487 488
}

/**
489
 * e1000_rx_checksum - Receive Checksum Offload
490 491 492 493 494 495 496 497 498 499
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
500 501

	skb_checksum_none_assert(skb);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
522 523 524
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
525 526
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
527 528
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
529 530 531 532 533
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
	struct e1000_hw *hw = &adapter->hw;

	if (e1000e_update_tail_wa(hw, tail, i)) {
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
	struct e1000_hw *hw = &adapter->hw;

	if (e1000e_update_tail_wa(hw, tail, i)) {
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

591
/**
592
 * e1000_alloc_rx_buffers - Replace used receive buffers
593 594 595
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
596
				   int cleaned_count, gfp_t gfp)
597 598 599 600
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
601
	union e1000_rx_desc_extended *rx_desc;
602 603 604
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
605
	unsigned int bufsz = adapter->rx_buffer_len;
606 607 608 609 610 611 612 613 614 615 616

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

617
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
618 619 620 621 622 623 624 625
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
626
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
627
						  adapter->rx_buffer_len,
628 629
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
630
			dev_err(&pdev->dev, "Rx DMA map failed\n");
631 632 633 634
			adapter->rx_dma_failed++;
			break;
		}

635 636
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
637

638 639 640 641 642 643 644 645
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
646 647 648 649
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i);
			else
				writel(i, adapter->hw.hw_addr + rx_ring->tail);
650
		}
651 652 653 654 655 656
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

657
	rx_ring->next_to_use = i;
658 659 660 661 662 663 664
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
665
				      int cleaned_count, gfp_t gfp)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
683 684 685
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
686 687
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
688 689 690
				continue;
			}
			if (!ps_page->page) {
691
				ps_page->page = alloc_page(gfp);
692
				if (!ps_page->page) {
A
Auke Kok 已提交
693 694 695
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
696 697 698 699 700 701
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
702
					dev_err(&adapter->pdev->dev,
703
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
704 705
					adapter->rx_dma_failed++;
					goto no_buffers;
706 707
				}
			}
A
Auke Kok 已提交
708 709 710 711 712
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
713 714
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
715 716
		}

717 718 719
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
720 721 722 723 724 725 726

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
727
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
728
						  adapter->rx_ps_bsize0,
729 730
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
731
			dev_err(&pdev->dev, "Rx DMA map failed\n");
732 733 734 735 736 737 738 739 740
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

741 742 743 744 745 746 747 748
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
749 750 751 752 753
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i << 1);
			else
				writel(i << 1,
				       adapter->hw.hw_addr + rx_ring->tail);
754 755
		}

756 757 758 759 760 761 762
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
763
	rx_ring->next_to_use = i;
764 765
}

766 767 768 769 770 771 772
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
773
					 int cleaned_count, gfp_t gfp)
774 775 776
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
777
	union e1000_rx_desc_extended *rx_desc;
778 779 780 781
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
782
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
783 784 785 786 787 788 789 790 791 792 793

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

794
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
795 796 797 798 799 800 801 802 803 804
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
805
			buffer_info->page = alloc_page(gfp);
806 807 808 809 810 811 812
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
813
			buffer_info->dma = dma_map_page(&pdev->dev,
814 815
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
816
							DMA_FROM_DEVICE);
817

818 819
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
836 837 838 839
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
			e1000e_update_rdt_wa(adapter, i);
		else
			writel(i, adapter->hw.hw_addr + rx_ring->tail);
840 841 842
	}
}

843 844 845 846 847 848 849 850 851 852 853 854
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
855
	struct e1000_hw *hw = &adapter->hw;
856
	struct e1000_ring *rx_ring = adapter->rx_ring;
857
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
858
	struct e1000_buffer *buffer_info, *next_buffer;
859
	u32 length, staterr;
860 861
	unsigned int i;
	int cleaned_count = 0;
862
	bool cleaned = false;
863 864 865
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
866 867
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
868 869
	buffer_info = &rx_ring->buffer_info[i];

870
	while (staterr & E1000_RXD_STAT_DD) {
871 872 873 874 875
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
876
		rmb();	/* read descriptor and rx_buffer_info after status DD */
877 878 879 880 881 882 883 884 885

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
886
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
887 888 889 890
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

891
		cleaned = true;
892
		cleaned_count++;
893
		dma_unmap_single(&pdev->dev,
894 895
				 buffer_info->dma,
				 adapter->rx_buffer_len,
896
				 DMA_FROM_DEVICE);
897 898
		buffer_info->dma = 0;

899
		length = le16_to_cpu(rx_desc->wb.upper.length);
900

901 902 903 904 905 906 907
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
908
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
909 910 911
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
912
			/* All receives must fit into a single buffer */
913
			e_dbg("Receive packet consumed multiple buffers\n");
914 915
			/* recycle */
			buffer_info->skb = skb;
916
			if (staterr & E1000_RXD_STAT_EOP)
917
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
918 919 920
			goto next_desc;
		}

921
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
922 923 924 925 926
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
927 928 929 930
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

931 932 933
		total_rx_bytes += length;
		total_rx_packets++;

934 935
		/*
		 * code added for copybreak, this should improve
936
		 * performance for small packets with large amounts
937 938
		 * of reassembly being done in the stack
		 */
939 940
		if (length < copybreak) {
			struct sk_buff *new_skb =
941
			    netdev_alloc_skb_ip_align(netdev, length);
942
			if (new_skb) {
943 944 945 946 947 948
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
949 950 951 952 953 954 955 956 957 958
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
959 960 961
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
962

963 964
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
965 966

next_desc:
967
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
968 969 970

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
971 972
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
973 974 975 976 977 978
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
979 980

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
981 982 983 984 985
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
986
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
987 988

	adapter->total_rx_bytes += total_rx_bytes;
989
	adapter->total_rx_packets += total_rx_packets;
990 991 992 993 994 995
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
996 997
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
998 999
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1000
		else
1001 1002
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1003 1004
		buffer_info->dma = 0;
	}
1005 1006 1007 1008
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1009
	buffer_info->time_stamp = 0;
1010 1011
}

1012
static void e1000_print_hw_hang(struct work_struct *work)
1013
{
1014 1015 1016
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1017
	struct net_device *netdev = adapter->netdev;
1018 1019 1020 1021
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1022 1023 1024 1025
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1026 1027 1028
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1044 1045 1046
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1047

1048 1049 1050 1051
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1052 1053 1054 1055 1056 1057 1058 1059
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1060 1061 1062 1063 1064 1065
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1066 1067 1068 1069 1070 1071 1072
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1073 1074 1075 1076 1077 1078
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098
	unsigned int bytes_compl = 0, pkts_compl = 0;
1099 1100 1101 1102 1103

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1104 1105
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1106
		bool cleaned = false;
1107
		rmb(); /* read buffer_info after eop_desc */
1108
		for (; !cleaned; count++) {
1109 1110 1111 1112 1113
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1114 1115
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1116 1117 1118 1119
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1130 1131
		if (i == tx_ring->next_to_use)
			break;
1132 1133 1134 1135 1136 1137
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1138 1139
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1140
#define TX_WAKE_THRESHOLD 32
1141 1142
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1156 1157 1158 1159
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1160
		adapter->detect_tx_hung = false;
1161 1162
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163
			       + (adapter->tx_timeout_factor * HZ)) &&
1164
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165
			schedule_work(&adapter->print_hang_task);
1166 1167
		else
			adapter->tx_hang_recheck = false;
1168 1169 1170
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1171
	return count < tx_ring->count;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1184
	struct e1000_hw *hw = &adapter->hw;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1195
	bool cleaned = false;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1208
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1221
		cleaned = true;
1222
		cleaned_count++;
1223
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 1226
		buffer_info->dma = 0;

1227
		/* see !EOP comment in other Rx routine */
1228 1229 1230 1231
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233
			dev_kfree_skb_irq(skb);
1234 1235
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1247
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1248 1249 1250 1251 1252 1253 1254 1255
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1256 1257 1258 1259
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1260 1261
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1262 1263 1264 1265 1266
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1267 1268 1269 1270
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1271
			ps_page = &buffer_info->ps_pages[0];
1272

1273 1274
			/*
			 * there is no documentation about how to call
1275
			 * kmap_atomic, so we can't hold the mapping
1276 1277
			 * very long
			 */
1278 1279
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1280 1281 1282
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1283 1284
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1285

J
Jeff Kirsher 已提交
1286 1287 1288 1289
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1300
			ps_page = &buffer_info->ps_pages[j];
1301 1302
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1303 1304 1305 1306 1307
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1308
			skb->truesize += PAGE_SIZE;
1309 1310
		}

J
Jeff Kirsher 已提交
1311 1312 1313 1314 1315 1316
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1337 1338
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1352
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1353 1354

	adapter->total_rx_bytes += total_rx_bytes;
1355
	adapter->total_rx_packets += total_rx_packets;
1356 1357 1358
	return cleaned;
}

1359 1360 1361 1362 1363 1364 1365 1366 1367
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1368
	skb->truesize += PAGE_SIZE;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
1385
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1386
	struct e1000_buffer *buffer_info, *next_buffer;
1387
	u32 length, staterr;
1388 1389 1390 1391 1392 1393
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1394 1395
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1396 1397
	buffer_info = &rx_ring->buffer_info[i];

1398
	while (staterr & E1000_RXD_STAT_DD) {
1399 1400 1401 1402 1403
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1404
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1405 1406 1407 1408 1409 1410 1411

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1412
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1413 1414 1415 1416 1417 1418
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1419 1420
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1421 1422
		buffer_info->dma = 0;

1423
		length = le16_to_cpu(rx_desc->wb.upper.length);
1424 1425

		/* errors is only valid for DD + EOP descriptors */
1426 1427 1428 1429 1430 1431 1432 1433 1434
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1435 1436
		}

1437
#define rxtop (rx_ring->rx_skb_top)
1438
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1493 1494 1495
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
1496 1497 1498 1499 1500 1501 1502

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1503
			e_err("pskb_may_pull failed.\n");
1504
			dev_kfree_skb_irq(skb);
1505 1506 1507
			goto next_desc;
		}

1508 1509
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1510 1511

next_desc:
1512
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1513 1514 1515

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1516 1517
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1518 1519 1520 1521 1522 1523
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1524 1525

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1526 1527 1528 1529 1530
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1531
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1532 1533 1534 1535 1536 1537

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1555
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1556
						 adapter->rx_buffer_len,
1557
						 DMA_FROM_DEVICE);
1558
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1559
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1560
				               PAGE_SIZE,
1561
					       DMA_FROM_DEVICE);
1562
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1563
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1564
						 adapter->rx_ps_bsize0,
1565
						 DMA_FROM_DEVICE);
1566 1567 1568
			buffer_info->dma = 0;
		}

1569 1570 1571 1572 1573
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1574 1575 1576 1577 1578 1579
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1580
			ps_page = &buffer_info->ps_pages[j];
1581 1582
			if (!ps_page->page)
				break;
1583 1584
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1602
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1603 1604 1605 1606 1607

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1608 1609 1610 1611 1612
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1613 1614 1615
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1616 1617 1618
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1631 1632 1633
	/*
	 * read ICR disables interrupts using IAM
	 */
1634

1635
	if (icr & E1000_ICR_LSC) {
1636
		hw->mac.get_link_status = 1;
1637 1638 1639 1640
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1641 1642
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1643
			schedule_work(&adapter->downshift_task);
1644

1645 1646
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1647
		 * link down event; disable receives here in the ISR and reset
1648 1649
		 * adapter in watchdog
		 */
1650 1651 1652 1653 1654
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1655
			adapter->flags |= FLAG_RX_RESTART_NOW;
1656 1657 1658 1659 1660 1661
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1662
	if (napi_schedule_prep(&adapter->napi)) {
1663 1664 1665 1666
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1667
		__napi_schedule(&adapter->napi);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1684

1685
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1686 1687
		return IRQ_NONE;  /* Not our interrupt */

1688 1689 1690 1691
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1692 1693 1694
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1695 1696 1697 1698 1699
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1700

1701
	if (icr & E1000_ICR_LSC) {
1702
		hw->mac.get_link_status = 1;
1703 1704 1705 1706
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1707 1708
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1709
			schedule_work(&adapter->downshift_task);
1710

1711 1712
		/*
		 * 80003ES2LAN workaround--
1713 1714 1715 1716 1717 1718 1719 1720 1721
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1722
			adapter->flags |= FLAG_RX_RESTART_NOW;
1723 1724 1725 1726 1727 1728
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1729
	if (napi_schedule_prep(&adapter->napi)) {
1730 1731 1732 1733
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1734
		__napi_schedule(&adapter->napi);
1735 1736 1737 1738 1739
	}

	return IRQ_HANDLED;
}

1740 1741 1742 1743 1744 1745 1746 1747
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1748 1749
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1766 1767
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1805
	if (napi_schedule_prep(&adapter->napi)) {
1806 1807
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1808
		__napi_schedule(&adapter->napi);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1905
	int i;
1906 1907 1908 1909

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1910 1911
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1912 1913 1914
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1915
				for (i = 0; i < adapter->num_vectors; i++)
1916 1917 1918 1919
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1920
						      adapter->num_vectors);
B
Bruce Allan 已提交
1921
				if (err == 0)
1922 1923 1924
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1925
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1926 1927 1928 1929 1930 1931 1932 1933 1934
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1935
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1936 1937 1938 1939 1940 1941
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1942 1943 1944

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1959 1960 1961
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1962 1963 1964
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1965
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1966 1967 1968 1969 1970 1971 1972 1973
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1974 1975 1976
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1977 1978 1979
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1980
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1981 1982 1983 1984 1985 1986 1987 1988
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1989
			  e1000_msix_other, 0, netdev->name, netdev);
1990 1991 1992 1993 1994 1995 1996 1997 1998
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1999 2000 2001 2002 2003 2004
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2005 2006 2007 2008 2009
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2010 2011 2012 2013 2014 2015 2016 2017
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2018
	}
2019
	if (adapter->flags & FLAG_MSI_ENABLED) {
2020
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2021 2022 2023
				  netdev->name, netdev);
		if (!err)
			return err;
2024

2025 2026 2027
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2028 2029
	}

2030
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2031 2032 2033 2034
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2035 2036 2037 2038 2039 2040 2041
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2054
	}
2055 2056

	free_irq(adapter->pdev->irq, netdev);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2067 2068
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2069
	e1e_flush();
2070 2071 2072 2073 2074 2075 2076 2077

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2078 2079 2080 2081 2082 2083 2084 2085 2086
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2087 2088 2089 2090 2091 2092
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2093
	e1e_flush();
2094 2095 2096
}

/**
2097
 * e1000e_get_hw_control - get control of the h/w from f/w
2098 2099
 * @adapter: address of board private structure
 *
2100
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2101 2102 2103 2104
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2105
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2117
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2118 2119 2120 2121
	}
}

/**
2122
 * e1000e_release_hw_control - release control of the h/w to f/w
2123 2124
 * @adapter: address of board private structure
 *
2125
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2126 2127 2128 2129 2130
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2131
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2143
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2175
	tx_ring->buffer_info = vzalloc(size);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2193
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2206 2207
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2208 2209

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2210
	rx_ring->buffer_info = vzalloc(size);
2211 2212 2213
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2214 2215 2216 2217 2218 2219 2220 2221
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2222 2223 2224 2225 2226 2227 2228 2229 2230

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2231
		goto err_pages;
2232 2233 2234 2235 2236 2237

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2238 2239 2240 2241 2242 2243

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2244 2245
err:
	vfree(rx_ring->buffer_info);
2246
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

2266
	netdev_reset_queue(adapter->netdev);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2311
	int i;
2312 2313 2314

	e1000_clean_rx_ring(adapter);

B
Bruce Allan 已提交
2315
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2316 2317
		kfree(rx_ring->buffer_info[i].ps_pages);

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2328 2329 2330 2331 2332
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2333 2334 2335 2336 2337 2338
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2339 2340
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2356
		else if ((packets < 5) && (bytes > 512))
2357 2358 2359 2360 2361
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2362
			if (bytes/packets > 8000)
2363
				retval = bulk_latency;
B
Bruce Allan 已提交
2364
			else if ((packets < 10) || ((bytes/packets) > 1200))
2365
				retval = bulk_latency;
B
Bruce Allan 已提交
2366
			else if ((packets > 35))
2367 2368 2369 2370 2371 2372 2373 2374 2375
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2376
			if (packets > 35)
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2401 2402 2403 2404 2405
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2441 2442
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2443
		 * by adding intermediate steps when interrupt rate is
2444 2445
		 * increasing
		 */
2446 2447 2448 2449
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2450 2451 2452 2453
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2454 2455 2456 2457
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2458 2459 2460
	}
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2483 2484
/**
 * e1000_clean - NAPI Rx polling callback
2485
 * @napi: struct associated with this polling callback
2486
 * @budget: amount of packets driver is allowed to process this poll
2487 2488 2489 2490
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2491
	struct e1000_hw *hw = &adapter->hw;
2492
	struct net_device *poll_dev = adapter->netdev;
2493
	int tx_cleaned = 1, work_done = 0;
2494

2495
	adapter = netdev_priv(poll_dev);
2496

2497 2498 2499 2500
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2501
	tx_cleaned = e1000_clean_tx_irq(adapter);
2502

2503
clean_rx:
2504
	adapter->clean_rx(adapter, &work_done, budget);
2505

2506
	if (!tx_cleaned)
2507
		work_done = budget;
2508

2509 2510
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2511 2512
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2513
		napi_complete(napi);
2514 2515 2516 2517 2518 2519
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2520 2521 2522 2523 2524
	}

	return work_done;
}

2525
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2526 2527 2528 2529 2530 2531 2532 2533 2534
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2535
		return 0;
2536

2537
	/* add VID to filter table */
2538 2539 2540 2541 2542 2543
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2544 2545

	set_bit(vid, adapter->active_vlans);
2546 2547

	return 0;
2548 2549
}

2550
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2551 2552 2553 2554 2555 2556 2557 2558 2559
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2560
		e1000e_release_hw_control(adapter);
2561
		return 0;
2562 2563 2564
	}

	/* remove VID from filter table */
2565 2566 2567 2568 2569 2570
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2571 2572

	clear_bit(vid, adapter->active_vlans);
2573 2574

	return 0;
2575 2576
}

J
Jeff Kirsher 已提交
2577 2578 2579 2580 2581
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2582 2583
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2584 2585
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2586

J
Jeff Kirsher 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2596 2597 2598 2599
		}
	}
}

J
Jeff Kirsher 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2617

J
Jeff Kirsher 已提交
2618 2619 2620 2621 2622
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2623 2624
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2625
	u32 ctrl;
2626

J
Jeff Kirsher 已提交
2627 2628 2629 2630 2631
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2632

J
Jeff Kirsher 已提交
2633 2634 2635 2636 2637 2638 2639 2640
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2641

J
Jeff Kirsher 已提交
2642 2643 2644 2645 2646
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2647

J
Jeff Kirsher 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2658 2659
	}

J
Jeff Kirsher 已提交
2660 2661
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2662 2663 2664 2665 2666 2667
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2668
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2669

J
Jeff Kirsher 已提交
2670
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2671 2672 2673
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2674
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2675 2676
{
	struct e1000_hw *hw = &adapter->hw;
2677
	u32 manc, manc2h, mdef, i, j;
2678 2679 2680 2681 2682 2683

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2684 2685
	/*
	 * enable receiving management packets to the host. this will probably
2686
	 * generate destination unreachable messages from the host OS, but
2687 2688
	 * the packets will be handled on SMBUS
	 */
2689 2690
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2706
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2734 2735 2736 2737 2738
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2739
 * e1000_configure_tx - Configure Transmit Unit after Reset
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2755
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2777
	/* Tx irq moderation */
2778 2779
	ew32(TADV, adapter->tx_abs_int_delay);

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2792
		 * there are Tx hangs or other Tx related bugs
2793 2794 2795 2796 2797 2798 2799
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
		/* erratum work around: set txdctl the same for both queues */
		ew32(TXDCTL(1), txdctl);
	}

2800 2801 2802 2803 2804 2805 2806
	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807
		tarc = er32(TARC(0));
2808 2809 2810 2811
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2812 2813
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2814
		ew32(TARC(0), tarc);
2815 2816 2817 2818
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819
		tarc = er32(TARC(0));
2820
		tarc |= 1;
2821 2822
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2823
		tarc |= 1;
2824
		ew32(TARC(1), tarc);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2839
	e1000e_config_collision_dist(hw);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2854 2855 2856 2857 2858 2859 2860 2861
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2862 2863 2864

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2865 2866
	}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2883 2884 2885 2886 2887 2888
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2927 2928 2929 2930
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2947
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2948
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2949
		adapter->rx_ps_pages = pages;
2950 2951
	else
		adapter->rx_ps_pages = 0;
2952 2953

	if (adapter->rx_ps_pages) {
2954 2955
		u32 psrctl = 0;

2956 2957 2958 2959
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2960 2961 2962
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2963 2964
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

2985
	ew32(RFCTL, rfctl);
2986
	ew32(RCTL, rctl);
2987 2988
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3007
		    sizeof(union e1000_rx_desc_packet_split);
3008 3009
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3010
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3011
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3012 3013
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3014
	} else {
3015
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3016 3017 3018 3019 3020 3021
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3022 3023
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3024
	e1e_flush();
3025
	usleep_range(10000, 20000);
3026

3027 3028 3029 3030
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3031
		 * enable prefetching of 0x20 Rx descriptors
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3050 3051 3052 3053 3054
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3055
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3056
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3057 3058 3059 3060 3061 3062 3063 3064

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3065 3066 3067 3068
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3069
	rdba = rx_ring->dma;
3070
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3071 3072 3073 3074 3075 3076 3077 3078 3079
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3080
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3081 3082
		rxcsum |= E1000_RXCSUM_TUOFL;

3083 3084 3085 3086
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3087 3088 3089 3090 3091 3092 3093 3094
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3095 3096
	/*
	 * Enable early receives on supported devices, only takes effect when
3097
	 * packet size is equal or larger than the specified value (in 8 byte
3098 3099
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
3100 3101
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan)) {
3102 3103 3104
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3105 3106
			if (adapter->flags & FLAG_HAS_ERT)
				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3107 3108 3109 3110 3111
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
3112
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3113
		} else {
3114 3115
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3116
		}
3117
	}
3118 3119 3120 3121 3122 3123

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3124 3125
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3126
 *
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3164
 *
3165 3166 3167 3168
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3169
 **/
3170
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3171
{
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3211 3212 3213
}

/**
3214
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3215 3216
 * @netdev: network interface device structure
 *
3217 3218 3219
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3220 3221
 * promiscuous mode, and all-multi behavior.
 **/
3222
static void e1000e_set_rx_mode(struct net_device *netdev)
3223 3224 3225 3226 3227 3228 3229 3230
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3231 3232 3233
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3234 3235
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3236 3237
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3238
	} else {
3239
		int count;
3240 3241 3242
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3243 3244 3245 3246 3247 3248 3249 3250
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3251
		}
J
Jeff Kirsher 已提交
3252
		e1000e_vlan_filter_enable(adapter);
3253
		/*
3254 3255 3256
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3257
		 */
3258 3259 3260
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3261
	}
J
Jeff Kirsher 已提交
3262

3263 3264
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3265 3266 3267 3268
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3269 3270 3271
}

/**
3272
 * e1000_configure - configure the hardware for Rx and Tx
3273 3274 3275 3276
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3277
	e1000e_set_rx_mode(adapter->netdev);
3278 3279

	e1000_restore_vlan(adapter);
3280
	e1000_init_manageability_pt(adapter);
3281 3282 3283 3284

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3285 3286
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
			      GFP_KERNEL);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3299 3300
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3301 3302 3303 3304 3305 3306 3307

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3308 3309
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3310 3311 3312 3313
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3314
	if (adapter->wol)
3315 3316
		return;

3317 3318
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3319 3320 3321 3322 3323 3324 3325 3326
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3327
 * properly configured for Rx, Tx etc.
3328 3329 3330 3331
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3332
	struct e1000_fc_info *fc = &adapter->hw.fc;
3333 3334
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3335
	u32 pba = adapter->pba;
3336 3337
	u16 hwm;

3338
	/* reset Packet Buffer Allocation to default */
3339
	ew32(PBA, pba);
3340

3341
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3342 3343
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3344 3345 3346 3347
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3348 3349
		 * expressed in KB.
		 */
3350
		pba = er32(PBA);
3351
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3352
		tx_space = pba >> 16;
3353
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3354
		pba &= 0xffff;
3355
		/*
3356
		 * the Tx fifo also stores 16 bytes of information about the Tx
3357
		 * but don't include ethernet FCS because hardware appends it
3358 3359
		 */
		min_tx_space = (adapter->max_frame_size +
3360 3361 3362 3363 3364
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3365
		min_rx_space = adapter->max_frame_size;
3366 3367 3368
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3369 3370
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3371
		 * and the min Tx FIFO size is less than the current Rx FIFO
3372 3373
		 * allocation, take space away from current Rx allocation
		 */
3374 3375 3376
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3377

3378
			/*
3379
			 * if short on Rx space, Rx wins and must trump Tx
3380 3381
			 * adjustment or use Early Receive if available
			 */
3382
			if ((pba < min_rx_space) &&
3383 3384
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3385
				pba = min_rx_space;
3386
		}
3387 3388

		ew32(PBA, pba);
3389 3390
	}

3391 3392 3393
	/*
	 * flow control settings
	 *
3394
	 * The high water mark must be low enough to fit one full frame
3395 3396 3397 3398 3399
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3400
	 * - the full Rx FIFO size minus one full frame
3401
	 */
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3434
		fc->refresh_time = 0x1000;
3435 3436 3437 3438 3439 3440
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3441 3442 3443 3444
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3445
		break;
3446
	}
3447

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
	 * fit in receive buffer and early-receive not supported.
	 */
	if (adapter->itr_setting & 0x3) {
		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
		    !(adapter->flags & FLAG_HAS_ERT)) {
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3470 3471
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3472 3473 3474 3475 3476

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3477
	if (adapter->flags & FLAG_HAS_AMT)
3478
		e1000e_get_hw_control(adapter);
3479

3480 3481 3482
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3483
		e_err("Hardware Error\n");
3484 3485 3486 3487 3488 3489 3490

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3491 3492 3493 3494 3495 3496 3497

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3498 3499
	e1000_get_phy_info(hw);

3500 3501
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3502
		u16 phy_data = 0;
3503 3504
		/*
		 * speed up time to link by disabling smart power down, ignore
3505
		 * the return value of this function because there is nothing
3506 3507
		 * different we would do if it failed
		 */
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3523 3524
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3525 3526
	e1000_irq_enable(adapter);

3527
	netif_start_queue(adapter->netdev);
3528

3529
	/* fire a link change interrupt to start the watchdog */
3530 3531 3532 3533 3534
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3535 3536 3537
	return 0;
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3553 3554
static void e1000e_update_stats(struct e1000_adapter *adapter);

3555 3556 3557 3558 3559 3560
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3561 3562 3563 3564
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3565 3566 3567 3568
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3569 3570
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3571 3572
	/* flush and sleep below */

3573
	netif_stop_queue(netdev);
3574 3575 3576 3577 3578

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3579

3580 3581
	/* flush both disables and wait for them to finish */
	e1e_flush();
3582
	usleep_range(10000, 20000);
3583 3584 3585 3586 3587 3588 3589

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3590 3591 3592 3593 3594

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3595 3596 3597 3598
	e1000e_flush_descriptors(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

3599 3600 3601
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3602 3603
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3615
		usleep_range(1000, 2000);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3635 3636
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3637

J
Jeff Kirsher 已提交
3638 3639
	spin_lock_init(&adapter->stats64_lock);

3640
	e1000e_set_interrupt_capability(adapter);
3641

3642 3643
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3644 3645 3646 3647 3648 3649 3650 3651

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3664
	e_dbg("icr is %08X\n", icr);
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3691
	e1000e_reset_interrupt_capability(adapter);
3692 3693 3694 3695 3696 3697 3698 3699 3700

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3701
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3722
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3723 3724 3725
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3726 3727 3728 3729 3730

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3731
	e1000e_set_interrupt_capability(adapter);
3732
	return e1000_request_irq(adapter);
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3751 3752 3753
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3754 3755 3756

	err = e1000_test_msi_interrupt(adapter);

3757 3758 3759 3760 3761 3762
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3763 3764 3765 3766

	return err;
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3783
	struct pci_dev *pdev = adapter->pdev;
3784 3785 3786 3787 3788 3789
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3790 3791
	pm_runtime_get_sync(&pdev->dev);

3792 3793
	netif_carrier_off(netdev);

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3804 3805 3806 3807 3808
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3809
		e1000e_get_hw_control(adapter);
3810 3811 3812
		e1000e_reset(adapter);
	}

3813 3814 3815 3816 3817 3818 3819
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3820
	/* DMA latency requirement to workaround early-receive/jumbo issue */
3821 3822
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3823 3824 3825
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3826

3827 3828
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3829 3830
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3831 3832
	 * clean_rx handler before we do so.
	 */
3833 3834 3835 3836 3837 3838
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3839 3840 3841 3842 3843
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3844
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3845 3846 3847 3848 3849 3850 3851
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3852 3853 3854 3855 3856 3857 3858
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3859
	adapter->tx_hang_recheck = false;
3860
	netif_start_queue(netdev);
3861

3862 3863 3864
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3865
	/* fire a link status change interrupt to start the watchdog */
3866 3867 3868 3869
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3870 3871 3872 3873

	return 0;

err_req_irq:
3874
	e1000e_release_hw_control(adapter);
3875 3876 3877 3878 3879 3880
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3881
	pm_runtime_put_sync(&pdev->dev);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3900
	struct pci_dev *pdev = adapter->pdev;
3901 3902

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3903 3904 3905

	pm_runtime_get_sync(&pdev->dev);

3906 3907
	napi_disable(&adapter->napi);

3908 3909 3910 3911
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3912 3913 3914 3915 3916
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3917 3918 3919 3920
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3921 3922
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3923 3924
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3925 3926 3927 3928
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3929 3930 3931
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3932

3933 3934
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3935
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3936

3937 3938
	pm_runtime_put_sync(&pdev->dev);

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3965 3966
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3967 3968 3969 3970
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3971 3972
		 * RAR[14]
		 */
3973 3974 3975 3976 3977 3978 3979 3980
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
3993 3994 3995 3996

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

3997 3998 3999
	e1000_get_phy_info(&adapter->hw);
}

4000 4001 4002 4003
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4004 4005 4006
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4007 4008 4009 4010

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4011
	schedule_work(&adapter->update_phy_task);
4012 4013
}

4014 4015 4016
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4017 4018
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4034
	hw->phy.addr = 1;
4035 4036 4037 4038
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4039 4040 4041
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4042 4043 4044 4045 4046
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4047 4048
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4049 4050 4051 4052
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4053 4054
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4055 4056 4057 4058
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4059 4060
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4061 4062 4063 4064
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4065 4066
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4067 4068 4069 4070
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4071 4072
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4073 4074 4075 4076
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4077 4078
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4079 4080 4081 4082
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4083 4084
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4085 4086 4087 4088 4089 4090 4091
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4092 4093 4094 4095
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4096
static void e1000e_update_stats(struct e1000_adapter *adapter)
4097
{
4098
	struct net_device *netdev = adapter->netdev;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4113 4114
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4115 4116 4117 4118 4119
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4139
	}
4140

4141 4142 4143 4144 4145
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4146 4147
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4166 4167
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4168 4169 4170

	/* Rx Errors */

4171 4172 4173 4174
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4175
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4176 4177 4178
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4179
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4180
					      adapter->stats.roc;
4181 4182 4183
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4184 4185

	/* Tx Errors */
4186
	netdev->stats.tx_errors = adapter->stats.ecol +
4187
				       adapter->stats.latecol;
4188 4189 4190
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4191 4192 4193 4194 4195 4196 4197 4198 4199

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4211 4212
		int ret_val;

4213 4214 4215 4216 4217 4218 4219 4220 4221
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4222
			e_warn("Error reading PHY register\n");
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4242 4243 4244 4245 4246
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4247
	/* Link status message must follow this format for user tools */
4248 4249 4250 4251 4252 4253 4254
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4255 4256
}

4257
static bool e1000e_has_link(struct e1000_adapter *adapter)
4258 4259
{
	struct e1000_hw *hw = &adapter->hw;
4260
	bool link_active = false;
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4275
			link_active = true;
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4294
		e_info("Gigabit has been disabled, downgrading speed\n");
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4351
	struct e1000_phy_info *phy = &adapter->hw.phy;
4352 4353 4354 4355
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4356 4357 4358
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4359
	link = e1000e_has_link(adapter);
4360
	if ((netif_carrier_ok(netdev)) && link) {
4361 4362 4363
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4364
		e1000e_enable_receives(adapter);
4365 4366 4367 4368 4369 4370 4371 4372 4373
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4374
			bool txb2b = true;
4375 4376 4377 4378

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4379
			/* update snapshot of PHY registers on LSC */
4380
			e1000_phy_read_status(adapter);
4381 4382 4383 4384
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4400
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4401 4402
			}

4403
			/* adjust timeout factor according to speed/duplex */
4404 4405 4406
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4407
				txb2b = false;
4408
				adapter->tx_timeout_factor = 16;
4409 4410
				break;
			case SPEED_100:
4411
				txb2b = false;
4412
				adapter->tx_timeout_factor = 10;
4413 4414 4415
				break;
			}

4416 4417 4418 4419
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4420 4421 4422
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4423
				tarc0 = er32(TARC(0));
4424
				tarc0 &= ~SPEED_MODE_BIT;
4425
				ew32(TARC(0), tarc0);
4426 4427
			}

4428 4429 4430 4431
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4432 4433 4434 4435
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4436
					e_info("10/100 speed: disabling TSO\n");
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4450 4451 4452 4453
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4454 4455 4456 4457
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4458 4459 4460 4461 4462 4463 4464
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4475 4476 4477
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4478 4479 4480 4481 4482 4483 4484
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4485 4486 4487
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4488 4489 4490 4491
		}
	}

link_up:
J
Jeff Kirsher 已提交
4492
	spin_lock(&adapter->stats64_lock);
4493 4494 4495 4496 4497 4498 4499
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4500 4501 4502 4503
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4504
	spin_unlock(&adapter->stats64_lock);
4505 4506 4507

	e1000e_update_adaptive(&adapter->hw);

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4519 4520
	}

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4537
	/* Cause software interrupt to ensure Rx ring is cleaned */
4538 4539 4540 4541
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4542

4543 4544 4545
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4546
	/* Force detection of hung controller every watchdog period */
4547
	adapter->detect_tx_hung = true;
4548

4549 4550 4551 4552
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4553 4554 4555
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4556 4557 4558
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4583 4584
	if (!skb_is_gso(skb))
		return 0;
4585

4586
	if (skb_header_cloned(skb)) {
4587 4588
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4589 4590
		if (err)
			return err;
4591 4592
	}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4603
	} else if (skb_is_gso_v6(skb)) {
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4642 4643 4644 4645 4646 4647 4648 4649 4650
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4651
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4652
	__be16 protocol;
4653

4654 4655
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4656

4657 4658 4659 4660 4661
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4662
	switch (protocol) {
4663
	case cpu_to_be16(ETH_P_IP):
4664 4665 4666
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4667
	case cpu_to_be16(ETH_P_IPV6):
4668 4669 4670 4671 4672 4673
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4674 4675
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4676
		break;
4677 4678
	}

4679
	css = skb_checksum_start_offset(skb);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4713
	struct pci_dev *pdev = adapter->pdev;
4714
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4715
	unsigned int len = skb_headlen(skb);
4716
	unsigned int offset = 0, size, count = 0, i;
4717
	unsigned int f, bytecount, segs;
4718 4719 4720 4721

	i = tx_ring->next_to_use;

	while (len) {
4722
		buffer_info = &tx_ring->buffer_info[i];
4723 4724 4725 4726 4727
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4728 4729
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4730
						  size, DMA_TO_DEVICE);
4731
		buffer_info->mapped_as_page = false;
4732
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4733
			goto dma_error;
4734 4735 4736

		len -= size;
		offset += size;
4737
		count++;
4738 4739 4740 4741 4742 4743

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4744 4745 4746
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4747
		const struct skb_frag_struct *frag;
4748 4749

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4750
		len = skb_frag_size(frag);
4751
		offset = 0;
4752 4753

		while (len) {
4754 4755 4756 4757
			i++;
			if (i == tx_ring->count)
				i = 0;

4758 4759 4760 4761 4762 4763
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4764 4765
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4766
			buffer_info->mapped_as_page = true;
4767
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4768
				goto dma_error;
4769 4770 4771 4772 4773 4774 4775

			len -= size;
			offset += size;
			count++;
		}
	}

4776
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4777 4778 4779
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4780
	tx_ring->buffer_info[i].skb = skb;
4781 4782
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4783 4784 4785
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4786 4787

dma_error:
4788
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4789
	buffer_info->dma = 0;
4790
	if (count)
4791
		count--;
4792 4793

	while (count--) {
4794
		if (i == 0)
4795
			i += tx_ring->count;
4796
		i--;
4797
		buffer_info = &tx_ring->buffer_info[i];
4798
		e1000_put_txbuf(adapter, buffer_info);
4799 4800 4801
	}

	return 0;
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4834
	do {
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4845
	} while (--count > 0);
4846 4847 4848

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4849 4850
	/*
	 * Force memory writes to complete before letting h/w
4851 4852
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4853 4854
	 * such as IA-64).
	 */
4855 4856 4857
	wmb();

	tx_ring->next_to_use = i;
4858 4859 4860 4861 4862 4863

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_tdt_wa(adapter, i);
	else
		writel(i, adapter->hw.hw_addr + tx_ring->tail);

4864 4865 4866 4867
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4879 4880
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4915 4916
	/*
	 * Herbert's original patch had:
4917
	 *  smp_mb__after_netif_stop_queue();
4918 4919
	 * but since that doesn't exist yet, just open code it.
	 */
4920 4921
	smp_mb();

4922 4923 4924 4925
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4945 4946
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4947 4948 4949 4950 4951 4952 4953
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4954
	unsigned int len = skb_headlen(skb);
4955 4956
	unsigned int nr_frags;
	unsigned int mss;
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4972 4973
	/*
	 * The controller does a simple calculation to
4974 4975 4976 4977
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4978 4979
	 * drops.
	 */
4980 4981 4982 4983 4984
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4985 4986 4987 4988 4989
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4990
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4991 4992 4993 4994
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4995
		if (skb->data_len && (hdr_len == len)) {
4996 4997 4998 4999
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
5000
				e_err("__pskb_pull_tail failed.\n");
5001 5002 5003
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5004
			len = skb_headlen(skb);
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5017
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5018 5019 5020 5021 5022
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5023 5024 5025 5026
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5027
	if (e1000_maybe_stop_tx(netdev, count + 2))
5028 5029
		return NETDEV_TX_BUSY;

5030
	if (vlan_tx_tag_present(skb)) {
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

5048 5049
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5050
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5051 5052
	 * no longer assume, we must.
	 */
5053 5054 5055
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
5056
	/* if count is 0 then mapping error has occurred */
5057
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
5058
	if (count) {
5059
		netdev_sent_queue(netdev, skb->len);
5060 5061 5062 5063 5064
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
5065
		dev_kfree_skb_any(skb);
5066 5067
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5091 5092 5093 5094
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5095 5096 5097 5098 5099
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5100 5101 5102 5103
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5104
 * e1000_get_stats64 - Get System Network Statistics
5105
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5106
 * @stats: rtnl_link_stats64 pointer
5107 5108 5109
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5110 5111
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5112
{
J
Jeff Kirsher 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5167 5168 5169 5170
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
5171 5172 5173
		return -EINVAL;
	}

5174 5175 5176 5177
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5178 5179 5180
		return -EINVAL;
	}

5181 5182 5183 5184
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5185
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5186 5187 5188
		return -EINVAL;
	}

5189 5190 5191 5192 5193 5194 5195 5196
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5197
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5198
		usleep_range(1000, 2000);
5199
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5200
	adapter->max_frame_size = max_frame;
5201 5202
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5203 5204 5205
	if (netif_running(netdev))
		e1000e_down(adapter);

5206 5207
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5208 5209
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5210
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5211 5212
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5213
	 */
5214

5215
	if (max_frame <= 2048)
5216 5217 5218 5219 5220 5221 5222 5223
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5224
					 + ETH_FCS_LEN;
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5242
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5243 5244 5245 5246 5247 5248 5249
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5250 5251
		e1000_phy_read_status(adapter);

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5306 5307 5308 5309
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5310
	u16 phy_reg, wuc_enable;
5311 5312 5313
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5314
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5315

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
		goto out;

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5328 5329
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5330 5331 5332 5333
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5334 5335 5336
	}

	/* configure PHY Rx Control register */
5337
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5354
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5355 5356 5357 5358 5359 5360

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5361 5362
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5363 5364

	/* activate PHY wakeup */
5365 5366
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5367 5368 5369
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5370
	hw->phy.ops.release(hw);
5371 5372 5373 5374

	return retval;
}

5375 5376
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5377 5378 5379 5380 5381
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5382 5383
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5384 5385 5386 5387 5388 5389 5390 5391 5392
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5393
	e1000e_reset_interrupt_capability(adapter);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5405
		e1000e_set_rx_mode(netdev);
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5419 5420 5421
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5422 5423
		ew32(CTRL, ctrl);

5424 5425 5426
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5427 5428
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5429
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5430 5431 5432
			ew32(CTRL_EXT, ctrl_ext);
		}

5433
		if (adapter->flags & FLAG_IS_ICH)
5434
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5435

5436 5437 5438
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5439
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5440 5441 5442 5443 5444 5445 5446 5447 5448
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5449 5450 5451 5452 5453
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5454 5455
	*enable_wake = !!wufc;

5456
	/* make sure adapter isn't asleep if manageability is enabled */
5457 5458
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5459
		*enable_wake = true;
5460 5461 5462 5463

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5464 5465 5466 5467
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5468
	e1000e_release_hw_control(adapter);
5469 5470 5471

	pci_disable_device(pdev);

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5492 5493 5494 5495 5496 5497 5498 5499
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5500
		int pos = pci_pcie_cap(us_dev);
5501 5502 5503 5504 5505 5506
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5507
		e1000_power_off(pdev, sleep, wake);
5508 5509 5510

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5511
		e1000_power_off(pdev, sleep, wake);
5512
	}
5513 5514
}

5515 5516 5517
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5518
	pci_disable_link_state_locked(pdev, state);
5519 5520 5521
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5522 5523
{
	int pos;
5524
	u16 reg16;
5525 5526

	/*
5527 5528
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5529
	 */
5530 5531 5532 5533 5534
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5535 5536 5537
	if (!pdev->bus->self)
		return;

5538 5539 5540 5541 5542 5543
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5544
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5545 5546 5547 5548 5549 5550
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5551 5552
}

R
Rafael J. Wysocki 已提交
5553
#ifdef CONFIG_PM
5554
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5555
{
5556
	return !!adapter->tx_ring->buffer_info;
5557 5558
}

5559
static int __e1000_resume(struct pci_dev *pdev)
5560 5561 5562 5563
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5564
	u16 aspm_disable_flag = 0;
5565 5566
	u32 err;

5567 5568 5569 5570 5571 5572 5573
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5574 5575
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5576
	pci_save_state(pdev);
T
Taku Izumi 已提交
5577

5578
	e1000e_set_interrupt_capability(adapter);
5579 5580 5581 5582 5583 5584
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5585 5586 5587
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5588
	e1000e_power_up_phy(adapter);
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5601 5602
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5619 5620
	e1000e_reset(adapter);

5621
	e1000_init_manageability_pt(adapter);
5622 5623 5624 5625 5626 5627

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5628 5629
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5630
	 * is up.  For all other cases, let the f/w know that the h/w is now
5631 5632
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5633
	if (!(adapter->flags & FLAG_HAS_AMT))
5634
		e1000e_get_hw_control(adapter);
5635 5636 5637

	return 0;
}
5638

5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5712
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5713
#endif /* CONFIG_PM */
5714 5715 5716

static void e1000_shutdown(struct pci_dev *pdev)
{
5717 5718
	bool wake = false;

5719
	__e1000_shutdown(pdev, &wake, false);
5720 5721 5722

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5723 5724 5725
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5726 5727 5728 5729 5730 5731 5732

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5733 5734
		int vector, msix_irq;

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5757 5758 5759 5760 5761 5762 5763 5764 5765
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5800 5801 5802
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5823
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5824
	int err;
J
Jesse Brandeburg 已提交
5825
	pci_ers_result_t result;
5826

5827 5828
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5829
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5830 5831 5832 5833
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5834
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5835
	if (err) {
5836 5837
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5838 5839 5840
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5841
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5842
		pci_restore_state(pdev);
5843

J
Jesse Brandeburg 已提交
5844 5845
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5846

J
Jesse Brandeburg 已提交
5847 5848 5849 5850
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5851

J
Jesse Brandeburg 已提交
5852 5853 5854
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5870
	e1000_init_manageability_pt(adapter);
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5882 5883
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5884
	 * is up.  For all other cases, let the f/w know that the h/w is now
5885 5886
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5887
	if (!(adapter->flags & FLAG_HAS_AMT))
5888
		e1000e_get_hw_control(adapter);
5889 5890 5891 5892 5893 5894 5895

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5896 5897
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5898 5899

	/* print bus type/speed/width info */
5900
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5901 5902 5903 5904
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5905
	       netdev->dev_addr);
5906 5907
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5908 5909 5910
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5911
		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5912 5913
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5914 5915
}

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5926
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5927
		/* Deep Smart Power Down (DSPD) */
5928 5929
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5930 5931 5932
	}
}

5933 5934
static int e1000_set_features(struct net_device *netdev,
	netdev_features_t features)
5935 5936
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
5937
	netdev_features_t changed = features ^ netdev->features;
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
			 NETIF_F_RXCSUM)))
		return 0;

	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

5954 5955 5956
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
5957
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
5958
	.ndo_get_stats64	= e1000e_get_stats64,
5959
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
5971
	.ndo_set_features = e1000_set_features,
5972 5973
};

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5992 5993
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
5994 5995

	static int cards_found;
5996
	u16 aspm_disable_flag = 0;
5997 5998 5999 6000
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6001 6002
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6003
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6004 6005 6006
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6007

6008
	err = pci_enable_device_mem(pdev);
6009 6010 6011 6012
	if (err)
		return err;

	pci_using_dac = 0;
6013
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6014
	if (!err) {
6015
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6016 6017 6018
		if (!err)
			pci_using_dac = 1;
	} else {
6019
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6020
		if (err) {
6021 6022
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6023
			if (err) {
6024
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6025 6026 6027 6028 6029
				goto err_dma;
			}
		}
	}

6030
	err = pci_request_selected_regions_exclusive(pdev,
6031 6032
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6033 6034 6035
	if (err)
		goto err_pci_reg;

6036
	/* AER (Advanced Error Reporting) hooks */
6037
	pci_enable_pcie_error_reporting(pdev);
6038

6039
	pci_set_master(pdev);
6040 6041 6042 6043
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6044 6045 6046 6047 6048 6049 6050 6051

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6052 6053
	netdev->irq = pdev->irq;

6054 6055 6056 6057 6058 6059 6060 6061
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6062
	adapter->flags2 = ei->flags2;
6063 6064
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6065
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6086
	netdev->netdev_ops		= &e1000e_netdev_ops;
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6097 6098
	e1000e_check_options(adapter);

6099 6100 6101 6102 6103 6104 6105 6106 6107
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6108
	err = ei->get_variants(adapter);
6109 6110 6111
	if (err)
		goto err_hw_init;

6112 6113 6114 6115
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6116 6117
	hw->mac.ops.get_bus_info(&adapter->hw);

6118
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6119 6120

	/* Copper options */
6121
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6122 6123 6124 6125 6126 6127
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
6128
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6129

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
6141 6142 6143 6144

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6145 6146 6147 6148
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6149

6150 6151
	netdev->priv_flags |= IFF_UNICAST_FLT;

6152
	if (pci_using_dac) {
6153
		netdev->features |= NETIF_F_HIGHDMA;
6154 6155
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6156 6157 6158 6159

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6160 6161 6162 6163
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6174
			e_err("The NVM Checksum Is Not Valid\n");
6175 6176 6177 6178 6179
			err = -EIO;
			goto err_eeprom;
		}
	}

6180 6181
	e1000_eeprom_checks(adapter);

6182
	/* copy the MAC address */
6183
	if (e1000e_read_mac_addr(&adapter->hw))
6184
		e_err("NVM Read Error while reading MAC address\n");
6185 6186 6187 6188 6189

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6190
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6191 6192 6193 6194 6195
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6196
	adapter->watchdog_timer.function = e1000_watchdog;
6197 6198 6199
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6200
	adapter->phy_info_timer.function = e1000_update_phy_info;
6201 6202 6203 6204
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6205 6206
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6207
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6208 6209 6210

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6211
	adapter->fc_autoneg = true;
6212 6213
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6228 6229
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6230
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6255
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6256

6257 6258 6259
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6260 6261 6262
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6263 6264
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6265
	 * is up.  For all other cases, let the f/w know that the h/w is now
6266 6267
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6268
	if (!(adapter->flags & FLAG_HAS_AMT))
6269
		e1000e_get_hw_control(adapter);
6270

6271
	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6272 6273 6274 6275
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6276 6277 6278
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6279 6280
	e1000_print_device_info(adapter);

6281 6282
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6283

6284 6285 6286
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6287
	if (!(adapter->flags & FLAG_HAS_AMT))
6288
		e1000e_release_hw_control(adapter);
6289 6290 6291
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6292
err_hw_init:
6293 6294 6295
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6296 6297
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6298
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6299
err_flashmap:
6300 6301 6302 6303
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6304 6305
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6325 6326
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6327
	/*
6328 6329
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6330
	 */
6331 6332
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6333 6334 6335
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6336 6337 6338 6339 6340
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6341

6342 6343 6344
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6345 6346 6347
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6348 6349
	unregister_netdev(netdev);

6350 6351
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6352

6353 6354 6355 6356
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6357
	e1000e_release_hw_control(adapter);
6358

6359
	e1000e_reset_interrupt_capability(adapter);
6360 6361 6362 6363 6364 6365
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6366 6367
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6368 6369 6370

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6371
	/* AER disable */
6372
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6373

6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6384
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6385 6386 6387 6388 6389 6390
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6391 6392 6393
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6394

6395 6396 6397 6398
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6399

6400 6401 6402
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6403

6404
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6405
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6406
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6407

6408 6409 6410 6411 6412 6413 6414 6415
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6416

6417 6418 6419 6420 6421 6422 6423
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6424
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6425

6426 6427 6428 6429 6430
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6431
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6432 6433 6434 6435 6436 6437 6438
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6439

6440 6441
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6442
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6443

6444 6445 6446 6447 6448
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6449 6450 6451
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6452 6453 6454 6455
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6456
#ifdef CONFIG_PM
6457
static const struct dev_pm_ops e1000_pm_ops = {
6458 6459 6460
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6461
};
6462
#endif
6463

6464 6465 6466 6467 6468 6469
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6470
#ifdef CONFIG_PM
6471
	.driver.pm = &e1000_pm_ops,
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6486 6487
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6488
	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6489
	ret = pci_register_driver(&e1000_driver);
6490

6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */