relocation.c 111.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2009 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
11
#include <linux/slab.h>
12 13 14 15 16 17 18
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "btrfs_inode.h"
#include "async-thread.h"
19
#include "free-space-cache.h"
20
#include "inode-map.h"
21
#include "qgroup.h"
22
#include "print-tree.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * backref_node, mapping_node and tree_block start with this
 */
struct tree_entry {
	struct rb_node rb_node;
	u64 bytenr;
};

/*
 * present a tree block in the backref cache
 */
struct backref_node {
	struct rb_node rb_node;
	u64 bytenr;
38 39 40

	u64 new_bytenr;
	/* objectid of tree block owner, can be not uptodate */
41
	u64 owner;
42 43
	/* link to pending, changed or detached list */
	struct list_head list;
44 45 46 47 48 49 50 51 52 53
	/* list of upper level blocks reference this block */
	struct list_head upper;
	/* list of child blocks in the cache */
	struct list_head lower;
	/* NULL if this node is not tree root */
	struct btrfs_root *root;
	/* extent buffer got by COW the block */
	struct extent_buffer *eb;
	/* level of tree block */
	unsigned int level:8;
54 55 56
	/* is the block in non-reference counted tree */
	unsigned int cowonly:1;
	/* 1 if no child node in the cache */
57 58 59 60 61 62 63
	unsigned int lowest:1;
	/* is the extent buffer locked */
	unsigned int locked:1;
	/* has the block been processed */
	unsigned int processed:1;
	/* have backrefs of this block been checked */
	unsigned int checked:1;
64 65 66 67 68 69 70 71 72 73
	/*
	 * 1 if corresponding block has been cowed but some upper
	 * level block pointers may not point to the new location
	 */
	unsigned int pending:1;
	/*
	 * 1 if the backref node isn't connected to any other
	 * backref node.
	 */
	unsigned int detached:1;
74 75 76 77 78 79 80 81 82 83 84 85
};

/*
 * present a block pointer in the backref cache
 */
struct backref_edge {
	struct list_head list[2];
	struct backref_node *node[2];
};

#define LOWER	0
#define UPPER	1
86
#define RELOCATION_RESERVED_NODES	256
87 88 89 90

struct backref_cache {
	/* red black tree of all backref nodes in the cache */
	struct rb_root rb_root;
91 92 93 94 95 96 97
	/* for passing backref nodes to btrfs_reloc_cow_block */
	struct backref_node *path[BTRFS_MAX_LEVEL];
	/*
	 * list of blocks that have been cowed but some block
	 * pointers in upper level blocks may not reflect the
	 * new location
	 */
98
	struct list_head pending[BTRFS_MAX_LEVEL];
99 100 101 102 103 104 105 106 107 108 109
	/* list of backref nodes with no child node */
	struct list_head leaves;
	/* list of blocks that have been cowed in current transaction */
	struct list_head changed;
	/* list of detached backref node. */
	struct list_head detached;

	u64 last_trans;

	int nr_nodes;
	int nr_edges;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

/*
 * map address of tree root to tree
 */
struct mapping_node {
	struct rb_node rb_node;
	u64 bytenr;
	void *data;
};

struct mapping_tree {
	struct rb_root rb_root;
	spinlock_t lock;
};

/*
 * present a tree block to process
 */
struct tree_block {
	struct rb_node rb_node;
	u64 bytenr;
	struct btrfs_key key;
	unsigned int level:8;
	unsigned int key_ready:1;
};

137 138 139 140 141 142 143 144 145
#define MAX_EXTENTS 128

struct file_extent_cluster {
	u64 start;
	u64 end;
	u64 boundary[MAX_EXTENTS];
	unsigned int nr;
};

146 147 148 149 150 151 152
struct reloc_control {
	/* block group to relocate */
	struct btrfs_block_group_cache *block_group;
	/* extent tree */
	struct btrfs_root *extent_root;
	/* inode for moving data */
	struct inode *data_inode;
153 154 155 156 157 158

	struct btrfs_block_rsv *block_rsv;

	struct backref_cache backref_cache;

	struct file_extent_cluster cluster;
159 160 161 162 163 164
	/* tree blocks have been processed */
	struct extent_io_tree processed_blocks;
	/* map start of tree root to corresponding reloc tree */
	struct mapping_tree reloc_root_tree;
	/* list of reloc trees */
	struct list_head reloc_roots;
165 166 167 168
	/* size of metadata reservation for merging reloc trees */
	u64 merging_rsv_size;
	/* size of relocated tree nodes */
	u64 nodes_relocated;
169 170
	/* reserved size for block group relocation*/
	u64 reserved_bytes;
171

172 173
	u64 search_start;
	u64 extents_found;
174 175 176 177

	unsigned int stage:8;
	unsigned int create_reloc_tree:1;
	unsigned int merge_reloc_tree:1;
178 179 180 181 182 183 184
	unsigned int found_file_extent:1;
};

/* stages of data relocation */
#define MOVE_DATA_EXTENTS	0
#define UPDATE_DATA_PTRS	1

185 186 187 188
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node);
static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node);
189 190 191

static void mapping_tree_init(struct mapping_tree *tree)
{
192
	tree->rb_root = RB_ROOT;
193 194 195 196 197 198
	spin_lock_init(&tree->lock);
}

static void backref_cache_init(struct backref_cache *cache)
{
	int i;
199
	cache->rb_root = RB_ROOT;
200 201
	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		INIT_LIST_HEAD(&cache->pending[i]);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	INIT_LIST_HEAD(&cache->changed);
	INIT_LIST_HEAD(&cache->detached);
	INIT_LIST_HEAD(&cache->leaves);
}

static void backref_cache_cleanup(struct backref_cache *cache)
{
	struct backref_node *node;
	int i;

	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->leaves)) {
		node = list_entry(cache->leaves.next,
				  struct backref_node, lower);
		remove_backref_node(cache, node);
	}

	cache->last_trans = 0;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 228 229 230 231 232
		ASSERT(list_empty(&cache->pending[i]));
	ASSERT(list_empty(&cache->changed));
	ASSERT(list_empty(&cache->detached));
	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
	ASSERT(!cache->nr_nodes);
	ASSERT(!cache->nr_edges);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

static struct backref_node *alloc_backref_node(struct backref_cache *cache)
{
	struct backref_node *node;

	node = kzalloc(sizeof(*node), GFP_NOFS);
	if (node) {
		INIT_LIST_HEAD(&node->list);
		INIT_LIST_HEAD(&node->upper);
		INIT_LIST_HEAD(&node->lower);
		RB_CLEAR_NODE(&node->rb_node);
		cache->nr_nodes++;
	}
	return node;
}

static void free_backref_node(struct backref_cache *cache,
			      struct backref_node *node)
{
	if (node) {
		cache->nr_nodes--;
		kfree(node);
	}
}

static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
{
	struct backref_edge *edge;

	edge = kzalloc(sizeof(*edge), GFP_NOFS);
	if (edge)
		cache->nr_edges++;
	return edge;
267 268
}

269 270
static void free_backref_edge(struct backref_cache *cache,
			      struct backref_edge *edge)
271
{
272 273 274 275
	if (edge) {
		cache->nr_edges--;
		kfree(edge);
	}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
}

static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
				   struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct tree_entry *entry;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			p = &(*p)->rb_left;
		else if (bytenr > entry->bytenr)
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
{
	struct rb_node *n = root->rb_node;
	struct tree_entry *entry;

	while (n) {
		entry = rb_entry(n, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			n = n->rb_left;
		else if (bytenr > entry->bytenr)
			n = n->rb_right;
		else
			return n;
	}
	return NULL;
}

320
static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 322 323 324 325 326 327
{

	struct btrfs_fs_info *fs_info = NULL;
	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
					      rb_node);
	if (bnode->root)
		fs_info = bnode->root->fs_info;
J
Jeff Mahoney 已提交
328 329 330
	btrfs_panic(fs_info, errno,
		    "Inconsistency in backref cache found at offset %llu",
		    bytenr);
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * walk up backref nodes until reach node presents tree root
 */
static struct backref_node *walk_up_backref(struct backref_node *node,
					    struct backref_edge *edges[],
					    int *index)
{
	struct backref_edge *edge;
	int idx = *index;

	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next,
				  struct backref_edge, list[LOWER]);
		edges[idx++] = edge;
		node = edge->node[UPPER];
	}
349
	BUG_ON(node->detached);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	*index = idx;
	return node;
}

/*
 * walk down backref nodes to find start of next reference path
 */
static struct backref_node *walk_down_backref(struct backref_edge *edges[],
					      int *index)
{
	struct backref_edge *edge;
	struct backref_node *lower;
	int idx = *index;

	while (idx > 0) {
		edge = edges[idx - 1];
		lower = edge->node[LOWER];
		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
			idx--;
			continue;
		}
		edge = list_entry(edge->list[LOWER].next,
				  struct backref_edge, list[LOWER]);
		edges[idx - 1] = edge;
		*index = idx;
		return edge->node[UPPER];
	}
	*index = 0;
	return NULL;
}

381 382 383 384 385 386 387 388
static void unlock_node_buffer(struct backref_node *node)
{
	if (node->locked) {
		btrfs_tree_unlock(node->eb);
		node->locked = 0;
	}
}

389 390 391
static void drop_node_buffer(struct backref_node *node)
{
	if (node->eb) {
392
		unlock_node_buffer(node);
393 394 395 396 397 398 399 400 401 402 403
		free_extent_buffer(node->eb);
		node->eb = NULL;
	}
}

static void drop_backref_node(struct backref_cache *tree,
			      struct backref_node *node)
{
	BUG_ON(!list_empty(&node->upper));

	drop_node_buffer(node);
404
	list_del(&node->list);
405
	list_del(&node->lower);
406 407 408
	if (!RB_EMPTY_NODE(&node->rb_node))
		rb_erase(&node->rb_node, &tree->rb_root);
	free_backref_node(tree, node);
409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

/*
 * remove a backref node from the backref cache
 */
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node)
{
	struct backref_node *upper;
	struct backref_edge *edge;

	if (!node)
		return;

423
	BUG_ON(!node->lowest && !node->detached);
424 425 426 427 428 429
	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next, struct backref_edge,
				  list[LOWER]);
		upper = edge->node[UPPER];
		list_del(&edge->list[LOWER]);
		list_del(&edge->list[UPPER]);
430 431 432 433 434 435 436 437 438
		free_backref_edge(cache, edge);

		if (RB_EMPTY_NODE(&upper->rb_node)) {
			BUG_ON(!list_empty(&node->upper));
			drop_backref_node(cache, node);
			node = upper;
			node->lowest = 1;
			continue;
		}
439
		/*
440
		 * add the node to leaf node list if no other
441 442 443
		 * child block cached.
		 */
		if (list_empty(&upper->lower)) {
444
			list_add_tail(&upper->lower, &cache->leaves);
445 446 447
			upper->lowest = 1;
		}
	}
448

449 450 451
	drop_backref_node(cache, node);
}

452 453 454 455 456 457 458
static void update_backref_node(struct backref_cache *cache,
				struct backref_node *node, u64 bytenr)
{
	struct rb_node *rb_node;
	rb_erase(&node->rb_node, &cache->rb_root);
	node->bytenr = bytenr;
	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 460
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

/*
 * update backref cache after a transaction commit
 */
static int update_backref_cache(struct btrfs_trans_handle *trans,
				struct backref_cache *cache)
{
	struct backref_node *node;
	int level = 0;

	if (cache->last_trans == 0) {
		cache->last_trans = trans->transid;
		return 0;
	}

	if (cache->last_trans == trans->transid)
		return 0;

	/*
	 * detached nodes are used to avoid unnecessary backref
	 * lookup. transaction commit changes the extent tree.
	 * so the detached nodes are no longer useful.
	 */
	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->changed)) {
		node = list_entry(cache->changed.next,
				  struct backref_node, list);
		list_del_init(&node->list);
		BUG_ON(node->pending);
		update_backref_node(cache, node, node->new_bytenr);
	}

	/*
	 * some nodes can be left in the pending list if there were
	 * errors during processing the pending nodes.
	 */
	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		list_for_each_entry(node, &cache->pending[level], list) {
			BUG_ON(!node->pending);
			if (node->bytenr == node->new_bytenr)
				continue;
			update_backref_node(cache, node, node->new_bytenr);
		}
	}

	cache->last_trans = 0;
	return 1;
}

516

517 518 519 520
static int should_ignore_root(struct btrfs_root *root)
{
	struct btrfs_root *reloc_root;

521
	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return 0;

	reloc_root = root->reloc_root;
	if (!reloc_root)
		return 0;

	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
	    root->fs_info->running_transaction->transid - 1)
		return 0;
	/*
	 * if there is reloc tree and it was created in previous
	 * transaction backref lookup can find the reloc tree,
	 * so backref node for the fs tree root is useless for
	 * relocation.
	 */
	return 1;
}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * find reloc tree by address of tree root
 */
static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
					  u64 bytenr)
{
	struct rb_node *rb_node;
	struct mapping_node *node;
	struct btrfs_root *root = NULL;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		root = (struct btrfs_root *)node->data;
	}
	spin_unlock(&rc->reloc_root_tree.lock);
	return root;
}

static int is_cowonly_root(u64 root_objectid)
{
	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 567
	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 569
	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		return 1;
	return 0;
}

static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
					u64 root_objectid)
{
	struct btrfs_key key;

	key.objectid = root_objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	if (is_cowonly_root(root_objectid))
		key.offset = 0;
	else
		key.offset = (u64)-1;

586
	return btrfs_get_fs_root(fs_info, &key, false);
587 588 589 590 591 592
}

static noinline_for_stack
int find_inline_backref(struct extent_buffer *leaf, int slot,
			unsigned long *ptr, unsigned long *end)
{
593
	struct btrfs_key key;
594 595 596 597
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	u32 item_size;

598 599
	btrfs_item_key_to_cpu(leaf, &key, slot);

600
	item_size = btrfs_item_size_nr(leaf, slot);
601 602 603 604 605
	if (item_size < sizeof(*ei)) {
		btrfs_print_v0_err(leaf->fs_info);
		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
		return 1;
	}
606 607 608 609
	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
		  BTRFS_EXTENT_FLAG_TREE_BLOCK));

610 611
	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
	    item_size <= sizeof(*ei) + sizeof(*bi)) {
612 613 614
		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
		return 1;
	}
615 616 617 618 619
	if (key.type == BTRFS_METADATA_ITEM_KEY &&
	    item_size <= sizeof(*ei)) {
		WARN_ON(item_size < sizeof(*ei));
		return 1;
	}
620

621 622 623 624 625 626
	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
		bi = (struct btrfs_tree_block_info *)(ei + 1);
		*ptr = (unsigned long)(bi + 1);
	} else {
		*ptr = (unsigned long)(ei + 1);
	}
627 628 629 630 631 632 633 634 635 636
	*end = (unsigned long)ei + item_size;
	return 0;
}

/*
 * build backref tree for a given tree block. root of the backref tree
 * corresponds the tree block, leaves of the backref tree correspond
 * roots of b-trees that reference the tree block.
 *
 * the basic idea of this function is check backrefs of a given block
637 638
 * to find upper level blocks that reference the block, and then check
 * backrefs of these upper level blocks recursively. the recursion stop
639 640 641 642 643 644
 * when tree root is reached or backrefs for the block is cached.
 *
 * NOTE: if we find backrefs for a block are cached, we know backrefs
 * for all upper level blocks that directly/indirectly reference the
 * block are also cached.
 */
645 646 647 648
static noinline_for_stack
struct backref_node *build_backref_tree(struct reloc_control *rc,
					struct btrfs_key *node_key,
					int level, u64 bytenr)
649
{
650
	struct backref_cache *cache = &rc->backref_cache;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	struct btrfs_path *path1;
	struct btrfs_path *path2;
	struct extent_buffer *eb;
	struct btrfs_root *root;
	struct backref_node *cur;
	struct backref_node *upper;
	struct backref_node *lower;
	struct backref_node *node = NULL;
	struct backref_node *exist = NULL;
	struct backref_edge *edge;
	struct rb_node *rb_node;
	struct btrfs_key key;
	unsigned long end;
	unsigned long ptr;
	LIST_HEAD(list);
666 667
	LIST_HEAD(useless);
	int cowonly;
668 669
	int ret;
	int err = 0;
670
	bool need_check = true;
671 672 673 674 675 676 677

	path1 = btrfs_alloc_path();
	path2 = btrfs_alloc_path();
	if (!path1 || !path2) {
		err = -ENOMEM;
		goto out;
	}
678 679
	path1->reada = READA_FORWARD;
	path2->reada = READA_FORWARD;
680

681
	node = alloc_backref_node(cache);
682 683 684 685 686 687 688 689 690 691 692 693 694
	if (!node) {
		err = -ENOMEM;
		goto out;
	}

	node->bytenr = bytenr;
	node->level = level;
	node->lowest = 1;
	cur = node;
again:
	end = 0;
	ptr = 0;
	key.objectid = cur->bytenr;
695
	key.type = BTRFS_METADATA_ITEM_KEY;
696 697 698 699 700 701 702 703 704 705
	key.offset = (u64)-1;

	path1->search_commit_root = 1;
	path1->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
				0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}
706 707
	ASSERT(ret);
	ASSERT(path1->slots[0]);
708 709 710 711 712 713

	path1->slots[0]--;

	WARN_ON(cur->checked);
	if (!list_empty(&cur->upper)) {
		/*
714
		 * the backref was added previously when processing
715 716
		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
		 */
717
		ASSERT(list_is_singular(&cur->upper));
718 719
		edge = list_entry(cur->upper.next, struct backref_edge,
				  list[LOWER]);
720
		ASSERT(list_empty(&edge->list[UPPER]));
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		exist = edge->node[UPPER];
		/*
		 * add the upper level block to pending list if we need
		 * check its backrefs
		 */
		if (!exist->checked)
			list_add_tail(&edge->list[UPPER], &list);
	} else {
		exist = NULL;
	}

	while (1) {
		cond_resched();
		eb = path1->nodes[0];

		if (ptr >= end) {
			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
				ret = btrfs_next_leaf(rc->extent_root, path1);
				if (ret < 0) {
					err = ret;
					goto out;
				}
				if (ret > 0)
					break;
				eb = path1->nodes[0];
			}

			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
			if (key.objectid != cur->bytenr) {
				WARN_ON(exist);
				break;
			}

754 755
			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
			    key.type == BTRFS_METADATA_ITEM_KEY) {
756 757 758 759 760 761 762 763 764 765
				ret = find_inline_backref(eb, path1->slots[0],
							  &ptr, &end);
				if (ret)
					goto next;
			}
		}

		if (ptr < end) {
			/* update key for inline back ref */
			struct btrfs_extent_inline_ref *iref;
766
			int type;
767
			iref = (struct btrfs_extent_inline_ref *)ptr;
768 769 770
			type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_BLOCK);
			if (type == BTRFS_REF_TYPE_INVALID) {
771
				err = -EUCLEAN;
772 773 774
				goto out;
			}
			key.type = type;
775
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
		}

		if (exist &&
		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
		      exist->owner == key.offset) ||
		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
		      exist->bytenr == key.offset))) {
			exist = NULL;
			goto next;
		}

		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
			if (key.objectid == key.offset) {
				/*
				 * only root blocks of reloc trees use
				 * backref of this type.
				 */
				root = find_reloc_root(rc, cur->bytenr);
797
				ASSERT(root);
798 799 800 801
				cur->root = root;
				break;
			}

802
			edge = alloc_backref_edge(cache);
803 804 805 806 807 808
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}
			rb_node = tree_search(&cache->rb_root, key.offset);
			if (!rb_node) {
809
				upper = alloc_backref_node(cache);
810
				if (!upper) {
811
					free_backref_edge(cache, edge);
812 813 814 815 816 817 818 819 820 821 822 823 824
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = key.offset;
				upper->level = cur->level + 1;
				/*
				 *  backrefs for the upper level block isn't
				 *  cached, add the block to pending list
				 */
				list_add_tail(&edge->list[UPPER], &list);
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
825
				ASSERT(upper->checked);
826 827
				INIT_LIST_HEAD(&edge->list[UPPER]);
			}
828
			list_add_tail(&edge->list[LOWER], &cur->upper);
829
			edge->node[LOWER] = cur;
830
			edge->node[UPPER] = upper;
831 832

			goto next;
833
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 835 836 837 838
			err = -EINVAL;
			btrfs_print_v0_err(rc->extent_root->fs_info);
			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
					      NULL);
			goto out;
839 840 841 842 843 844 845 846 847 848 849
		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
			goto next;
		}

		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
		root = read_fs_root(rc->extent_root->fs_info, key.offset);
		if (IS_ERR(root)) {
			err = PTR_ERR(root);
			goto out;
		}

850
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 852
			cur->cowonly = 1;

853 854
		if (btrfs_root_level(&root->root_item) == cur->level) {
			/* tree root */
855
			ASSERT(btrfs_root_bytenr(&root->root_item) ==
856
			       cur->bytenr);
857 858 859 860
			if (should_ignore_root(root))
				list_add(&cur->list, &useless);
			else
				cur->root = root;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
			break;
		}

		level = cur->level + 1;

		/*
		 * searching the tree to find upper level blocks
		 * reference the block.
		 */
		path2->search_commit_root = 1;
		path2->skip_locking = 1;
		path2->lowest_level = level;
		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
		path2->lowest_level = 0;
		if (ret < 0) {
			err = ret;
			goto out;
		}
879 880
		if (ret > 0 && path2->slots[level] > 0)
			path2->slots[level]--;
881 882

		eb = path2->nodes[level];
883 884 885 886 887 888 889 890 891 892
		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
		    cur->bytenr) {
			btrfs_err(root->fs_info,
	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
				  cur->bytenr, level - 1, root->objectid,
				  node_key->objectid, node_key->type,
				  node_key->offset);
			err = -ENOENT;
			goto out;
		}
893
		lower = cur;
894
		need_check = true;
895 896
		for (; level < BTRFS_MAX_LEVEL; level++) {
			if (!path2->nodes[level]) {
897
				ASSERT(btrfs_root_bytenr(&root->root_item) ==
898
				       lower->bytenr);
899 900 901 902
				if (should_ignore_root(root))
					list_add(&lower->list, &useless);
				else
					lower->root = root;
903 904 905
				break;
			}

906
			edge = alloc_backref_edge(cache);
907 908 909 910 911 912 913 914
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}

			eb = path2->nodes[level];
			rb_node = tree_search(&cache->rb_root, eb->start);
			if (!rb_node) {
915
				upper = alloc_backref_node(cache);
916
				if (!upper) {
917
					free_backref_edge(cache, edge);
918 919 920 921 922 923
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = eb->start;
				upper->owner = btrfs_header_owner(eb);
				upper->level = lower->level + 1;
924 925
				if (!test_bit(BTRFS_ROOT_REF_COWS,
					      &root->state))
926
					upper->cowonly = 1;
927 928 929 930 931 932 933 934 935 936 937 938

				/*
				 * if we know the block isn't shared
				 * we can void checking its backrefs.
				 */
				if (btrfs_block_can_be_shared(root, eb))
					upper->checked = 0;
				else
					upper->checked = 1;

				/*
				 * add the block to pending list if we
939 940 941
				 * need check its backrefs, we only do this once
				 * while walking up a tree as we will catch
				 * anything else later on.
942
				 */
943 944
				if (!upper->checked && need_check) {
					need_check = false;
945 946
					list_add_tail(&edge->list[UPPER],
						      &list);
947 948 949
				} else {
					if (upper->checked)
						need_check = true;
950
					INIT_LIST_HEAD(&edge->list[UPPER]);
951
				}
952 953 954
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
955
				ASSERT(upper->checked);
956
				INIT_LIST_HEAD(&edge->list[UPPER]);
957 958
				if (!upper->owner)
					upper->owner = btrfs_header_owner(eb);
959 960 961
			}
			list_add_tail(&edge->list[LOWER], &lower->upper);
			edge->node[LOWER] = lower;
962
			edge->node[UPPER] = upper;
963 964 965 966 967 968

			if (rb_node)
				break;
			lower = upper;
			upper = NULL;
		}
969
		btrfs_release_path(path2);
970 971 972 973 974 975 976 977 978 979 980 981
next:
		if (ptr < end) {
			ptr += btrfs_extent_inline_ref_size(key.type);
			if (ptr >= end) {
				WARN_ON(ptr > end);
				ptr = 0;
				end = 0;
			}
		}
		if (ptr >= end)
			path1->slots[0]++;
	}
982
	btrfs_release_path(path1);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	cur->checked = 1;
	WARN_ON(exist);

	/* the pending list isn't empty, take the first block to process */
	if (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		cur = edge->node[UPPER];
		goto again;
	}

	/*
	 * everything goes well, connect backref nodes and insert backref nodes
	 * into the cache.
	 */
999
	ASSERT(node->checked);
1000 1001 1002 1003
	cowonly = node->cowonly;
	if (!cowonly) {
		rb_node = tree_insert(&cache->rb_root, node->bytenr,
				      &node->rb_node);
1004 1005
		if (rb_node)
			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 1007
		list_add_tail(&node->lower, &cache->leaves);
	}
1008 1009 1010 1011 1012 1013 1014 1015

	list_for_each_entry(edge, &node->upper, list[LOWER])
		list_add_tail(&edge->list[UPPER], &list);

	while (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		upper = edge->node[UPPER];
1016 1017 1018 1019 1020 1021 1022 1023
		if (upper->detached) {
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);
			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
			continue;
		}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

		if (!RB_EMPTY_NODE(&upper->rb_node)) {
			if (upper->lowest) {
				list_del_init(&upper->lower);
				upper->lowest = 0;
			}

			list_add_tail(&edge->list[UPPER], &upper->lower);
			continue;
		}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		if (!upper->checked) {
			/*
			 * Still want to blow up for developers since this is a
			 * logic bug.
			 */
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}
		if (cowonly != upper->cowonly) {
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}

1050 1051 1052
		if (!cowonly) {
			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
					      &upper->rb_node);
1053 1054 1055
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   upper->bytenr);
1056
		}
1057 1058 1059 1060 1061 1062

		list_add_tail(&edge->list[UPPER], &upper->lower);

		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER], &list);
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * process useless backref nodes. backref nodes for tree leaves
	 * are deleted from the cache. backref nodes for upper level
	 * tree blocks are left in the cache to avoid unnecessary backref
	 * lookup.
	 */
	while (!list_empty(&useless)) {
		upper = list_entry(useless.next, struct backref_node, list);
		list_del_init(&upper->list);
1072
		ASSERT(list_empty(&upper->upper));
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (upper == node)
			node = NULL;
		if (upper->lowest) {
			list_del_init(&upper->lower);
			upper->lowest = 0;
		}
		while (!list_empty(&upper->lower)) {
			edge = list_entry(upper->lower.next,
					  struct backref_edge, list[UPPER]);
			list_del(&edge->list[UPPER]);
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);

			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
		}
		__mark_block_processed(rc, upper);
		if (upper->level > 0) {
			list_add(&upper->list, &cache->detached);
			upper->detached = 1;
		} else {
			rb_erase(&upper->rb_node, &cache->rb_root);
			free_backref_node(cache, upper);
		}
	}
1099 1100 1101 1102
out:
	btrfs_free_path(path1);
	btrfs_free_path(path2);
	if (err) {
1103 1104
		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
1105 1106
					   struct backref_node, list);
			list_del_init(&lower->list);
1107
		}
1108 1109 1110 1111
		while (!list_empty(&list)) {
			edge = list_first_entry(&list, struct backref_edge,
						list[UPPER]);
			list_del(&edge->list[UPPER]);
1112
			list_del(&edge->list[LOWER]);
1113
			lower = edge->node[LOWER];
1114
			upper = edge->node[UPPER];
1115
			free_backref_edge(cache, edge);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

			/*
			 * Lower is no longer linked to any upper backref nodes
			 * and isn't in the cache, we can free it ourselves.
			 */
			if (list_empty(&lower->upper) &&
			    RB_EMPTY_NODE(&lower->rb_node))
				list_add(&lower->list, &useless);

			if (!RB_EMPTY_NODE(&upper->rb_node))
				continue;

1128
			/* Add this guy's upper edges to the list to process */
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			list_for_each_entry(edge, &upper->upper, list[LOWER])
				list_add_tail(&edge->list[UPPER], &list);
			if (list_empty(&upper->upper))
				list_add(&upper->list, &useless);
		}

		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
					   struct backref_node, list);
			list_del_init(&lower->list);
L
Liu Bo 已提交
1139 1140
			if (lower == node)
				node = NULL;
1141
			free_backref_node(cache, lower);
1142
		}
L
Liu Bo 已提交
1143 1144

		free_backref_node(cache, node);
1145 1146
		return ERR_PTR(err);
	}
1147
	ASSERT(!node || !node->detached);
1148 1149 1150
	return node;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * helper to add backref node for the newly created snapshot.
 * the backref node is created by cloning backref node that
 * corresponds to root of source tree
 */
static int clone_backref_node(struct btrfs_trans_handle *trans,
			      struct reloc_control *rc,
			      struct btrfs_root *src,
			      struct btrfs_root *dest)
{
	struct btrfs_root *reloc_root = src->reloc_root;
	struct backref_cache *cache = &rc->backref_cache;
	struct backref_node *node = NULL;
	struct backref_node *new_node;
	struct backref_edge *edge;
	struct backref_edge *new_edge;
	struct rb_node *rb_node;

	if (cache->last_trans > 0)
		update_backref_cache(trans, cache);

	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct backref_node, rb_node);
		if (node->detached)
			node = NULL;
		else
			BUG_ON(node->new_bytenr != reloc_root->node->start);
	}

	if (!node) {
		rb_node = tree_search(&cache->rb_root,
				      reloc_root->commit_root->start);
		if (rb_node) {
			node = rb_entry(rb_node, struct backref_node,
					rb_node);
			BUG_ON(node->detached);
		}
	}

	if (!node)
		return 0;

	new_node = alloc_backref_node(cache);
	if (!new_node)
		return -ENOMEM;

	new_node->bytenr = dest->node->start;
	new_node->level = node->level;
	new_node->lowest = node->lowest;
Y
Yan, Zheng 已提交
1201
	new_node->checked = 1;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	new_node->root = dest;

	if (!node->lowest) {
		list_for_each_entry(edge, &node->lower, list[UPPER]) {
			new_edge = alloc_backref_edge(cache);
			if (!new_edge)
				goto fail;

			new_edge->node[UPPER] = new_node;
			new_edge->node[LOWER] = edge->node[LOWER];
			list_add_tail(&new_edge->list[UPPER],
				      &new_node->lower);
		}
M
Miao Xie 已提交
1215 1216
	} else {
		list_add_tail(&new_node->lower, &cache->leaves);
1217 1218 1219 1220
	}

	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
			      &new_node->rb_node);
1221 1222
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	if (!new_node->lowest) {
		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
			list_add_tail(&new_edge->list[LOWER],
				      &new_edge->node[LOWER]->upper);
		}
	}
	return 0;
fail:
	while (!list_empty(&new_node->lower)) {
		new_edge = list_entry(new_node->lower.next,
				      struct backref_edge, list[UPPER]);
		list_del(&new_edge->list[UPPER]);
		free_backref_edge(cache, new_edge);
	}
	free_backref_node(cache, new_node);
	return -ENOMEM;
}

1242 1243 1244
/*
 * helper to add 'address of tree root -> reloc tree' mapping
 */
1245
static int __must_check __add_reloc_root(struct btrfs_root *root)
1246
{
1247
	struct btrfs_fs_info *fs_info = root->fs_info;
1248 1249
	struct rb_node *rb_node;
	struct mapping_node *node;
1250
	struct reloc_control *rc = fs_info->reloc_ctl;
1251 1252

	node = kmalloc(sizeof(*node), GFP_NOFS);
1253 1254
	if (!node)
		return -ENOMEM;
1255 1256 1257 1258 1259 1260 1261 1262

	node->bytenr = root->node->start;
	node->data = root;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
1263
	if (rb_node) {
1264
		btrfs_panic(fs_info, -EEXIST,
J
Jeff Mahoney 已提交
1265 1266
			    "Duplicate root found for start=%llu while inserting into relocation tree",
			    node->bytenr);
1267
	}
1268 1269 1270 1271 1272 1273

	list_add_tail(&root->root_list, &rc->reloc_roots);
	return 0;
}

/*
1274
 * helper to delete the 'address of tree root -> reloc tree'
1275 1276
 * mapping
 */
1277
static void __del_reloc_root(struct btrfs_root *root)
1278
{
1279
	struct btrfs_fs_info *fs_info = root->fs_info;
1280 1281
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1282
	struct reloc_control *rc = fs_info->reloc_ctl;
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	if (rc) {
		spin_lock(&rc->reloc_root_tree.lock);
		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
				      root->node->start);
		if (rb_node) {
			node = rb_entry(rb_node, struct mapping_node, rb_node);
			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
		}
		spin_unlock(&rc->reloc_root_tree.lock);
		if (!node)
			return;
		BUG_ON((struct btrfs_root *)node->data != root);
1296 1297
	}

1298
	spin_lock(&fs_info->trans_lock);
1299
	list_del_init(&root->root_list);
1300
	spin_unlock(&fs_info->trans_lock);
1301 1302 1303 1304 1305 1306 1307 1308 1309
	kfree(node);
}

/*
 * helper to update the 'address of tree root -> reloc tree'
 * mapping
 */
static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
{
1310
	struct btrfs_fs_info *fs_info = root->fs_info;
1311 1312
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1313
	struct reloc_control *rc = fs_info->reloc_ctl;
1314 1315 1316 1317 1318 1319 1320

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
			      root->node->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321
	}
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	spin_unlock(&rc->reloc_root_tree.lock);

	if (!node)
		return 0;
	BUG_ON((struct btrfs_root *)node->data != root);

	spin_lock(&rc->reloc_root_tree.lock);
	node->bytenr = new_bytenr;
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1335 1336 1337
	return 0;
}

1338 1339
static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
					struct btrfs_root *root, u64 objectid)
1340
{
1341
	struct btrfs_fs_info *fs_info = root->fs_info;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	struct btrfs_root *reloc_root;
	struct extent_buffer *eb;
	struct btrfs_root_item *root_item;
	struct btrfs_key root_key;
	int ret;

	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
	BUG_ON(!root_item);

	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
1353
	root_key.offset = objectid;
1354

1355
	if (root->root_key.objectid == objectid) {
1356 1357
		u64 commit_root_gen;

1358 1359 1360 1361
		/* called by btrfs_init_reloc_root */
		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		/*
		 * Set the last_snapshot field to the generation of the commit
		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
		 * correctly (returns true) when the relocation root is created
		 * either inside the critical section of a transaction commit
		 * (through transaction.c:qgroup_account_snapshot()) and when
		 * it's created before the transaction commit is started.
		 */
		commit_root_gen = btrfs_header_generation(root->commit_root);
		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	} else {
		/*
		 * called by btrfs_reloc_post_snapshot_hook.
		 * the source tree is a reloc tree, all tree blocks
		 * modified after it was created have RELOC flag
		 * set in their headers. so it's OK to not update
		 * the 'last_snapshot'.
		 */
		ret = btrfs_copy_root(trans, root, root->node, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
	}
1384 1385 1386 1387 1388

	memcpy(root_item, &root->root_item, sizeof(*root_item));
	btrfs_set_root_bytenr(root_item, eb->start);
	btrfs_set_root_level(root_item, btrfs_header_level(eb));
	btrfs_set_root_generation(root_item, trans->transid);
1389 1390 1391 1392 1393 1394 1395

	if (root->root_key.objectid == objectid) {
		btrfs_set_root_refs(root_item, 0);
		memset(&root_item->drop_progress, 0,
		       sizeof(struct btrfs_disk_key));
		root_item->drop_level = 0;
	}
1396 1397 1398 1399

	btrfs_tree_unlock(eb);
	free_extent_buffer(eb);

1400
	ret = btrfs_insert_root(trans, fs_info->tree_root,
1401 1402 1403 1404
				&root_key, root_item);
	BUG_ON(ret);
	kfree(root_item);

1405
	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1406 1407
	BUG_ON(IS_ERR(reloc_root));
	reloc_root->last_trans = trans->transid;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	return reloc_root;
}

/*
 * create reloc tree for a given fs tree. reloc tree is just a
 * snapshot of the fs tree with special root objectid.
 */
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root)
{
1418
	struct btrfs_fs_info *fs_info = root->fs_info;
1419
	struct btrfs_root *reloc_root;
1420
	struct reloc_control *rc = fs_info->reloc_ctl;
1421
	struct btrfs_block_rsv *rsv;
1422
	int clear_rsv = 0;
1423
	int ret;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	if (root->reloc_root) {
		reloc_root = root->reloc_root;
		reloc_root->last_trans = trans->transid;
		return 0;
	}

	if (!rc || !rc->create_reloc_tree ||
	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		return 0;

1435 1436
	if (!trans->reloc_reserved) {
		rsv = trans->block_rsv;
1437 1438 1439 1440 1441
		trans->block_rsv = rc->block_rsv;
		clear_rsv = 1;
	}
	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
	if (clear_rsv)
1442
		trans->block_rsv = rsv;
1443

1444 1445
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	root->reloc_root = reloc_root;
	return 0;
}

/*
 * update root item of reloc tree
 */
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
1456
	struct btrfs_fs_info *fs_info = root->fs_info;
1457 1458 1459 1460 1461
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	int ret;

	if (!root->reloc_root)
C
Chris Mason 已提交
1462
		goto out;
1463 1464 1465 1466

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

1467
	if (fs_info->reloc_ctl->merge_reloc_tree &&
1468
	    btrfs_root_refs(root_item) == 0) {
1469
		root->reloc_root = NULL;
1470
		__del_reloc_root(reloc_root);
1471 1472 1473 1474 1475 1476 1477 1478
	}

	if (reloc_root->commit_root != reloc_root->node) {
		btrfs_set_root_node(root_item, reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->commit_root = btrfs_root_node(reloc_root);
	}

1479
	ret = btrfs_update_root(trans, fs_info->tree_root,
1480 1481
				&reloc_root->root_key, root_item);
	BUG_ON(ret);
C
Chris Mason 已提交
1482 1483

out:
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	return 0;
}

/*
 * helper to find first cached inode with inode number >= objectid
 * in a subvolume
 */
static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
{
	struct rb_node *node;
	struct rb_node *prev;
	struct btrfs_inode *entry;
	struct inode *inode;

	spin_lock(&root->inode_lock);
again:
	node = root->inode_tree.rb_node;
	prev = NULL;
	while (node) {
		prev = node;
		entry = rb_entry(node, struct btrfs_inode, rb_node);

1506
		if (objectid < btrfs_ino(entry))
1507
			node = node->rb_left;
1508
		else if (objectid > btrfs_ino(entry))
1509 1510 1511 1512 1513 1514 1515
			node = node->rb_right;
		else
			break;
	}
	if (!node) {
		while (prev) {
			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1516
			if (objectid <= btrfs_ino(entry)) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
				node = prev;
				break;
			}
			prev = rb_next(prev);
		}
	}
	while (node) {
		entry = rb_entry(node, struct btrfs_inode, rb_node);
		inode = igrab(&entry->vfs_inode);
		if (inode) {
			spin_unlock(&root->inode_lock);
			return inode;
		}

1531
		objectid = btrfs_ino(entry) + 1;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		if (cond_resched_lock(&root->inode_lock))
			goto again;

		node = rb_next(node);
	}
	spin_unlock(&root->inode_lock);
	return NULL;
}

static int in_block_group(u64 bytenr,
			  struct btrfs_block_group_cache *block_group)
{
	if (bytenr >= block_group->key.objectid &&
	    bytenr < block_group->key.objectid + block_group->key.offset)
		return 1;
	return 0;
}

/*
 * get new location of data
 */
static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
			    u64 bytenr, u64 num_bytes)
{
	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
	struct btrfs_path *path;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1567 1568
	ret = btrfs_lookup_file_extent(NULL, root, path,
			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
	       btrfs_file_extent_compression(leaf, fi) ||
	       btrfs_file_extent_encryption(leaf, fi) ||
	       btrfs_file_extent_other_encoding(leaf, fi));

	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1586
		ret = -EINVAL;
1587 1588 1589
		goto out;
	}

1590
	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * update file extent items in the tree leaf to point to
 * the new locations.
 */
1601 1602 1603 1604 1605
static noinline_for_stack
int replace_file_extents(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc,
			 struct btrfs_root *root,
			 struct extent_buffer *leaf)
1606
{
1607
	struct btrfs_fs_info *fs_info = root->fs_info;
1608 1609 1610 1611 1612
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	struct inode *inode = NULL;
	u64 parent;
	u64 bytenr;
1613
	u64 new_bytenr = 0;
1614 1615 1616 1617
	u64 num_bytes;
	u64 end;
	u32 nritems;
	u32 i;
1618
	int ret = 0;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	int first = 1;
	int dirty = 0;

	if (rc->stage != UPDATE_DATA_PTRS)
		return 0;

	/* reloc trees always use full backref */
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		parent = leaf->start;
	else
		parent = 0;

	nritems = btrfs_header_nritems(leaf);
	for (i = 0; i < nritems; i++) {
		cond_resched();
		btrfs_item_key_to_cpu(leaf, &key, i);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			continue;
		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
		if (bytenr == 0)
			continue;
		if (!in_block_group(bytenr, rc->block_group))
			continue;

		/*
		 * if we are modifying block in fs tree, wait for readpage
		 * to complete and drop the extent cache
		 */
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			if (first) {
				inode = find_next_inode(root, key.objectid);
				first = 0;
1656
			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1657
				btrfs_add_delayed_iput(inode);
1658 1659
				inode = find_next_inode(root, key.objectid);
			}
1660
			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1661 1662 1663
				end = key.offset +
				      btrfs_file_extent_num_bytes(leaf, fi);
				WARN_ON(!IS_ALIGNED(key.offset,
1664 1665
						    fs_info->sectorsize));
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1666 1667
				end--;
				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1668
						      key.offset, end);
1669 1670 1671
				if (!ret)
					continue;

1672 1673
				btrfs_drop_extent_cache(BTRFS_I(inode),
						key.offset,	end, 1);
1674
				unlock_extent(&BTRFS_I(inode)->io_tree,
1675
					      key.offset, end);
1676 1677 1678 1679 1680
			}
		}

		ret = get_new_location(rc->data_inode, &new_bytenr,
				       bytenr, num_bytes);
1681 1682 1683 1684 1685 1686
		if (ret) {
			/*
			 * Don't have to abort since we've not changed anything
			 * in the file extent yet.
			 */
			break;
1687
		}
1688 1689 1690 1691 1692

		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
		dirty = 1;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
1693
		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1694 1695
					   num_bytes, parent,
					   btrfs_header_owner(leaf),
1696
					   key.objectid, key.offset);
1697
		if (ret) {
1698
			btrfs_abort_transaction(trans, ret);
1699 1700
			break;
		}
1701

1702
		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1703
					parent, btrfs_header_owner(leaf),
1704
					key.objectid, key.offset);
1705
		if (ret) {
1706
			btrfs_abort_transaction(trans, ret);
1707 1708
			break;
		}
1709 1710 1711
	}
	if (dirty)
		btrfs_mark_buffer_dirty(leaf);
1712 1713
	if (inode)
		btrfs_add_delayed_iput(inode);
1714
	return ret;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
}

static noinline_for_stack
int memcmp_node_keys(struct extent_buffer *eb, int slot,
		     struct btrfs_path *path, int level)
{
	struct btrfs_disk_key key1;
	struct btrfs_disk_key key2;
	btrfs_node_key(eb, &key1, slot);
	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
	return memcmp(&key1, &key2, sizeof(key1));
}

/*
 * try to replace tree blocks in fs tree with the new blocks
 * in reloc tree. tree blocks haven't been modified since the
 * reloc tree was create can be replaced.
 *
 * if a block was replaced, level of the block + 1 is returned.
 * if no block got replaced, 0 is returned. if there are other
 * errors, a negative error number is returned.
 */
1737 1738 1739 1740 1741
static noinline_for_stack
int replace_path(struct btrfs_trans_handle *trans,
		 struct btrfs_root *dest, struct btrfs_root *src,
		 struct btrfs_path *path, struct btrfs_key *next_key,
		 int lowest_level, int max_level)
1742
{
1743
	struct btrfs_fs_info *fs_info = dest->fs_info;
1744 1745 1746 1747 1748 1749 1750 1751 1752
	struct extent_buffer *eb;
	struct extent_buffer *parent;
	struct btrfs_key key;
	u64 old_bytenr;
	u64 new_bytenr;
	u64 old_ptr_gen;
	u64 new_ptr_gen;
	u64 last_snapshot;
	u32 blocksize;
1753
	int cow = 0;
1754 1755 1756 1757 1758 1759 1760 1761
	int level;
	int ret;
	int slot;

	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);

	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1762
again:
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	slot = path->slots[lowest_level];
	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);

	eb = btrfs_lock_root_node(dest);
	btrfs_set_lock_blocking(eb);
	level = btrfs_header_level(eb);

	if (level < lowest_level) {
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
		return 0;
	}

1776 1777 1778 1779
	if (cow) {
		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
		BUG_ON(ret);
	}
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	btrfs_set_lock_blocking(eb);

	if (next_key) {
		next_key->objectid = (u64)-1;
		next_key->type = (u8)-1;
		next_key->offset = (u64)-1;
	}

	parent = eb;
	while (1) {
1790 1791
		struct btrfs_key first_key;

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		level = btrfs_header_level(parent);
		BUG_ON(level < lowest_level);

		ret = btrfs_bin_search(parent, &key, level, &slot);
		if (ret && slot > 0)
			slot--;

		if (next_key && slot + 1 < btrfs_header_nritems(parent))
			btrfs_node_key_to_cpu(parent, next_key, slot + 1);

		old_bytenr = btrfs_node_blockptr(parent, slot);
1803
		blocksize = fs_info->nodesize;
1804
		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1805
		btrfs_node_key_to_cpu(parent, &first_key, slot);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

		if (level <= max_level) {
			eb = path->nodes[level];
			new_bytenr = btrfs_node_blockptr(eb,
							path->slots[level]);
			new_ptr_gen = btrfs_node_ptr_generation(eb,
							path->slots[level]);
		} else {
			new_bytenr = 0;
			new_ptr_gen = 0;
		}

1818
		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1819 1820 1821 1822 1823 1824
			ret = level;
			break;
		}

		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
		    memcmp_node_keys(parent, slot, path, level)) {
1825
			if (level <= lowest_level) {
1826 1827 1828 1829
				ret = 0;
				break;
			}

1830 1831
			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
					     level - 1, &first_key);
1832 1833
			if (IS_ERR(eb)) {
				ret = PTR_ERR(eb);
1834
				break;
1835 1836
			} else if (!extent_buffer_uptodate(eb)) {
				ret = -EIO;
1837
				free_extent_buffer(eb);
1838
				break;
1839
			}
1840
			btrfs_tree_lock(eb);
1841 1842 1843 1844
			if (cow) {
				ret = btrfs_cow_block(trans, dest, eb, parent,
						      slot, &eb);
				BUG_ON(ret);
1845
			}
1846
			btrfs_set_lock_blocking(eb);
1847 1848 1849 1850 1851 1852 1853 1854

			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);

			parent = eb;
			continue;
		}

1855 1856 1857 1858 1859 1860 1861
		if (!cow) {
			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);
			cow = 1;
			goto again;
		}

1862 1863
		btrfs_node_key_to_cpu(path->nodes[level], &key,
				      path->slots[level]);
1864
		btrfs_release_path(path);
1865 1866 1867 1868 1869 1870

		path->lowest_level = level;
		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
		path->lowest_level = 0;
		BUG_ON(ret);

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		/*
		 * Info qgroup to trace both subtrees.
		 *
		 * We must trace both trees.
		 * 1) Tree reloc subtree
		 *    If not traced, we will leak data numbers
		 * 2) Fs subtree
		 *    If not traced, we will double count old data
		 *    and tree block numbers, if current trans doesn't free
		 *    data reloc tree inode.
		 */
		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
				btrfs_header_generation(parent),
				btrfs_header_level(parent));
		if (ret < 0)
			break;
		ret = btrfs_qgroup_trace_subtree(trans, dest,
				path->nodes[level],
				btrfs_header_generation(path->nodes[level]),
				btrfs_header_level(path->nodes[level]));
		if (ret < 0)
			break;

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		/*
		 * swap blocks in fs tree and reloc tree.
		 */
		btrfs_set_node_blockptr(parent, slot, new_bytenr);
		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
		btrfs_mark_buffer_dirty(parent);

		btrfs_set_node_blockptr(path->nodes[level],
					path->slots[level], old_bytenr);
		btrfs_set_node_ptr_generation(path->nodes[level],
					      path->slots[level], old_ptr_gen);
		btrfs_mark_buffer_dirty(path->nodes[level]);

1907
		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1908
					blocksize, path->nodes[level]->start,
1909
					src->root_key.objectid, level - 1, 0);
1910
		BUG_ON(ret);
1911
		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1912 1913
					blocksize, 0, dest->root_key.objectid,
					level - 1, 0);
1914 1915
		BUG_ON(ret);

1916
		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1917
					path->nodes[level]->start,
1918
					src->root_key.objectid, level - 1, 0);
1919 1920
		BUG_ON(ret);

1921
		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1922
					0, dest->root_key.objectid, level - 1,
1923
					0);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		BUG_ON(ret);

		btrfs_unlock_up_safe(path, 0);

		ret = level;
		break;
	}
	btrfs_tree_unlock(parent);
	free_extent_buffer(parent);
	return ret;
}

/*
 * helper to find next relocated block in reloc tree
 */
static noinline_for_stack
int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
		       int *level)
{
	struct extent_buffer *eb;
	int i;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = 0; i < *level; i++) {
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}

	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] + 1 < nritems) {
			path->slots[i]++;
			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
			    last_snapshot)
				continue;

			*level = i;
			return 0;
		}
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}
	return 1;
}

/*
 * walk down reloc tree to find relocated block of lowest level
 */
static noinline_for_stack
int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
			 int *level)
{
1980
	struct btrfs_fs_info *fs_info = root->fs_info;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	struct extent_buffer *eb = NULL;
	int i;
	u64 bytenr;
	u64 ptr_gen = 0;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = *level; i > 0; i--) {
1991 1992
		struct btrfs_key first_key;

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] < nritems) {
			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
			if (ptr_gen > last_snapshot)
				break;
			path->slots[i]++;
		}
		if (path->slots[i] >= nritems) {
			if (i == *level)
				break;
			*level = i + 1;
			return 0;
		}
		if (i == 1) {
			*level = i;
			return 0;
		}

		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2013 2014 2015
		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
				     &first_key);
2016 2017 2018
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
2019 2020 2021
			free_extent_buffer(eb);
			return -EIO;
		}
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		BUG_ON(btrfs_header_level(eb) != i - 1);
		path->nodes[i - 1] = eb;
		path->slots[i - 1] = 0;
	}
	return 1;
}

/*
 * invalidate extent cache for file extents whose key in range of
 * [min_key, max_key)
 */
static int invalidate_extent_cache(struct btrfs_root *root,
				   struct btrfs_key *min_key,
				   struct btrfs_key *max_key)
{
2037
	struct btrfs_fs_info *fs_info = root->fs_info;
2038 2039 2040
	struct inode *inode = NULL;
	u64 objectid;
	u64 start, end;
L
Li Zefan 已提交
2041
	u64 ino;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	objectid = min_key->objectid;
	while (1) {
		cond_resched();
		iput(inode);

		if (objectid > max_key->objectid)
			break;

		inode = find_next_inode(root, objectid);
		if (!inode)
			break;
2054
		ino = btrfs_ino(BTRFS_I(inode));
2055

L
Li Zefan 已提交
2056
		if (ino > max_key->objectid) {
2057 2058 2059 2060
			iput(inode);
			break;
		}

L
Li Zefan 已提交
2061
		objectid = ino + 1;
2062 2063 2064
		if (!S_ISREG(inode->i_mode))
			continue;

L
Li Zefan 已提交
2065
		if (unlikely(min_key->objectid == ino)) {
2066 2067 2068 2069 2070 2071
			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
				continue;
			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
				start = 0;
			else {
				start = min_key->offset;
2072
				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2073 2074 2075 2076 2077
			}
		} else {
			start = 0;
		}

L
Li Zefan 已提交
2078
		if (unlikely(max_key->objectid == ino)) {
2079 2080 2081 2082 2083 2084 2085 2086
			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
				continue;
			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
				end = (u64)-1;
			} else {
				if (max_key->offset == 0)
					continue;
				end = max_key->offset;
2087
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2088 2089 2090 2091 2092 2093 2094
				end--;
			}
		} else {
			end = (u64)-1;
		}

		/* the lock_extent waits for readpage to complete */
2095
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2096
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2097
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	}
	return 0;
}

static int find_next_key(struct btrfs_path *path, int level,
			 struct btrfs_key *key)

{
	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			break;
		if (path->slots[level] + 1 <
		    btrfs_header_nritems(path->nodes[level])) {
			btrfs_node_key_to_cpu(path->nodes[level], key,
					      path->slots[level] + 1);
			return 0;
		}
		level++;
	}
	return 1;
}

/*
 * merge the relocated tree blocks in reloc tree with corresponding
 * fs tree.
 */
static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
					       struct btrfs_root *root)
{
2127
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2128 2129 2130
	LIST_HEAD(inode_list);
	struct btrfs_key key;
	struct btrfs_key next_key;
2131
	struct btrfs_trans_handle *trans = NULL;
2132 2133 2134
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	struct btrfs_path *path;
2135
	struct extent_buffer *leaf;
2136 2137 2138 2139 2140
	int level;
	int max_level;
	int replaced = 0;
	int ret;
	int err = 0;
2141
	u32 min_reserved;
2142 2143 2144 2145

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
2146
	path->reada = READA_FORWARD;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
		level = btrfs_root_level(root_item);
		extent_buffer_get(reloc_root->node);
		path->nodes[level] = reloc_root->node;
		path->slots[level] = 0;
	} else {
		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);

		level = root_item->drop_level;
		BUG_ON(level == 0);
		path->lowest_level = level;
		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2163
		path->lowest_level = 0;
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		if (ret < 0) {
			btrfs_free_path(path);
			return ret;
		}

		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
				      path->slots[level]);
		WARN_ON(memcmp(&key, &next_key, sizeof(key)));

		btrfs_unlock_up_safe(path, 0);
	}

2176
	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2177
	memset(&next_key, 0, sizeof(next_key));
2178

2179
	while (1) {
M
Miao Xie 已提交
2180 2181
		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
					     BTRFS_RESERVE_FLUSH_ALL);
2182
		if (ret) {
2183 2184
			err = ret;
			goto out;
2185
		}
2186 2187 2188 2189 2190 2191 2192
		trans = btrfs_start_transaction(root, 0);
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			goto out;
		}
		trans->block_rsv = rc->block_rsv;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

		replaced = 0;
		max_level = level;

		ret = walk_down_reloc_tree(reloc_root, path, &level);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0)
			break;

		if (!find_next_key(path, level, &key) &&
		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
			ret = 0;
		} else {
2209 2210
			ret = replace_path(trans, root, reloc_root, path,
					   &next_key, level, max_level);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		}
		if (ret < 0) {
			err = ret;
			goto out;
		}

		if (ret > 0) {
			level = ret;
			btrfs_node_key_to_cpu(path->nodes[level], &key,
					      path->slots[level]);
			replaced = 1;
		}

		ret = walk_up_reloc_tree(reloc_root, path, &level);
		if (ret > 0)
			break;

		BUG_ON(level == 0);
		/*
		 * save the merging progress in the drop_progress.
		 * this is OK since root refs == 1 in this case.
		 */
		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
			       path->slots[level]);
		root_item->drop_level = level;

2237
		btrfs_end_transaction_throttle(trans);
2238
		trans = NULL;
2239

2240
		btrfs_btree_balance_dirty(fs_info);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

		if (replaced && rc->stage == UPDATE_DATA_PTRS)
			invalidate_extent_cache(root, &key, &next_key);
	}

	/*
	 * handle the case only one block in the fs tree need to be
	 * relocated and the block is tree root.
	 */
	leaf = btrfs_lock_root_node(root);
	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
	btrfs_tree_unlock(leaf);
	free_extent_buffer(leaf);
	if (ret < 0)
		err = ret;
out:
	btrfs_free_path(path);

	if (err == 0) {
		memset(&root_item->drop_progress, 0,
		       sizeof(root_item->drop_progress));
		root_item->drop_level = 0;
		btrfs_set_root_refs(root_item, 0);
2264
		btrfs_update_reloc_root(trans, root);
2265 2266
	}

2267
	if (trans)
2268
		btrfs_end_transaction_throttle(trans);
2269

2270
	btrfs_btree_balance_dirty(fs_info);
2271 2272 2273 2274 2275 2276 2277

	if (replaced && rc->stage == UPDATE_DATA_PTRS)
		invalidate_extent_cache(root, &key, &next_key);

	return err;
}

2278 2279
static noinline_for_stack
int prepare_to_merge(struct reloc_control *rc, int err)
2280
{
2281
	struct btrfs_root *root = rc->extent_root;
2282
	struct btrfs_fs_info *fs_info = root->fs_info;
2283
	struct btrfs_root *reloc_root;
2284 2285 2286 2287 2288
	struct btrfs_trans_handle *trans;
	LIST_HEAD(reloc_roots);
	u64 num_bytes = 0;
	int ret;

2289 2290
	mutex_lock(&fs_info->reloc_mutex);
	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2291
	rc->merging_rsv_size += rc->nodes_relocated * 2;
2292
	mutex_unlock(&fs_info->reloc_mutex);
C
Chris Mason 已提交
2293

2294 2295 2296
again:
	if (!err) {
		num_bytes = rc->merging_rsv_size;
M
Miao Xie 已提交
2297 2298
		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
					  BTRFS_RESERVE_FLUSH_ALL);
2299 2300 2301 2302
		if (ret)
			err = ret;
	}

2303
	trans = btrfs_join_transaction(rc->extent_root);
2304 2305
	if (IS_ERR(trans)) {
		if (!err)
2306 2307
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2308 2309
		return PTR_ERR(trans);
	}
2310 2311 2312

	if (!err) {
		if (num_bytes != rc->merging_rsv_size) {
2313
			btrfs_end_transaction(trans);
2314 2315
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2316 2317 2318
			goto again;
		}
	}
2319

2320 2321 2322 2323 2324 2325
	rc->merge_reloc_tree = 1;

	while (!list_empty(&rc->reloc_roots)) {
		reloc_root = list_entry(rc->reloc_roots.next,
					struct btrfs_root, root_list);
		list_del_init(&reloc_root->root_list);
2326

2327
		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2328 2329 2330
		BUG_ON(IS_ERR(root));
		BUG_ON(root->reloc_root != reloc_root);

2331 2332 2333 2334 2335 2336
		/*
		 * set reference count to 1, so btrfs_recover_relocation
		 * knows it should resumes merging
		 */
		if (!err)
			btrfs_set_root_refs(&reloc_root->root_item, 1);
2337 2338
		btrfs_update_reloc_root(trans, root);

2339 2340
		list_add(&reloc_root->root_list, &reloc_roots);
	}
2341

2342
	list_splice(&reloc_roots, &rc->reloc_roots);
2343

2344
	if (!err)
2345
		btrfs_commit_transaction(trans);
2346
	else
2347
		btrfs_end_transaction(trans);
2348
	return err;
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358
static noinline_for_stack
void free_reloc_roots(struct list_head *list)
{
	struct btrfs_root *reloc_root;

	while (!list_empty(list)) {
		reloc_root = list_entry(list->next, struct btrfs_root,
					root_list);
2359
		__del_reloc_root(reloc_root);
2360 2361 2362 2363
		free_extent_buffer(reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->node = NULL;
		reloc_root->commit_root = NULL;
2364 2365 2366
	}
}

2367
static noinline_for_stack
2368
void merge_reloc_roots(struct reloc_control *rc)
2369
{
2370
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2371
	struct btrfs_root *root;
2372 2373 2374
	struct btrfs_root *reloc_root;
	LIST_HEAD(reloc_roots);
	int found = 0;
2375
	int ret = 0;
2376 2377
again:
	root = rc->extent_root;
C
Chris Mason 已提交
2378 2379 2380 2381 2382 2383 2384

	/*
	 * this serializes us with btrfs_record_root_in_transaction,
	 * we have to make sure nobody is in the middle of
	 * adding their roots to the list while we are
	 * doing this splice
	 */
2385
	mutex_lock(&fs_info->reloc_mutex);
2386
	list_splice_init(&rc->reloc_roots, &reloc_roots);
2387
	mutex_unlock(&fs_info->reloc_mutex);
2388

2389 2390 2391 2392
	while (!list_empty(&reloc_roots)) {
		found = 1;
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
2393

2394
		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2395
			root = read_fs_root(fs_info,
2396 2397 2398
					    reloc_root->root_key.offset);
			BUG_ON(IS_ERR(root));
			BUG_ON(root->reloc_root != reloc_root);
2399

2400
			ret = merge_reloc_root(rc, root);
2401
			if (ret) {
2402 2403 2404
				if (list_empty(&reloc_root->root_list))
					list_add_tail(&reloc_root->root_list,
						      &reloc_roots);
2405
				goto out;
2406
			}
2407 2408 2409
		} else {
			list_del_init(&reloc_root->root_list);
		}
M
Miao Xie 已提交
2410

2411
		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2412 2413 2414 2415 2416 2417
		if (ret < 0) {
			if (list_empty(&reloc_root->root_list))
				list_add_tail(&reloc_root->root_list,
					      &reloc_roots);
			goto out;
		}
2418 2419
	}

2420 2421 2422 2423
	if (found) {
		found = 0;
		goto again;
	}
2424 2425
out:
	if (ret) {
2426
		btrfs_handle_fs_error(fs_info, ret, NULL);
2427 2428
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2429 2430

		/* new reloc root may be added */
2431
		mutex_lock(&fs_info->reloc_mutex);
2432
		list_splice_init(&rc->reloc_roots, &reloc_roots);
2433
		mutex_unlock(&fs_info->reloc_mutex);
2434 2435
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2436 2437
	}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
}

static void free_block_list(struct rb_root *blocks)
{
	struct tree_block *block;
	struct rb_node *rb_node;
	while ((rb_node = rb_first(blocks))) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		rb_erase(rb_node, blocks);
		kfree(block);
	}
}

static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
				      struct btrfs_root *reloc_root)
{
2455
	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2456 2457 2458 2459 2460
	struct btrfs_root *root;

	if (reloc_root->last_trans == trans->transid)
		return 0;

2461
	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2462 2463 2464 2465 2466 2467
	BUG_ON(IS_ERR(root));
	BUG_ON(root->reloc_root != reloc_root);

	return btrfs_record_root_in_trans(trans, root);
}

2468 2469 2470 2471
static noinline_for_stack
struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
				     struct reloc_control *rc,
				     struct backref_node *node,
2472
				     struct backref_edge *edges[])
2473 2474 2475
{
	struct backref_node *next;
	struct btrfs_root *root;
2476 2477
	int index = 0;

2478 2479 2480 2481 2482
	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
2483
		BUG_ON(!root);
2484
		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2485 2486 2487 2488 2489 2490

		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
			record_reloc_root_in_trans(trans, root);
			break;
		}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		btrfs_record_root_in_trans(trans, root);
		root = root->reloc_root;

		if (next->new_bytenr != root->node->start) {
			BUG_ON(next->new_bytenr);
			BUG_ON(!list_empty(&next->list));
			next->new_bytenr = root->node->start;
			next->root = root;
			list_add_tail(&next->list,
				      &rc->backref_cache.changed);
			__mark_block_processed(rc, next);
2502 2503 2504
			break;
		}

2505
		WARN_ON(1);
2506 2507 2508 2509 2510
		root = NULL;
		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}
2511 2512
	if (!root)
		return NULL;
2513

2514 2515 2516 2517 2518 2519 2520
	next = node;
	/* setup backref node path for btrfs_reloc_cow_block */
	while (1) {
		rc->backref_cache.path[next->level] = next;
		if (--index < 0)
			break;
		next = edges[index]->node[UPPER];
2521 2522 2523 2524
	}
	return root;
}

2525 2526 2527 2528 2529 2530
/*
 * select a tree root for relocation. return NULL if the block
 * is reference counted. we should use do_relocation() in this
 * case. return a tree root pointer if the block isn't reference
 * counted. return -ENOENT if the block is root of reloc tree.
 */
2531
static noinline_for_stack
2532
struct btrfs_root *select_one_root(struct backref_node *node)
2533
{
2534 2535 2536
	struct backref_node *next;
	struct btrfs_root *root;
	struct btrfs_root *fs_root = NULL;
2537
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2538 2539 2540 2541 2542 2543 2544 2545 2546
	int index = 0;

	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
		BUG_ON(!root);

L
Lucas De Marchi 已提交
2547
		/* no other choice for non-references counted tree */
2548
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
			return root;

		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
			fs_root = root;

		if (next != node)
			return NULL;

		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}

	if (!fs_root)
		return ERR_PTR(-ENOENT);
	return fs_root;
2565 2566 2567
}

static noinline_for_stack
2568 2569
u64 calcu_metadata_size(struct reloc_control *rc,
			struct backref_node *node, int reserve)
2570
{
2571
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	u64 num_bytes = 0;
	int index = 0;

	BUG_ON(reserve && node->processed);

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed && (reserve || next != node))
				break;

2586
			num_bytes += fs_info->nodesize;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
	return num_bytes;
2599 2600
}

2601 2602 2603
static int reserve_metadata_space(struct btrfs_trans_handle *trans,
				  struct reloc_control *rc,
				  struct backref_node *node)
2604
{
2605
	struct btrfs_root *root = rc->extent_root;
2606
	struct btrfs_fs_info *fs_info = root->fs_info;
2607 2608
	u64 num_bytes;
	int ret;
2609
	u64 tmp;
2610 2611

	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2612

2613
	trans->block_rsv = rc->block_rsv;
2614
	rc->reserved_bytes += num_bytes;
2615 2616 2617 2618 2619 2620

	/*
	 * We are under a transaction here so we can only do limited flushing.
	 * If we get an enospc just kick back -EAGAIN so we know to drop the
	 * transaction and try to refill when we can flush all the things.
	 */
2621
	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2622
				BTRFS_RESERVE_FLUSH_LIMIT);
2623
	if (ret) {
2624
		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2625 2626 2627 2628 2629 2630 2631 2632 2633
		while (tmp <= rc->reserved_bytes)
			tmp <<= 1;
		/*
		 * only one thread can access block_rsv at this point,
		 * so we don't need hold lock to protect block_rsv.
		 * we expand more reservation size here to allow enough
		 * space for relocation and we will return eailer in
		 * enospc case.
		 */
2634 2635
		rc->block_rsv->size = tmp + fs_info->nodesize *
				      RELOCATION_RESERVED_NODES;
2636
		return -EAGAIN;
2637
	}
2638 2639 2640 2641

	return 0;
}

2642 2643 2644 2645 2646 2647 2648 2649
/*
 * relocate a block tree, and then update pointers in upper level
 * blocks that reference the block to point to the new location.
 *
 * if called by link_to_upper, the block has already been relocated.
 * in that case this function just updates pointers.
 */
static int do_relocation(struct btrfs_trans_handle *trans,
2650
			 struct reloc_control *rc,
2651 2652 2653 2654
			 struct backref_node *node,
			 struct btrfs_key *key,
			 struct btrfs_path *path, int lowest)
{
2655
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	struct backref_node *upper;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	struct btrfs_root *root;
	struct extent_buffer *eb;
	u32 blocksize;
	u64 bytenr;
	u64 generation;
	int slot;
	int ret;
	int err = 0;

	BUG_ON(lowest && node->eb);

	path->lowest_level = node->level + 1;
2671
	rc->backref_cache.path[node->level] = node;
2672
	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2673 2674
		struct btrfs_key first_key;

2675 2676 2677
		cond_resched();

		upper = edge->node[UPPER];
2678
		root = select_reloc_root(trans, rc, upper, edges);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
		BUG_ON(!root);

		if (upper->eb && !upper->locked) {
			if (!lowest) {
				ret = btrfs_bin_search(upper->eb, key,
						       upper->level, &slot);
				BUG_ON(ret);
				bytenr = btrfs_node_blockptr(upper->eb, slot);
				if (node->eb->start == bytenr)
					goto next;
			}
2690
			drop_node_buffer(upper);
2691
		}
2692 2693 2694

		if (!upper->eb) {
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2695 2696 2697 2698 2699 2700 2701
			if (ret) {
				if (ret < 0)
					err = ret;
				else
					err = -ENOENT;

				btrfs_release_path(path);
2702 2703 2704
				break;
			}

2705 2706 2707 2708 2709 2710
			if (!upper->eb) {
				upper->eb = path->nodes[upper->level];
				path->nodes[upper->level] = NULL;
			} else {
				BUG_ON(upper->eb != path->nodes[upper->level]);
			}
2711

2712 2713
			upper->locked = 1;
			path->locks[upper->level] = 0;
2714

2715
			slot = path->slots[upper->level];
2716
			btrfs_release_path(path);
2717 2718 2719 2720 2721 2722 2723
		} else {
			ret = btrfs_bin_search(upper->eb, key, upper->level,
					       &slot);
			BUG_ON(ret);
		}

		bytenr = btrfs_node_blockptr(upper->eb, slot);
2724
		if (lowest) {
L
Liu Bo 已提交
2725 2726 2727 2728 2729 2730 2731 2732
			if (bytenr != node->bytenr) {
				btrfs_err(root->fs_info,
		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
					  bytenr, node->bytenr, slot,
					  upper->eb->start);
				err = -EIO;
				goto next;
			}
2733
		} else {
2734 2735
			if (node->eb->start == bytenr)
				goto next;
2736 2737
		}

2738
		blocksize = root->fs_info->nodesize;
2739
		generation = btrfs_node_ptr_generation(upper->eb, slot);
2740 2741 2742
		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
		eb = read_tree_block(fs_info, bytenr, generation,
				     upper->level - 1, &first_key);
2743 2744 2745 2746
		if (IS_ERR(eb)) {
			err = PTR_ERR(eb);
			goto next;
		} else if (!extent_buffer_uptodate(eb)) {
2747
			free_extent_buffer(eb);
2748 2749 2750
			err = -EIO;
			goto next;
		}
2751 2752 2753 2754 2755 2756
		btrfs_tree_lock(eb);
		btrfs_set_lock_blocking(eb);

		if (!node->eb) {
			ret = btrfs_cow_block(trans, root, eb, upper->eb,
					      slot, &eb);
2757 2758
			btrfs_tree_unlock(eb);
			free_extent_buffer(eb);
2759 2760
			if (ret < 0) {
				err = ret;
2761
				goto next;
2762
			}
2763
			BUG_ON(node->eb != eb);
2764 2765 2766 2767 2768 2769 2770
		} else {
			btrfs_set_node_blockptr(upper->eb, slot,
						node->eb->start);
			btrfs_set_node_ptr_generation(upper->eb, slot,
						      trans->transid);
			btrfs_mark_buffer_dirty(upper->eb);

2771
			ret = btrfs_inc_extent_ref(trans, root,
2772 2773 2774
						node->eb->start, blocksize,
						upper->eb->start,
						btrfs_header_owner(upper->eb),
2775
						node->level, 0);
2776 2777 2778 2779 2780
			BUG_ON(ret);

			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
			BUG_ON(ret);
		}
2781 2782 2783 2784 2785 2786 2787
next:
		if (!upper->pending)
			drop_node_buffer(upper);
		else
			unlock_node_buffer(upper);
		if (err)
			break;
2788
	}
2789 2790 2791 2792 2793 2794 2795

	if (!err && node->pending) {
		drop_node_buffer(node);
		list_move_tail(&node->list, &rc->backref_cache.changed);
		node->pending = 0;
	}

2796
	path->lowest_level = 0;
2797
	BUG_ON(err == -ENOSPC);
2798 2799 2800 2801
	return err;
}

static int link_to_upper(struct btrfs_trans_handle *trans,
2802
			 struct reloc_control *rc,
2803 2804 2805 2806 2807 2808
			 struct backref_node *node,
			 struct btrfs_path *path)
{
	struct btrfs_key key;

	btrfs_node_key_to_cpu(node->eb, &key, 0);
2809
	return do_relocation(trans, rc, node, &key, path, 0);
2810 2811 2812
}

static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2813 2814
				struct reloc_control *rc,
				struct btrfs_path *path, int err)
2815
{
2816 2817
	LIST_HEAD(list);
	struct backref_cache *cache = &rc->backref_cache;
2818 2819 2820 2821 2822 2823 2824
	struct backref_node *node;
	int level;
	int ret;

	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		while (!list_empty(&cache->pending[level])) {
			node = list_entry(cache->pending[level].next,
2825 2826 2827
					  struct backref_node, list);
			list_move_tail(&node->list, &list);
			BUG_ON(!node->pending);
2828

2829 2830 2831 2832 2833
			if (!err) {
				ret = link_to_upper(trans, rc, node, path);
				if (ret < 0)
					err = ret;
			}
2834
		}
2835
		list_splice_init(&list, &cache->pending[level]);
2836 2837 2838 2839 2840
	}
	return err;
}

static void mark_block_processed(struct reloc_control *rc,
2841 2842 2843
				 u64 bytenr, u32 blocksize)
{
	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2844
			EXTENT_DIRTY);
2845 2846 2847 2848
}

static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node)
2849 2850 2851 2852
{
	u32 blocksize;
	if (node->level == 0 ||
	    in_block_group(node->bytenr, rc->block_group)) {
2853
		blocksize = rc->extent_root->fs_info->nodesize;
2854
		mark_block_processed(rc, node->bytenr, blocksize);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	}
	node->processed = 1;
}

/*
 * mark a block and all blocks directly/indirectly reference the block
 * as processed.
 */
static void update_processed_blocks(struct reloc_control *rc,
				    struct backref_node *node)
{
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	int index = 0;

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed)
				break;

2877
			__mark_block_processed(rc, next);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
}

2891
static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2892
{
2893
	u32 blocksize = rc->extent_root->fs_info->nodesize;
2894

2895 2896 2897 2898
	if (test_range_bit(&rc->processed_blocks, bytenr,
			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
		return 1;
	return 0;
2899 2900
}

2901
static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2902 2903 2904 2905 2906
			      struct tree_block *block)
{
	struct extent_buffer *eb;

	BUG_ON(block->key_ready);
2907 2908
	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
			     block->level, NULL);
2909 2910 2911
	if (IS_ERR(eb)) {
		return PTR_ERR(eb);
	} else if (!extent_buffer_uptodate(eb)) {
2912 2913 2914
		free_extent_buffer(eb);
		return -EIO;
	}
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	WARN_ON(btrfs_header_level(eb) != block->level);
	if (block->level == 0)
		btrfs_item_key_to_cpu(eb, &block->key, 0);
	else
		btrfs_node_key_to_cpu(eb, &block->key, 0);
	free_extent_buffer(eb);
	block->key_ready = 1;
	return 0;
}

/*
 * helper function to relocate a tree block
 */
static int relocate_tree_block(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
				struct backref_node *node,
				struct btrfs_key *key,
				struct btrfs_path *path)
{
	struct btrfs_root *root;
2935 2936 2937 2938
	int ret = 0;

	if (!node)
		return 0;
2939

2940
	BUG_ON(node->processed);
2941
	root = select_one_root(node);
2942
	if (root == ERR_PTR(-ENOENT)) {
2943
		update_processed_blocks(rc, node);
2944
		goto out;
2945 2946
	}

2947
	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2948 2949
		ret = reserve_metadata_space(trans, rc, node);
		if (ret)
2950 2951 2952
			goto out;
	}

2953
	if (root) {
2954
		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
			BUG_ON(node->new_bytenr);
			BUG_ON(!list_empty(&node->list));
			btrfs_record_root_in_trans(trans, root);
			root = root->reloc_root;
			node->new_bytenr = root->node->start;
			node->root = root;
			list_add_tail(&node->list, &rc->backref_cache.changed);
		} else {
			path->lowest_level = node->level;
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2965
			btrfs_release_path(path);
2966 2967 2968 2969 2970 2971 2972 2973
			if (ret > 0)
				ret = 0;
		}
		if (!ret)
			update_processed_blocks(rc, node);
	} else {
		ret = do_relocation(trans, rc, node, key, path, 1);
	}
2974
out:
2975
	if (ret || node->level == 0 || node->cowonly)
2976
		remove_backref_node(&rc->backref_cache, node);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	return ret;
}

/*
 * relocate a list of blocks
 */
static noinline_for_stack
int relocate_tree_blocks(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc, struct rb_root *blocks)
{
2987
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2988 2989 2990 2991 2992 2993 2994 2995
	struct backref_node *node;
	struct btrfs_path *path;
	struct tree_block *block;
	struct rb_node *rb_node;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
2996 2997
	if (!path) {
		err = -ENOMEM;
2998
		goto out_free_blocks;
2999
	}
3000 3001 3002 3003 3004

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		if (!block->key_ready)
3005
			readahead_tree_block(fs_info, block->bytenr);
3006 3007 3008 3009 3010 3011
		rb_node = rb_next(rb_node);
	}

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
3012
		if (!block->key_ready) {
3013
			err = get_tree_block_key(fs_info, block);
3014 3015 3016
			if (err)
				goto out_free_path;
		}
3017 3018 3019 3020 3021 3022 3023
		rb_node = rb_next(rb_node);
	}

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);

3024
		node = build_backref_tree(rc, &block->key,
3025 3026 3027 3028 3029 3030 3031 3032 3033
					  block->level, block->bytenr);
		if (IS_ERR(node)) {
			err = PTR_ERR(node);
			goto out;
		}

		ret = relocate_tree_block(trans, rc, node, &block->key,
					  path);
		if (ret < 0) {
3034 3035
			if (ret != -EAGAIN || rb_node == rb_first(blocks))
				err = ret;
3036 3037 3038 3039 3040
			goto out;
		}
		rb_node = rb_next(rb_node);
	}
out:
3041
	err = finish_pending_nodes(trans, rc, path, err);
3042

3043
out_free_path:
3044
	btrfs_free_path(path);
3045
out_free_blocks:
3046
	free_block_list(blocks);
3047 3048 3049
	return err;
}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
static noinline_for_stack
int prealloc_file_extent_cluster(struct inode *inode,
				 struct file_extent_cluster *cluster)
{
	u64 alloc_hint = 0;
	u64 start;
	u64 end;
	u64 offset = BTRFS_I(inode)->index_cnt;
	u64 num_bytes;
	int nr = 0;
	int ret = 0;
3061 3062
	u64 prealloc_start = cluster->start - offset;
	u64 prealloc_end = cluster->end - offset;
3063
	u64 cur_offset;
3064
	struct extent_changeset *data_reserved = NULL;
3065 3066

	BUG_ON(cluster->start != cluster->boundary[0]);
A
Al Viro 已提交
3067
	inode_lock(inode);
3068

3069
	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3070
					  prealloc_end + 1 - prealloc_start);
3071 3072 3073
	if (ret)
		goto out;

3074
	cur_offset = prealloc_start;
3075 3076 3077 3078 3079 3080 3081
	while (nr < cluster->nr) {
		start = cluster->boundary[nr] - offset;
		if (nr + 1 < cluster->nr)
			end = cluster->boundary[nr + 1] - 1 - offset;
		else
			end = cluster->end - offset;

3082
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3083
		num_bytes = end + 1 - start;
3084
		if (cur_offset < start)
3085 3086
			btrfs_free_reserved_data_space(inode, data_reserved,
					cur_offset, start - cur_offset);
3087 3088 3089
		ret = btrfs_prealloc_file_range(inode, 0, start,
						num_bytes, num_bytes,
						end + 1, &alloc_hint);
3090
		cur_offset = end + 1;
3091
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3092 3093 3094 3095
		if (ret)
			break;
		nr++;
	}
3096
	if (cur_offset < prealloc_end)
3097 3098
		btrfs_free_reserved_data_space(inode, data_reserved,
				cur_offset, prealloc_end + 1 - cur_offset);
3099
out:
A
Al Viro 已提交
3100
	inode_unlock(inode);
3101
	extent_changeset_free(data_reserved);
3102 3103 3104
	return ret;
}

3105
static noinline_for_stack
3106 3107 3108
int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
			 u64 block_start)
{
3109
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3110 3111 3112 3113
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	struct extent_map *em;
	int ret = 0;

3114
	em = alloc_extent_map();
3115 3116 3117 3118 3119 3120 3121
	if (!em)
		return -ENOMEM;

	em->start = start;
	em->len = end + 1 - start;
	em->block_len = em->len;
	em->block_start = block_start;
3122
	em->bdev = fs_info->fs_devices->latest_bdev;
3123 3124
	set_bit(EXTENT_FLAG_PINNED, &em->flags);

3125
	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3126 3127
	while (1) {
		write_lock(&em_tree->lock);
J
Josef Bacik 已提交
3128
		ret = add_extent_mapping(em_tree, em, 0);
3129 3130 3131 3132 3133
		write_unlock(&em_tree->lock);
		if (ret != -EEXIST) {
			free_extent_map(em);
			break;
		}
3134
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3135
	}
3136
	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3137 3138 3139 3140 3141
	return ret;
}

static int relocate_file_extent_cluster(struct inode *inode,
					struct file_extent_cluster *cluster)
3142
{
3143
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3144 3145
	u64 page_start;
	u64 page_end;
3146 3147
	u64 offset = BTRFS_I(inode)->index_cnt;
	unsigned long index;
3148 3149 3150
	unsigned long last_index;
	struct page *page;
	struct file_ra_state *ra;
3151
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3152
	int nr = 0;
3153 3154
	int ret = 0;

3155 3156 3157
	if (!cluster->nr)
		return 0;

3158 3159 3160 3161
	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

3162 3163 3164
	ret = prealloc_file_extent_cluster(inode, cluster);
	if (ret)
		goto out;
3165

3166
	file_ra_state_init(ra, inode->i_mapping);
3167

3168 3169
	ret = setup_extent_mapping(inode, cluster->start - offset,
				   cluster->end - offset, cluster->start);
3170
	if (ret)
3171
		goto out;
3172

3173 3174
	index = (cluster->start - offset) >> PAGE_SHIFT;
	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3175
	while (index <= last_index) {
3176 3177
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
				PAGE_SIZE);
3178 3179 3180
		if (ret)
			goto out;

3181
		page = find_lock_page(inode->i_mapping, index);
3182
		if (!page) {
3183 3184 3185
			page_cache_sync_readahead(inode->i_mapping,
						  ra, NULL, index,
						  last_index + 1 - index);
3186
			page = find_or_create_page(inode->i_mapping, index,
3187
						   mask);
3188
			if (!page) {
3189
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3190
							PAGE_SIZE, true);
3191
				ret = -ENOMEM;
3192
				goto out;
3193
			}
3194
		}
3195 3196 3197 3198 3199 3200 3201

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping,
						   ra, NULL, page, index,
						   last_index + 1 - index);
		}

3202 3203 3204 3205 3206
		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
3207
				put_page(page);
3208
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3209
							PAGE_SIZE, true);
J
Josef Bacik 已提交
3210
				btrfs_delalloc_release_extents(BTRFS_I(inode),
3211
							       PAGE_SIZE, true);
3212
				ret = -EIO;
3213
				goto out;
3214 3215 3216
			}
		}

M
Miao Xie 已提交
3217
		page_start = page_offset(page);
3218
		page_end = page_start + PAGE_SIZE - 1;
3219

3220
		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3221

3222 3223
		set_page_extent_mapped(page);

3224 3225 3226 3227
		if (nr < cluster->nr &&
		    page_start + offset == cluster->boundary[nr]) {
			set_extent_bits(&BTRFS_I(inode)->io_tree,
					page_start, page_end,
3228
					EXTENT_BOUNDARY);
3229 3230
			nr++;
		}
3231

3232 3233 3234 3235 3236 3237
		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
						NULL, 0);
		if (ret) {
			unlock_page(page);
			put_page(page);
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3238
							 PAGE_SIZE, true);
3239
			btrfs_delalloc_release_extents(BTRFS_I(inode),
3240
			                               PAGE_SIZE, true);
3241 3242 3243 3244 3245 3246 3247

			clear_extent_bits(&BTRFS_I(inode)->io_tree,
					  page_start, page_end,
					  EXTENT_LOCKED | EXTENT_BOUNDARY);
			goto out;

		}
3248 3249
		set_page_dirty(page);

3250
		unlock_extent(&BTRFS_I(inode)->io_tree,
3251
			      page_start, page_end);
3252
		unlock_page(page);
3253
		put_page(page);
3254 3255

		index++;
3256 3257
		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
					       false);
3258
		balance_dirty_pages_ratelimited(inode->i_mapping);
3259
		btrfs_throttle(fs_info);
3260
	}
3261
	WARN_ON(nr != cluster->nr);
3262
out:
3263 3264 3265 3266 3267
	kfree(ra);
	return ret;
}

static noinline_for_stack
3268 3269
int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
			 struct file_extent_cluster *cluster)
3270
{
3271
	int ret;
3272

3273 3274 3275 3276 3277
	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
3278 3279
	}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	if (!cluster->nr)
		cluster->start = extent_key->objectid;
	else
		BUG_ON(cluster->nr >= MAX_EXTENTS);
	cluster->end = extent_key->objectid + extent_key->offset - 1;
	cluster->boundary[cluster->nr] = extent_key->objectid;
	cluster->nr++;

	if (cluster->nr >= MAX_EXTENTS) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
	}
	return 0;
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
}

/*
 * helper to add a tree block to the list.
 * the major work is getting the generation and level of the block
 */
static int add_tree_block(struct reloc_control *rc,
			  struct btrfs_key *extent_key,
			  struct btrfs_path *path,
			  struct rb_root *blocks)
{
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	struct tree_block *block;
	struct rb_node *rb_node;
	u32 item_size;
	int level = -1;
3313
	u64 generation;
3314 3315 3316 3317

	eb =  path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

3318 3319
	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3320 3321
		ei = btrfs_item_ptr(eb, path->slots[0],
				struct btrfs_extent_item);
3322 3323 3324 3325 3326 3327
		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
			bi = (struct btrfs_tree_block_info *)(ei + 1);
			level = btrfs_tree_block_level(eb, bi);
		} else {
			level = (int)extent_key->offset;
		}
3328
		generation = btrfs_extent_generation(eb, ei);
3329
	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3330 3331 3332
		btrfs_print_v0_err(eb->fs_info);
		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
		return -EINVAL;
3333 3334 3335 3336
	} else {
		BUG();
	}

3337
	btrfs_release_path(path);
3338 3339 3340 3341 3342 3343 3344 3345

	BUG_ON(level == -1);

	block = kmalloc(sizeof(*block), GFP_NOFS);
	if (!block)
		return -ENOMEM;

	block->bytenr = extent_key->objectid;
3346
	block->key.objectid = rc->extent_root->fs_info->nodesize;
3347 3348 3349 3350 3351
	block->key.offset = generation;
	block->level = level;
	block->key_ready = 0;

	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3352 3353
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

	return 0;
}

/*
 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
 */
static int __add_tree_block(struct reloc_control *rc,
			    u64 bytenr, u32 blocksize,
			    struct rb_root *blocks)
{
3365
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366 3367 3368
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
3369
	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3370

3371
	if (tree_block_processed(bytenr, rc))
3372 3373 3374 3375 3376 3377 3378 3379
		return 0;

	if (tree_search(blocks, bytenr))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3380
again:
3381
	key.objectid = bytenr;
3382 3383 3384 3385 3386 3387 3388
	if (skinny) {
		key.type = BTRFS_METADATA_ITEM_KEY;
		key.offset = (u64)-1;
	} else {
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = blocksize;
	}
3389 3390 3391 3392 3393 3394 3395

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	if (ret > 0 && skinny) {
		if (path->slots[0]) {
			path->slots[0]--;
			btrfs_item_key_to_cpu(path->nodes[0], &key,
					      path->slots[0]);
			if (key.objectid == bytenr &&
			    (key.type == BTRFS_METADATA_ITEM_KEY ||
			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
			      key.offset == blocksize)))
				ret = 0;
		}

		if (ret) {
			skinny = false;
			btrfs_release_path(path);
			goto again;
		}
3413
	}
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	if (ret) {
		ASSERT(ret == 1);
		btrfs_print_leaf(path->nodes[0]);
		btrfs_err(fs_info,
	     "tree block extent item (%llu) is not found in extent tree",
		     bytenr);
		WARN_ON(1);
		ret = -EINVAL;
		goto out;
	}
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	ret = add_tree_block(rc, &key, path, blocks);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to check if the block use full backrefs for pointers in it
 */
static int block_use_full_backref(struct reloc_control *rc,
				  struct extent_buffer *eb)
{
	u64 flags;
	int ret;

	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
		return 1;

3444
	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3445 3446
				       eb->start, btrfs_header_level(eb), 1,
				       NULL, &flags);
3447 3448 3449 3450 3451 3452 3453 3454 3455
	BUG_ON(ret);

	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
		ret = 1;
	else
		ret = 0;
	return ret;
}

3456
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3457 3458 3459
				    struct btrfs_block_group_cache *block_group,
				    struct inode *inode,
				    u64 ino)
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
{
	struct btrfs_key key;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_trans_handle *trans;
	int ret = 0;

	if (inode)
		goto truncate;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3474 3475
	if (IS_ERR(inode) || is_bad_inode(inode)) {
		if (!IS_ERR(inode))
3476 3477 3478 3479 3480
			iput(inode);
		return -ENOENT;
	}

truncate:
3481
	ret = btrfs_check_trunc_cache_free_space(fs_info,
3482 3483 3484 3485
						 &fs_info->global_block_rsv);
	if (ret)
		goto out;

3486
	trans = btrfs_join_transaction(root);
3487
	if (IS_ERR(trans)) {
3488
		ret = PTR_ERR(trans);
3489 3490 3491
		goto out;
	}

3492
	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3493

3494
	btrfs_end_transaction(trans);
3495
	btrfs_btree_balance_dirty(fs_info);
3496 3497 3498 3499 3500
out:
	iput(inode);
	return ret;
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
/*
 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
 * this function scans fs tree to find blocks reference the data extent
 */
static int find_data_references(struct reloc_control *rc,
				struct btrfs_key *extent_key,
				struct extent_buffer *leaf,
				struct btrfs_extent_data_ref *ref,
				struct rb_root *blocks)
{
3511
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	struct btrfs_path *path;
	struct tree_block *block;
	struct btrfs_root *root;
	struct btrfs_file_extent_item *fi;
	struct rb_node *rb_node;
	struct btrfs_key key;
	u64 ref_root;
	u64 ref_objectid;
	u64 ref_offset;
	u32 ref_count;
	u32 nritems;
	int err = 0;
	int added = 0;
	int counted;
	int ret;

	ref_root = btrfs_extent_data_ref_root(leaf, ref);
	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
	ref_count = btrfs_extent_data_ref_count(leaf, ref);

3533 3534 3535 3536 3537
	/*
	 * This is an extent belonging to the free space cache, lets just delete
	 * it and redo the search.
	 */
	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3538
		ret = delete_block_group_cache(fs_info, rc->block_group,
3539 3540 3541 3542 3543 3544 3545 3546 3547
					       NULL, ref_objectid);
		if (ret != -ENOENT)
			return ret;
		ret = 0;
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3548
	path->reada = READA_FORWARD;
3549

3550
	root = read_fs_root(fs_info, ref_root);
3551 3552 3553 3554 3555 3556 3557
	if (IS_ERR(root)) {
		err = PTR_ERR(root);
		goto out;
	}

	key.objectid = ref_objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
3558 3559 3560 3561
	if (ref_offset > ((u64)-1 << 32))
		key.offset = 0;
	else
		key.offset = ref_offset;
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}

	leaf = path->nodes[0];
	nritems = btrfs_header_nritems(leaf);
	/*
	 * the references in tree blocks that use full backrefs
	 * are not counted in
	 */
	if (block_use_full_backref(rc, leaf))
		counted = 0;
	else
		counted = 1;
	rb_node = tree_search(blocks, leaf->start);
	if (rb_node) {
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
	}

	while (ref_count > 0) {
		while (path->slots[0] >= nritems) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				err = ret;
				goto out;
			}
3596
			if (WARN_ON(ret > 0))
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
				goto out;

			leaf = path->nodes[0];
			nritems = btrfs_header_nritems(leaf);
			added = 0;

			if (block_use_full_backref(rc, leaf))
				counted = 0;
			else
				counted = 1;
			rb_node = tree_search(blocks, leaf->start);
			if (rb_node) {
				if (counted)
					added = 1;
				else
					path->slots[0] = nritems;
			}
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3617 3618
		if (WARN_ON(key.objectid != ref_objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY))
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
			break;

		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);

		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			goto next;

		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
		    extent_key->objectid)
			goto next;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
		if (key.offset != ref_offset)
			goto next;

		if (counted)
			ref_count--;
		if (added)
			goto next;

3641
		if (!tree_block_processed(leaf->start, rc)) {
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
			block = kmalloc(sizeof(*block), GFP_NOFS);
			if (!block) {
				err = -ENOMEM;
				break;
			}
			block->bytenr = leaf->start;
			btrfs_item_key_to_cpu(leaf, &block->key, 0);
			block->level = 0;
			block->key_ready = 1;
			rb_node = tree_insert(blocks, block->bytenr,
					      &block->rb_node);
3653 3654 3655
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   block->bytenr);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
		}
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
next:
		path->slots[0]++;

	}
out:
	btrfs_free_path(path);
	return err;
}

/*
L
Liu Bo 已提交
3671
 * helper to find all tree blocks that reference a given data extent
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
 */
static noinline_for_stack
int add_data_references(struct reloc_control *rc,
			struct btrfs_key *extent_key,
			struct btrfs_path *path,
			struct rb_root *blocks)
{
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_extent_data_ref *dref;
	struct btrfs_extent_inline_ref *iref;
	unsigned long ptr;
	unsigned long end;
3685
	u32 blocksize = rc->extent_root->fs_info->nodesize;
3686
	int ret = 0;
3687 3688 3689 3690 3691
	int err = 0;

	eb = path->nodes[0];
	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3692
	ptr += sizeof(struct btrfs_extent_item);
3693 3694 3695

	while (ptr < end) {
		iref = (struct btrfs_extent_inline_ref *)ptr;
3696 3697
		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_DATA);
3698 3699 3700 3701 3702 3703 3704 3705 3706
		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
		} else {
3707
			ret = -EUCLEAN;
3708 3709 3710
			btrfs_err(rc->extent_root->fs_info,
		     "extent %llu slot %d has an invalid inline ref type",
			     eb->start, path->slots[0]);
3711
		}
3712 3713 3714 3715
		if (ret) {
			err = ret;
			goto out;
		}
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		ptr += btrfs_extent_inline_ref_size(key.type);
	}
	WARN_ON(ptr > end);

	while (1) {
		cond_resched();
		eb = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret < 0) {
				err = ret;
				break;
			}
			if (ret > 0)
				break;
			eb = path->nodes[0];
		}

		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
		if (key.objectid != extent_key->objectid)
			break;

		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = btrfs_item_ptr(eb, path->slots[0],
					      struct btrfs_extent_data_ref);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
3746
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3747 3748 3749
			btrfs_print_v0_err(eb->fs_info);
			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
			ret = -EINVAL;
3750 3751 3752 3753 3754 3755 3756 3757 3758
		} else {
			ret = 0;
		}
		if (ret) {
			err = ret;
			break;
		}
		path->slots[0]++;
	}
3759
out:
3760
	btrfs_release_path(path);
3761 3762 3763 3764 3765 3766
	if (err)
		free_block_list(blocks);
	return err;
}

/*
L
Liu Bo 已提交
3767
 * helper to find next unprocessed extent
3768 3769
 */
static noinline_for_stack
3770
int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3771
		     struct btrfs_key *extent_key)
3772
{
3773
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
	struct btrfs_key key;
	struct extent_buffer *leaf;
	u64 start, end, last;
	int ret;

	last = rc->block_group->key.objectid + rc->block_group->key.offset;
	while (1) {
		cond_resched();
		if (rc->search_start >= last) {
			ret = 1;
			break;
		}

		key.objectid = rc->search_start;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = 0;

		path->search_commit_root = 1;
		path->skip_locking = 1;
		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
					0, 0);
		if (ret < 0)
			break;
next:
		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret != 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid >= last) {
			ret = 1;
			break;
		}

3812 3813 3814 3815 3816 3817 3818
		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
		    key.type != BTRFS_METADATA_ITEM_KEY) {
			path->slots[0]++;
			goto next;
		}

		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3819 3820 3821 3822 3823
		    key.objectid + key.offset <= rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3824
		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3825
		    key.objectid + fs_info->nodesize <=
3826 3827 3828 3829 3830
		    rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3831 3832
		ret = find_first_extent_bit(&rc->processed_blocks,
					    key.objectid, &start, &end,
3833
					    EXTENT_DIRTY, NULL);
3834 3835

		if (ret == 0 && start <= key.objectid) {
3836
			btrfs_release_path(path);
3837 3838
			rc->search_start = end + 1;
		} else {
3839 3840 3841 3842
			if (key.type == BTRFS_EXTENT_ITEM_KEY)
				rc->search_start = key.objectid + key.offset;
			else
				rc->search_start = key.objectid +
3843
					fs_info->nodesize;
3844
			memcpy(extent_key, &key, sizeof(key));
3845 3846 3847
			return 0;
		}
	}
3848
	btrfs_release_path(path);
3849 3850 3851 3852 3853 3854
	return ret;
}

static void set_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3855 3856

	mutex_lock(&fs_info->reloc_mutex);
3857
	fs_info->reloc_ctl = rc;
C
Chris Mason 已提交
3858
	mutex_unlock(&fs_info->reloc_mutex);
3859 3860 3861 3862 3863
}

static void unset_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3864 3865

	mutex_lock(&fs_info->reloc_mutex);
3866
	fs_info->reloc_ctl = NULL;
C
Chris Mason 已提交
3867
	mutex_unlock(&fs_info->reloc_mutex);
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
}

static int check_extent_flags(u64 flags)
{
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
		return 1;
	return 0;
}

3884 3885 3886 3887
static noinline_for_stack
int prepare_to_relocate(struct reloc_control *rc)
{
	struct btrfs_trans_handle *trans;
3888
	int ret;
3889

3890
	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3891
					      BTRFS_BLOCK_RSV_TEMP);
3892 3893 3894 3895 3896 3897 3898 3899
	if (!rc->block_rsv)
		return -ENOMEM;

	memset(&rc->cluster, 0, sizeof(rc->cluster));
	rc->search_start = rc->block_group->key.objectid;
	rc->extents_found = 0;
	rc->nodes_relocated = 0;
	rc->merging_rsv_size = 0;
3900
	rc->reserved_bytes = 0;
3901
	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3902
			      RELOCATION_RESERVED_NODES;
3903 3904 3905 3906 3907
	ret = btrfs_block_rsv_refill(rc->extent_root,
				     rc->block_rsv, rc->block_rsv->size,
				     BTRFS_RESERVE_FLUSH_ALL);
	if (ret)
		return ret;
3908 3909 3910 3911

	rc->create_reloc_tree = 1;
	set_reloc_control(rc);

3912
	trans = btrfs_join_transaction(rc->extent_root);
3913 3914 3915 3916 3917 3918 3919 3920 3921
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		/*
		 * extent tree is not a ref_cow tree and has no reloc_root to
		 * cleanup.  And callers are responsible to free the above
		 * block rsv.
		 */
		return PTR_ERR(trans);
	}
3922
	btrfs_commit_transaction(trans);
3923 3924
	return 0;
}
3925

3926 3927
static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
{
3928
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3929 3930 3931 3932 3933 3934 3935 3936 3937
	struct rb_root blocks = RB_ROOT;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	struct btrfs_extent_item *ei;
	u64 flags;
	u32 item_size;
	int ret;
	int err = 0;
3938
	int progress = 0;
3939 3940

	path = btrfs_alloc_path();
3941
	if (!path)
3942
		return -ENOMEM;
3943
	path->reada = READA_FORWARD;
3944

3945 3946 3947 3948 3949
	ret = prepare_to_relocate(rc);
	if (ret) {
		err = ret;
		goto out_free;
	}
3950 3951

	while (1) {
3952 3953 3954 3955 3956 3957 3958 3959
		rc->reserved_bytes = 0;
		ret = btrfs_block_rsv_refill(rc->extent_root,
					rc->block_rsv, rc->block_rsv->size,
					BTRFS_RESERVE_FLUSH_ALL);
		if (ret) {
			err = ret;
			break;
		}
3960
		progress++;
3961
		trans = btrfs_start_transaction(rc->extent_root, 0);
3962 3963 3964 3965 3966
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			break;
		}
3967
restart:
3968
		if (update_backref_cache(trans, &rc->backref_cache)) {
3969
			btrfs_end_transaction(trans);
3970 3971 3972
			continue;
		}

3973
		ret = find_next_extent(rc, path, &key);
3974 3975 3976 3977 3978 3979 3980 3981 3982
		if (ret < 0)
			err = ret;
		if (ret != 0)
			break;

		rc->extents_found++;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_extent_item);
3983
		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3984 3985 3986 3987
		if (item_size >= sizeof(*ei)) {
			flags = btrfs_extent_flags(path->nodes[0], ei);
			ret = check_extent_flags(flags);
			BUG_ON(ret);
3988
		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3989 3990 3991 3992
			err = -EINVAL;
			btrfs_print_v0_err(trans->fs_info);
			btrfs_abort_transaction(trans, err);
			break;
3993 3994 3995 3996 3997 3998 3999
		} else {
			BUG();
		}

		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			ret = add_tree_block(rc, &key, path, &blocks);
		} else if (rc->stage == UPDATE_DATA_PTRS &&
4000
			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4001 4002
			ret = add_data_references(rc, &key, path, &blocks);
		} else {
4003
			btrfs_release_path(path);
4004 4005 4006
			ret = 0;
		}
		if (ret < 0) {
4007
			err = ret;
4008 4009 4010 4011 4012 4013
			break;
		}

		if (!RB_EMPTY_ROOT(&blocks)) {
			ret = relocate_tree_blocks(trans, rc, &blocks);
			if (ret < 0) {
4014 4015 4016 4017 4018 4019
				/*
				 * if we fail to relocate tree blocks, force to update
				 * backref cache when committing transaction.
				 */
				rc->backref_cache.last_trans = trans->transid - 1;

4020 4021 4022 4023 4024 4025 4026 4027 4028
				if (ret != -EAGAIN) {
					err = ret;
					break;
				}
				rc->extents_found--;
				rc->search_start = key.objectid;
			}
		}

4029
		btrfs_end_transaction_throttle(trans);
4030
		btrfs_btree_balance_dirty(fs_info);
4031 4032 4033 4034 4035
		trans = NULL;

		if (rc->stage == MOVE_DATA_EXTENTS &&
		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
			rc->found_file_extent = 1;
4036
			ret = relocate_data_extent(rc->data_inode,
4037
						   &key, &rc->cluster);
4038 4039 4040 4041 4042 4043
			if (ret < 0) {
				err = ret;
				break;
			}
		}
	}
4044
	if (trans && progress && err == -ENOSPC) {
4045
		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4046
		if (ret == 1) {
4047 4048 4049 4050 4051
			err = 0;
			progress = 0;
			goto restart;
		}
	}
4052

4053
	btrfs_release_path(path);
4054
	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4055 4056

	if (trans) {
4057
		btrfs_end_transaction_throttle(trans);
4058
		btrfs_btree_balance_dirty(fs_info);
4059 4060
	}

4061
	if (!err) {
4062 4063
		ret = relocate_file_extent_cluster(rc->data_inode,
						   &rc->cluster);
4064 4065 4066 4067
		if (ret < 0)
			err = ret;
	}

4068 4069
	rc->create_reloc_tree = 0;
	set_reloc_control(rc);
4070

4071
	backref_cache_cleanup(&rc->backref_cache);
4072
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4073

4074
	err = prepare_to_merge(rc, err);
4075 4076 4077

	merge_reloc_roots(rc);

4078
	rc->merge_reloc_tree = 0;
4079
	unset_reloc_control(rc);
4080
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4081 4082

	/* get rid of pinned extents */
4083
	trans = btrfs_join_transaction(rc->extent_root);
4084
	if (IS_ERR(trans)) {
4085
		err = PTR_ERR(trans);
4086 4087
		goto out_free;
	}
4088
	btrfs_commit_transaction(trans);
4089
out_free:
4090
	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4091
	btrfs_free_path(path);
4092 4093 4094 4095
	return err;
}

static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4096
				 struct btrfs_root *root, u64 objectid)
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
{
	struct btrfs_path *path;
	struct btrfs_inode_item *item;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4113
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4114
	btrfs_set_inode_generation(leaf, item, 1);
4115
	btrfs_set_inode_size(leaf, item, 0);
4116
	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4117 4118
	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
					  BTRFS_INODE_PREALLOC);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to create inode for data relocation.
 * the inode is in data relocation tree and its link count is 0
 */
4129 4130 4131
static noinline_for_stack
struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
				 struct btrfs_block_group_cache *group)
4132 4133 4134 4135 4136
{
	struct inode *inode = NULL;
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root;
	struct btrfs_key key;
4137
	u64 objectid;
4138 4139 4140 4141 4142 4143
	int err = 0;

	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
	if (IS_ERR(root))
		return ERR_CAST(root);

4144
	trans = btrfs_start_transaction(root, 6);
4145 4146
	if (IS_ERR(trans))
		return ERR_CAST(trans);
4147

4148
	err = btrfs_find_free_objectid(root, &objectid);
4149 4150 4151
	if (err)
		goto out;

4152
	err = __insert_orphan_inode(trans, root, objectid);
4153 4154 4155 4156 4157
	BUG_ON(err);

	key.objectid = objectid;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
4158
	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4159 4160 4161
	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
	BTRFS_I(inode)->index_cnt = group->key.objectid;

4162
	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4163
out:
4164
	btrfs_end_transaction(trans);
4165
	btrfs_btree_balance_dirty(fs_info);
4166 4167 4168 4169 4170 4171 4172 4173
	if (err) {
		if (inode)
			iput(inode);
		inode = ERR_PTR(err);
	}
	return inode;
}

4174
static struct reloc_control *alloc_reloc_control(void)
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
{
	struct reloc_control *rc;

	rc = kzalloc(sizeof(*rc), GFP_NOFS);
	if (!rc)
		return NULL;

	INIT_LIST_HEAD(&rc->reloc_roots);
	backref_cache_init(&rc->backref_cache);
	mapping_tree_init(&rc->reloc_root_tree);
4185
	extent_io_tree_init(&rc->processed_blocks, NULL);
4186 4187 4188
	return rc;
}

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
/*
 * Print the block group being relocated
 */
static void describe_relocation(struct btrfs_fs_info *fs_info,
				struct btrfs_block_group_cache *block_group)
{
	char buf[128];		/* prefixed by a '|' that'll be dropped */
	u64 flags = block_group->flags;

	/* Shouldn't happen */
	if (!flags) {
		strcpy(buf, "|NONE");
	} else {
		char *bp = buf;

#define DESCRIBE_FLAG(f, d) \
		if (flags & BTRFS_BLOCK_GROUP_##f) { \
			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
			flags &= ~BTRFS_BLOCK_GROUP_##f; \
		}
		DESCRIBE_FLAG(DATA,     "data");
		DESCRIBE_FLAG(SYSTEM,   "system");
		DESCRIBE_FLAG(METADATA, "metadata");
		DESCRIBE_FLAG(RAID0,    "raid0");
		DESCRIBE_FLAG(RAID1,    "raid1");
		DESCRIBE_FLAG(DUP,      "dup");
		DESCRIBE_FLAG(RAID10,   "raid10");
		DESCRIBE_FLAG(RAID5,    "raid5");
		DESCRIBE_FLAG(RAID6,    "raid6");
		if (flags)
4219
			snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4220 4221 4222 4223 4224 4225 4226 4227
#undef DESCRIBE_FLAG
	}

	btrfs_info(fs_info,
		   "relocating block group %llu flags %s",
		   block_group->key.objectid, buf + 1);
}

4228 4229 4230
/*
 * function to relocate all extents in a block group.
 */
4231
int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4232
{
4233
	struct btrfs_root *extent_root = fs_info->extent_root;
4234
	struct reloc_control *rc;
4235 4236
	struct inode *inode;
	struct btrfs_path *path;
4237
	int ret;
4238
	int rw = 0;
4239 4240
	int err = 0;

4241
	rc = alloc_reloc_control();
4242 4243 4244
	if (!rc)
		return -ENOMEM;

4245
	rc->extent_root = extent_root;
4246

4247 4248 4249
	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
	BUG_ON(!rc->block_group);

4250
	ret = btrfs_inc_block_group_ro(rc->block_group);
4251 4252 4253
	if (ret) {
		err = ret;
		goto out;
4254
	}
4255
	rw = 1;
4256

4257 4258 4259 4260 4261 4262
	path = btrfs_alloc_path();
	if (!path) {
		err = -ENOMEM;
		goto out;
	}

4263
	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4264 4265 4266
	btrfs_free_path(path);

	if (!IS_ERR(inode))
4267
		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4268 4269 4270 4271 4272 4273 4274 4275
	else
		ret = PTR_ERR(inode);

	if (ret && ret != -ENOENT) {
		err = ret;
		goto out;
	}

4276 4277 4278 4279 4280 4281 4282
	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
	if (IS_ERR(rc->data_inode)) {
		err = PTR_ERR(rc->data_inode);
		rc->data_inode = NULL;
		goto out;
	}

4283
	describe_relocation(fs_info, rc->block_group);
4284

4285
	btrfs_wait_block_group_reservations(rc->block_group);
4286
	btrfs_wait_nocow_writers(rc->block_group);
4287
	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4288 4289
				 rc->block_group->key.objectid,
				 rc->block_group->key.offset);
4290 4291

	while (1) {
4292
		mutex_lock(&fs_info->cleaner_mutex);
4293
		ret = relocate_block_group(rc);
4294
		mutex_unlock(&fs_info->cleaner_mutex);
4295 4296
		if (ret < 0) {
			err = ret;
4297
			goto out;
4298 4299 4300 4301 4302
		}

		if (rc->extents_found == 0)
			break;

4303
		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4304 4305

		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4306 4307 4308 4309 4310 4311
			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
						       (u64)-1);
			if (ret) {
				err = ret;
				goto out;
			}
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
			invalidate_mapping_pages(rc->data_inode->i_mapping,
						 0, -1);
			rc->stage = UPDATE_DATA_PTRS;
		}
	}

	WARN_ON(rc->block_group->pinned > 0);
	WARN_ON(rc->block_group->reserved > 0);
	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
out:
4322
	if (err && rw)
4323
		btrfs_dec_block_group_ro(rc->block_group);
4324 4325 4326 4327 4328 4329
	iput(rc->data_inode);
	btrfs_put_block_group(rc->block_group);
	kfree(rc);
	return err;
}

4330 4331
static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
{
4332
	struct btrfs_fs_info *fs_info = root->fs_info;
4333
	struct btrfs_trans_handle *trans;
4334
	int ret, err;
4335

4336
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4337 4338
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4339 4340 4341 4342 4343

	memset(&root->root_item.drop_progress, 0,
		sizeof(root->root_item.drop_progress));
	root->root_item.drop_level = 0;
	btrfs_set_root_refs(&root->root_item, 0);
4344
	ret = btrfs_update_root(trans, fs_info->tree_root,
4345 4346
				&root->root_key, &root->root_item);

4347
	err = btrfs_end_transaction(trans);
4348 4349 4350
	if (err)
		return err;
	return ret;
4351 4352
}

4353 4354 4355 4356 4357 4358 4359 4360
/*
 * recover relocation interrupted by system crash.
 *
 * this function resumes merging reloc trees with corresponding fs trees.
 * this is important for keeping the sharing of tree blocks
 */
int btrfs_recover_relocation(struct btrfs_root *root)
{
4361
	struct btrfs_fs_info *fs_info = root->fs_info;
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
	LIST_HEAD(reloc_roots);
	struct btrfs_key key;
	struct btrfs_root *fs_root;
	struct btrfs_root *reloc_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct reloc_control *rc = NULL;
	struct btrfs_trans_handle *trans;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
4376
	path->reada = READA_BACK;
4377 4378 4379 4380 4381 4382

	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;

	while (1) {
4383
		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
					path, 0, 0);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4396
		btrfs_release_path(path);
4397 4398 4399 4400 4401

		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
		    key.type != BTRFS_ROOT_ITEM_KEY)
			break;

4402
		reloc_root = btrfs_read_fs_root(root, &key);
4403 4404 4405 4406 4407 4408 4409 4410
		if (IS_ERR(reloc_root)) {
			err = PTR_ERR(reloc_root);
			goto out;
		}

		list_add(&reloc_root->root_list, &reloc_roots);

		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4411
			fs_root = read_fs_root(fs_info,
4412 4413
					       reloc_root->root_key.offset);
			if (IS_ERR(fs_root)) {
4414 4415 4416 4417 4418
				ret = PTR_ERR(fs_root);
				if (ret != -ENOENT) {
					err = ret;
					goto out;
				}
4419 4420 4421 4422 4423
				ret = mark_garbage_root(reloc_root);
				if (ret < 0) {
					err = ret;
					goto out;
				}
4424 4425 4426 4427 4428 4429 4430 4431
			}
		}

		if (key.offset == 0)
			break;

		key.offset--;
	}
4432
	btrfs_release_path(path);
4433 4434 4435 4436

	if (list_empty(&reloc_roots))
		goto out;

4437
	rc = alloc_reloc_control();
4438 4439 4440 4441 4442
	if (!rc) {
		err = -ENOMEM;
		goto out;
	}

4443
	rc->extent_root = fs_info->extent_root;
4444 4445 4446

	set_reloc_control(rc);

4447
	trans = btrfs_join_transaction(rc->extent_root);
4448 4449 4450 4451 4452
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		err = PTR_ERR(trans);
		goto out_free;
	}
4453 4454 4455

	rc->merge_reloc_tree = 1;

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	while (!list_empty(&reloc_roots)) {
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
		list_del(&reloc_root->root_list);

		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
			list_add_tail(&reloc_root->root_list,
				      &rc->reloc_roots);
			continue;
		}

4467
		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4468 4469 4470 4471
		if (IS_ERR(fs_root)) {
			err = PTR_ERR(fs_root);
			goto out_free;
		}
4472

4473
		err = __add_reloc_root(reloc_root);
4474
		BUG_ON(err < 0); /* -ENOMEM or logic error */
4475 4476 4477
		fs_root->reloc_root = reloc_root;
	}

4478
	err = btrfs_commit_transaction(trans);
4479 4480
	if (err)
		goto out_free;
4481 4482 4483 4484 4485

	merge_reloc_roots(rc);

	unset_reloc_control(rc);

4486
	trans = btrfs_join_transaction(rc->extent_root);
4487
	if (IS_ERR(trans)) {
4488
		err = PTR_ERR(trans);
4489 4490
		goto out_free;
	}
4491
	err = btrfs_commit_transaction(trans);
4492
out_free:
4493
	kfree(rc);
4494
out:
4495 4496 4497
	if (!list_empty(&reloc_roots))
		free_reloc_roots(&reloc_roots);

4498 4499 4500 4501
	btrfs_free_path(path);

	if (err == 0) {
		/* cleanup orphan inode in data relocation tree */
4502
		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4503 4504
		if (IS_ERR(fs_root))
			err = PTR_ERR(fs_root);
4505
		else
4506
			err = btrfs_orphan_cleanup(fs_root);
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	}
	return err;
}

/*
 * helper to add ordered checksum for data relocation.
 *
 * cloning checksum properly handles the nodatasum extents.
 * it also saves CPU time to re-calculate the checksum.
 */
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
{
4519
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4520 4521 4522 4523
	struct btrfs_ordered_sum *sums;
	struct btrfs_ordered_extent *ordered;
	int ret;
	u64 disk_bytenr;
4524
	u64 new_bytenr;
4525 4526 4527 4528 4529 4530
	LIST_HEAD(list);

	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);

	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4531
	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
A
Arne Jansen 已提交
4532
				       disk_bytenr + len - 1, &list, 0);
4533 4534
	if (ret)
		goto out;
4535 4536 4537 4538 4539

	while (!list_empty(&list)) {
		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
		list_del_init(&sums->list);

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
		/*
		 * We need to offset the new_bytenr based on where the csum is.
		 * We need to do this because we will read in entire prealloc
		 * extents but we may have written to say the middle of the
		 * prealloc extent, so we need to make sure the csum goes with
		 * the right disk offset.
		 *
		 * We can do this because the data reloc inode refers strictly
		 * to the on disk bytes, so we don't have to worry about
		 * disk_len vs real len like with real inodes since it's all
		 * disk length.
		 */
		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
		sums->bytenr = new_bytenr;
4554 4555 4556

		btrfs_add_ordered_sum(inode, ordered, sums);
	}
4557
out:
4558
	btrfs_put_ordered_extent(ordered);
4559
	return ret;
4560
}
4561

4562 4563 4564
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *buf,
			  struct extent_buffer *cow)
4565
{
4566
	struct btrfs_fs_info *fs_info = root->fs_info;
4567 4568 4569 4570
	struct reloc_control *rc;
	struct backref_node *node;
	int first_cow = 0;
	int level;
4571
	int ret = 0;
4572

4573
	rc = fs_info->reloc_ctl;
4574
	if (!rc)
4575
		return 0;
4576 4577 4578 4579

	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);

4580 4581 4582 4583 4584
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (buf == root->node)
			__update_reloc_root(root, cow->start);
	}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	level = btrfs_header_level(buf);
	if (btrfs_header_generation(buf) <=
	    btrfs_root_last_snapshot(&root->root_item))
		first_cow = 1;

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
	    rc->create_reloc_tree) {
		WARN_ON(!first_cow && level == 0);

		node = rc->backref_cache.path[level];
		BUG_ON(node->bytenr != buf->start &&
		       node->new_bytenr != buf->start);

		drop_node_buffer(node);
		extent_buffer_get(cow);
		node->eb = cow;
		node->new_bytenr = cow->start;

		if (!node->pending) {
			list_move_tail(&node->list,
				       &rc->backref_cache.pending[level]);
			node->pending = 1;
		}

		if (first_cow)
			__mark_block_processed(rc, node);

		if (first_cow && level > 0)
			rc->nodes_relocated += buf->len;
	}

4616
	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4617
		ret = replace_file_extents(trans, rc, root, cow);
4618
	return ret;
4619 4620 4621 4622
}

/*
 * called before creating snapshot. it calculates metadata reservation
4623
 * required for relocating tree blocks in the snapshot
4624
 */
4625
void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
			      u64 *bytes_to_reserve)
{
	struct btrfs_root *root;
	struct reloc_control *rc;

	root = pending->root;
	if (!root->reloc_root)
		return;

	rc = root->fs_info->reloc_ctl;
	if (!rc->merge_reloc_tree)
		return;

	root = root->reloc_root;
	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
	/*
	 * relocation is in the stage of merging trees. the space
	 * used by merging a reloc tree is twice the size of
	 * relocated tree nodes in the worst case. half for cowing
	 * the reloc tree, half for cowing the fs tree. the space
	 * used by cowing the reloc tree will be freed after the
	 * tree is dropped. if we create snapshot, cowing the fs
	 * tree may use more space than it frees. so we need
	 * reserve extra space.
	 */
	*bytes_to_reserve += rc->nodes_relocated;
}

/*
 * called after snapshot is created. migrate block reservation
 * and create reloc root for the newly created snapshot
 */
4658
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4659 4660 4661 4662 4663 4664 4665 4666 4667
			       struct btrfs_pending_snapshot *pending)
{
	struct btrfs_root *root = pending->root;
	struct btrfs_root *reloc_root;
	struct btrfs_root *new_root;
	struct reloc_control *rc;
	int ret;

	if (!root->reloc_root)
4668
		return 0;
4669 4670 4671 4672 4673 4674 4675

	rc = root->fs_info->reloc_ctl;
	rc->merging_rsv_size += rc->nodes_relocated;

	if (rc->merge_reloc_tree) {
		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
					      rc->block_rsv,
4676
					      rc->nodes_relocated, 1);
4677 4678
		if (ret)
			return ret;
4679 4680 4681 4682 4683
	}

	new_root = pending->snap;
	reloc_root = create_reloc_root(trans, root->reloc_root,
				       new_root->root_key.objectid);
4684 4685
	if (IS_ERR(reloc_root))
		return PTR_ERR(reloc_root);
4686

4687 4688
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
4689 4690
	new_root->reloc_root = reloc_root;

4691
	if (rc->create_reloc_tree)
4692
		ret = clone_backref_node(trans, rc, root, reloc_root);
4693
	return ret;
4694
}