relocation.c 111.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2009 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
11
#include <linux/slab.h>
12 13 14 15 16 17 18
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "btrfs_inode.h"
#include "async-thread.h"
19
#include "free-space-cache.h"
20
#include "inode-map.h"
21
#include "qgroup.h"
22
#include "print-tree.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * backref_node, mapping_node and tree_block start with this
 */
struct tree_entry {
	struct rb_node rb_node;
	u64 bytenr;
};

/*
 * present a tree block in the backref cache
 */
struct backref_node {
	struct rb_node rb_node;
	u64 bytenr;
38 39 40

	u64 new_bytenr;
	/* objectid of tree block owner, can be not uptodate */
41
	u64 owner;
42 43
	/* link to pending, changed or detached list */
	struct list_head list;
44 45 46 47 48 49 50 51 52 53
	/* list of upper level blocks reference this block */
	struct list_head upper;
	/* list of child blocks in the cache */
	struct list_head lower;
	/* NULL if this node is not tree root */
	struct btrfs_root *root;
	/* extent buffer got by COW the block */
	struct extent_buffer *eb;
	/* level of tree block */
	unsigned int level:8;
54 55 56
	/* is the block in non-reference counted tree */
	unsigned int cowonly:1;
	/* 1 if no child node in the cache */
57 58 59 60 61 62 63
	unsigned int lowest:1;
	/* is the extent buffer locked */
	unsigned int locked:1;
	/* has the block been processed */
	unsigned int processed:1;
	/* have backrefs of this block been checked */
	unsigned int checked:1;
64 65 66 67 68 69 70 71 72 73
	/*
	 * 1 if corresponding block has been cowed but some upper
	 * level block pointers may not point to the new location
	 */
	unsigned int pending:1;
	/*
	 * 1 if the backref node isn't connected to any other
	 * backref node.
	 */
	unsigned int detached:1;
74 75 76 77 78 79 80 81 82 83 84 85
};

/*
 * present a block pointer in the backref cache
 */
struct backref_edge {
	struct list_head list[2];
	struct backref_node *node[2];
};

#define LOWER	0
#define UPPER	1
86
#define RELOCATION_RESERVED_NODES	256
87 88 89 90

struct backref_cache {
	/* red black tree of all backref nodes in the cache */
	struct rb_root rb_root;
91 92 93 94 95 96 97
	/* for passing backref nodes to btrfs_reloc_cow_block */
	struct backref_node *path[BTRFS_MAX_LEVEL];
	/*
	 * list of blocks that have been cowed but some block
	 * pointers in upper level blocks may not reflect the
	 * new location
	 */
98
	struct list_head pending[BTRFS_MAX_LEVEL];
99 100 101 102 103 104 105 106 107 108 109
	/* list of backref nodes with no child node */
	struct list_head leaves;
	/* list of blocks that have been cowed in current transaction */
	struct list_head changed;
	/* list of detached backref node. */
	struct list_head detached;

	u64 last_trans;

	int nr_nodes;
	int nr_edges;
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

/*
 * map address of tree root to tree
 */
struct mapping_node {
	struct rb_node rb_node;
	u64 bytenr;
	void *data;
};

struct mapping_tree {
	struct rb_root rb_root;
	spinlock_t lock;
};

/*
 * present a tree block to process
 */
struct tree_block {
	struct rb_node rb_node;
	u64 bytenr;
	struct btrfs_key key;
	unsigned int level:8;
	unsigned int key_ready:1;
};

137 138 139 140 141 142 143 144 145
#define MAX_EXTENTS 128

struct file_extent_cluster {
	u64 start;
	u64 end;
	u64 boundary[MAX_EXTENTS];
	unsigned int nr;
};

146 147 148 149 150 151 152
struct reloc_control {
	/* block group to relocate */
	struct btrfs_block_group_cache *block_group;
	/* extent tree */
	struct btrfs_root *extent_root;
	/* inode for moving data */
	struct inode *data_inode;
153 154 155 156 157 158

	struct btrfs_block_rsv *block_rsv;

	struct backref_cache backref_cache;

	struct file_extent_cluster cluster;
159 160 161 162 163 164
	/* tree blocks have been processed */
	struct extent_io_tree processed_blocks;
	/* map start of tree root to corresponding reloc tree */
	struct mapping_tree reloc_root_tree;
	/* list of reloc trees */
	struct list_head reloc_roots;
165 166 167 168
	/* size of metadata reservation for merging reloc trees */
	u64 merging_rsv_size;
	/* size of relocated tree nodes */
	u64 nodes_relocated;
169 170
	/* reserved size for block group relocation*/
	u64 reserved_bytes;
171

172 173
	u64 search_start;
	u64 extents_found;
174 175 176 177

	unsigned int stage:8;
	unsigned int create_reloc_tree:1;
	unsigned int merge_reloc_tree:1;
178 179 180 181 182 183 184
	unsigned int found_file_extent:1;
};

/* stages of data relocation */
#define MOVE_DATA_EXTENTS	0
#define UPDATE_DATA_PTRS	1

185 186 187 188
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node);
static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node);
189 190 191

static void mapping_tree_init(struct mapping_tree *tree)
{
192
	tree->rb_root = RB_ROOT;
193 194 195 196 197 198
	spin_lock_init(&tree->lock);
}

static void backref_cache_init(struct backref_cache *cache)
{
	int i;
199
	cache->rb_root = RB_ROOT;
200 201
	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		INIT_LIST_HEAD(&cache->pending[i]);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	INIT_LIST_HEAD(&cache->changed);
	INIT_LIST_HEAD(&cache->detached);
	INIT_LIST_HEAD(&cache->leaves);
}

static void backref_cache_cleanup(struct backref_cache *cache)
{
	struct backref_node *node;
	int i;

	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->leaves)) {
		node = list_entry(cache->leaves.next,
				  struct backref_node, lower);
		remove_backref_node(cache, node);
	}

	cache->last_trans = 0;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 228 229 230 231 232
		ASSERT(list_empty(&cache->pending[i]));
	ASSERT(list_empty(&cache->changed));
	ASSERT(list_empty(&cache->detached));
	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
	ASSERT(!cache->nr_nodes);
	ASSERT(!cache->nr_edges);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

static struct backref_node *alloc_backref_node(struct backref_cache *cache)
{
	struct backref_node *node;

	node = kzalloc(sizeof(*node), GFP_NOFS);
	if (node) {
		INIT_LIST_HEAD(&node->list);
		INIT_LIST_HEAD(&node->upper);
		INIT_LIST_HEAD(&node->lower);
		RB_CLEAR_NODE(&node->rb_node);
		cache->nr_nodes++;
	}
	return node;
}

static void free_backref_node(struct backref_cache *cache,
			      struct backref_node *node)
{
	if (node) {
		cache->nr_nodes--;
		kfree(node);
	}
}

static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
{
	struct backref_edge *edge;

	edge = kzalloc(sizeof(*edge), GFP_NOFS);
	if (edge)
		cache->nr_edges++;
	return edge;
267 268
}

269 270
static void free_backref_edge(struct backref_cache *cache,
			      struct backref_edge *edge)
271
{
272 273 274 275
	if (edge) {
		cache->nr_edges--;
		kfree(edge);
	}
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
}

static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
				   struct rb_node *node)
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct tree_entry *entry;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			p = &(*p)->rb_left;
		else if (bytenr > entry->bytenr)
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
{
	struct rb_node *n = root->rb_node;
	struct tree_entry *entry;

	while (n) {
		entry = rb_entry(n, struct tree_entry, rb_node);

		if (bytenr < entry->bytenr)
			n = n->rb_left;
		else if (bytenr > entry->bytenr)
			n = n->rb_right;
		else
			return n;
	}
	return NULL;
}

320
static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 322 323 324 325 326 327
{

	struct btrfs_fs_info *fs_info = NULL;
	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
					      rb_node);
	if (bnode->root)
		fs_info = bnode->root->fs_info;
J
Jeff Mahoney 已提交
328 329 330
	btrfs_panic(fs_info, errno,
		    "Inconsistency in backref cache found at offset %llu",
		    bytenr);
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * walk up backref nodes until reach node presents tree root
 */
static struct backref_node *walk_up_backref(struct backref_node *node,
					    struct backref_edge *edges[],
					    int *index)
{
	struct backref_edge *edge;
	int idx = *index;

	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next,
				  struct backref_edge, list[LOWER]);
		edges[idx++] = edge;
		node = edge->node[UPPER];
	}
349
	BUG_ON(node->detached);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	*index = idx;
	return node;
}

/*
 * walk down backref nodes to find start of next reference path
 */
static struct backref_node *walk_down_backref(struct backref_edge *edges[],
					      int *index)
{
	struct backref_edge *edge;
	struct backref_node *lower;
	int idx = *index;

	while (idx > 0) {
		edge = edges[idx - 1];
		lower = edge->node[LOWER];
		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
			idx--;
			continue;
		}
		edge = list_entry(edge->list[LOWER].next,
				  struct backref_edge, list[LOWER]);
		edges[idx - 1] = edge;
		*index = idx;
		return edge->node[UPPER];
	}
	*index = 0;
	return NULL;
}

381 382 383 384 385 386 387 388
static void unlock_node_buffer(struct backref_node *node)
{
	if (node->locked) {
		btrfs_tree_unlock(node->eb);
		node->locked = 0;
	}
}

389 390 391
static void drop_node_buffer(struct backref_node *node)
{
	if (node->eb) {
392
		unlock_node_buffer(node);
393 394 395 396 397 398 399 400 401 402 403
		free_extent_buffer(node->eb);
		node->eb = NULL;
	}
}

static void drop_backref_node(struct backref_cache *tree,
			      struct backref_node *node)
{
	BUG_ON(!list_empty(&node->upper));

	drop_node_buffer(node);
404
	list_del(&node->list);
405
	list_del(&node->lower);
406 407 408
	if (!RB_EMPTY_NODE(&node->rb_node))
		rb_erase(&node->rb_node, &tree->rb_root);
	free_backref_node(tree, node);
409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

/*
 * remove a backref node from the backref cache
 */
static void remove_backref_node(struct backref_cache *cache,
				struct backref_node *node)
{
	struct backref_node *upper;
	struct backref_edge *edge;

	if (!node)
		return;

423
	BUG_ON(!node->lowest && !node->detached);
424 425 426 427 428 429
	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next, struct backref_edge,
				  list[LOWER]);
		upper = edge->node[UPPER];
		list_del(&edge->list[LOWER]);
		list_del(&edge->list[UPPER]);
430 431 432 433 434 435 436 437 438
		free_backref_edge(cache, edge);

		if (RB_EMPTY_NODE(&upper->rb_node)) {
			BUG_ON(!list_empty(&node->upper));
			drop_backref_node(cache, node);
			node = upper;
			node->lowest = 1;
			continue;
		}
439
		/*
440
		 * add the node to leaf node list if no other
441 442 443
		 * child block cached.
		 */
		if (list_empty(&upper->lower)) {
444
			list_add_tail(&upper->lower, &cache->leaves);
445 446 447
			upper->lowest = 1;
		}
	}
448

449 450 451
	drop_backref_node(cache, node);
}

452 453 454 455 456 457 458
static void update_backref_node(struct backref_cache *cache,
				struct backref_node *node, u64 bytenr)
{
	struct rb_node *rb_node;
	rb_erase(&node->rb_node, &cache->rb_root);
	node->bytenr = bytenr;
	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 460
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

/*
 * update backref cache after a transaction commit
 */
static int update_backref_cache(struct btrfs_trans_handle *trans,
				struct backref_cache *cache)
{
	struct backref_node *node;
	int level = 0;

	if (cache->last_trans == 0) {
		cache->last_trans = trans->transid;
		return 0;
	}

	if (cache->last_trans == trans->transid)
		return 0;

	/*
	 * detached nodes are used to avoid unnecessary backref
	 * lookup. transaction commit changes the extent tree.
	 * so the detached nodes are no longer useful.
	 */
	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct backref_node, list);
		remove_backref_node(cache, node);
	}

	while (!list_empty(&cache->changed)) {
		node = list_entry(cache->changed.next,
				  struct backref_node, list);
		list_del_init(&node->list);
		BUG_ON(node->pending);
		update_backref_node(cache, node, node->new_bytenr);
	}

	/*
	 * some nodes can be left in the pending list if there were
	 * errors during processing the pending nodes.
	 */
	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		list_for_each_entry(node, &cache->pending[level], list) {
			BUG_ON(!node->pending);
			if (node->bytenr == node->new_bytenr)
				continue;
			update_backref_node(cache, node, node->new_bytenr);
		}
	}

	cache->last_trans = 0;
	return 1;
}

516

517 518 519 520
static int should_ignore_root(struct btrfs_root *root)
{
	struct btrfs_root *reloc_root;

521
	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return 0;

	reloc_root = root->reloc_root;
	if (!reloc_root)
		return 0;

	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
	    root->fs_info->running_transaction->transid - 1)
		return 0;
	/*
	 * if there is reloc tree and it was created in previous
	 * transaction backref lookup can find the reloc tree,
	 * so backref node for the fs tree root is useless for
	 * relocation.
	 */
	return 1;
}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * find reloc tree by address of tree root
 */
static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
					  u64 bytenr)
{
	struct rb_node *rb_node;
	struct mapping_node *node;
	struct btrfs_root *root = NULL;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		root = (struct btrfs_root *)node->data;
	}
	spin_unlock(&rc->reloc_root_tree.lock);
	return root;
}

static int is_cowonly_root(u64 root_objectid)
{
	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 567
	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 569
	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		return 1;
	return 0;
}

static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
					u64 root_objectid)
{
	struct btrfs_key key;

	key.objectid = root_objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	if (is_cowonly_root(root_objectid))
		key.offset = 0;
	else
		key.offset = (u64)-1;

586
	return btrfs_get_fs_root(fs_info, &key, false);
587 588 589 590 591 592
}

static noinline_for_stack
int find_inline_backref(struct extent_buffer *leaf, int slot,
			unsigned long *ptr, unsigned long *end)
{
593
	struct btrfs_key key;
594 595 596 597
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	u32 item_size;

598 599
	btrfs_item_key_to_cpu(leaf, &key, slot);

600
	item_size = btrfs_item_size_nr(leaf, slot);
601 602 603 604 605
	if (item_size < sizeof(*ei)) {
		btrfs_print_v0_err(leaf->fs_info);
		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
		return 1;
	}
606 607 608 609
	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
		  BTRFS_EXTENT_FLAG_TREE_BLOCK));

610 611
	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
	    item_size <= sizeof(*ei) + sizeof(*bi)) {
612 613 614
		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
		return 1;
	}
615 616 617 618 619
	if (key.type == BTRFS_METADATA_ITEM_KEY &&
	    item_size <= sizeof(*ei)) {
		WARN_ON(item_size < sizeof(*ei));
		return 1;
	}
620

621 622 623 624 625 626
	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
		bi = (struct btrfs_tree_block_info *)(ei + 1);
		*ptr = (unsigned long)(bi + 1);
	} else {
		*ptr = (unsigned long)(ei + 1);
	}
627 628 629 630 631 632 633 634 635 636
	*end = (unsigned long)ei + item_size;
	return 0;
}

/*
 * build backref tree for a given tree block. root of the backref tree
 * corresponds the tree block, leaves of the backref tree correspond
 * roots of b-trees that reference the tree block.
 *
 * the basic idea of this function is check backrefs of a given block
637 638
 * to find upper level blocks that reference the block, and then check
 * backrefs of these upper level blocks recursively. the recursion stop
639 640 641 642 643 644
 * when tree root is reached or backrefs for the block is cached.
 *
 * NOTE: if we find backrefs for a block are cached, we know backrefs
 * for all upper level blocks that directly/indirectly reference the
 * block are also cached.
 */
645 646 647 648
static noinline_for_stack
struct backref_node *build_backref_tree(struct reloc_control *rc,
					struct btrfs_key *node_key,
					int level, u64 bytenr)
649
{
650
	struct backref_cache *cache = &rc->backref_cache;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	struct btrfs_path *path1;
	struct btrfs_path *path2;
	struct extent_buffer *eb;
	struct btrfs_root *root;
	struct backref_node *cur;
	struct backref_node *upper;
	struct backref_node *lower;
	struct backref_node *node = NULL;
	struct backref_node *exist = NULL;
	struct backref_edge *edge;
	struct rb_node *rb_node;
	struct btrfs_key key;
	unsigned long end;
	unsigned long ptr;
	LIST_HEAD(list);
666 667
	LIST_HEAD(useless);
	int cowonly;
668 669
	int ret;
	int err = 0;
670
	bool need_check = true;
671 672 673 674 675 676 677

	path1 = btrfs_alloc_path();
	path2 = btrfs_alloc_path();
	if (!path1 || !path2) {
		err = -ENOMEM;
		goto out;
	}
678 679
	path1->reada = READA_FORWARD;
	path2->reada = READA_FORWARD;
680

681
	node = alloc_backref_node(cache);
682 683 684 685 686 687 688 689 690 691 692 693 694
	if (!node) {
		err = -ENOMEM;
		goto out;
	}

	node->bytenr = bytenr;
	node->level = level;
	node->lowest = 1;
	cur = node;
again:
	end = 0;
	ptr = 0;
	key.objectid = cur->bytenr;
695
	key.type = BTRFS_METADATA_ITEM_KEY;
696 697 698 699 700 701 702 703 704 705
	key.offset = (u64)-1;

	path1->search_commit_root = 1;
	path1->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
				0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}
706 707
	ASSERT(ret);
	ASSERT(path1->slots[0]);
708 709 710 711 712 713

	path1->slots[0]--;

	WARN_ON(cur->checked);
	if (!list_empty(&cur->upper)) {
		/*
714
		 * the backref was added previously when processing
715 716
		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
		 */
717
		ASSERT(list_is_singular(&cur->upper));
718 719
		edge = list_entry(cur->upper.next, struct backref_edge,
				  list[LOWER]);
720
		ASSERT(list_empty(&edge->list[UPPER]));
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		exist = edge->node[UPPER];
		/*
		 * add the upper level block to pending list if we need
		 * check its backrefs
		 */
		if (!exist->checked)
			list_add_tail(&edge->list[UPPER], &list);
	} else {
		exist = NULL;
	}

	while (1) {
		cond_resched();
		eb = path1->nodes[0];

		if (ptr >= end) {
			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
				ret = btrfs_next_leaf(rc->extent_root, path1);
				if (ret < 0) {
					err = ret;
					goto out;
				}
				if (ret > 0)
					break;
				eb = path1->nodes[0];
			}

			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
			if (key.objectid != cur->bytenr) {
				WARN_ON(exist);
				break;
			}

754 755
			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
			    key.type == BTRFS_METADATA_ITEM_KEY) {
756 757 758 759 760 761 762 763 764 765
				ret = find_inline_backref(eb, path1->slots[0],
							  &ptr, &end);
				if (ret)
					goto next;
			}
		}

		if (ptr < end) {
			/* update key for inline back ref */
			struct btrfs_extent_inline_ref *iref;
766
			int type;
767
			iref = (struct btrfs_extent_inline_ref *)ptr;
768 769 770
			type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_BLOCK);
			if (type == BTRFS_REF_TYPE_INVALID) {
771
				err = -EUCLEAN;
772 773 774
				goto out;
			}
			key.type = type;
775
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
		}

		if (exist &&
		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
		      exist->owner == key.offset) ||
		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
		      exist->bytenr == key.offset))) {
			exist = NULL;
			goto next;
		}

		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
			if (key.objectid == key.offset) {
				/*
				 * only root blocks of reloc trees use
				 * backref of this type.
				 */
				root = find_reloc_root(rc, cur->bytenr);
797
				ASSERT(root);
798 799 800 801
				cur->root = root;
				break;
			}

802
			edge = alloc_backref_edge(cache);
803 804 805 806 807 808
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}
			rb_node = tree_search(&cache->rb_root, key.offset);
			if (!rb_node) {
809
				upper = alloc_backref_node(cache);
810
				if (!upper) {
811
					free_backref_edge(cache, edge);
812 813 814 815 816 817 818 819 820 821 822 823 824
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = key.offset;
				upper->level = cur->level + 1;
				/*
				 *  backrefs for the upper level block isn't
				 *  cached, add the block to pending list
				 */
				list_add_tail(&edge->list[UPPER], &list);
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
825
				ASSERT(upper->checked);
826 827
				INIT_LIST_HEAD(&edge->list[UPPER]);
			}
828
			list_add_tail(&edge->list[LOWER], &cur->upper);
829
			edge->node[LOWER] = cur;
830
			edge->node[UPPER] = upper;
831 832

			goto next;
833
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 835 836 837 838
			err = -EINVAL;
			btrfs_print_v0_err(rc->extent_root->fs_info);
			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
					      NULL);
			goto out;
839 840 841 842 843 844 845 846 847 848 849
		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
			goto next;
		}

		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
		root = read_fs_root(rc->extent_root->fs_info, key.offset);
		if (IS_ERR(root)) {
			err = PTR_ERR(root);
			goto out;
		}

850
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 852
			cur->cowonly = 1;

853 854
		if (btrfs_root_level(&root->root_item) == cur->level) {
			/* tree root */
855
			ASSERT(btrfs_root_bytenr(&root->root_item) ==
856
			       cur->bytenr);
857 858 859 860
			if (should_ignore_root(root))
				list_add(&cur->list, &useless);
			else
				cur->root = root;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
			break;
		}

		level = cur->level + 1;

		/*
		 * searching the tree to find upper level blocks
		 * reference the block.
		 */
		path2->search_commit_root = 1;
		path2->skip_locking = 1;
		path2->lowest_level = level;
		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
		path2->lowest_level = 0;
		if (ret < 0) {
			err = ret;
			goto out;
		}
879 880
		if (ret > 0 && path2->slots[level] > 0)
			path2->slots[level]--;
881 882

		eb = path2->nodes[level];
883 884 885 886 887 888 889 890 891 892
		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
		    cur->bytenr) {
			btrfs_err(root->fs_info,
	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
				  cur->bytenr, level - 1, root->objectid,
				  node_key->objectid, node_key->type,
				  node_key->offset);
			err = -ENOENT;
			goto out;
		}
893
		lower = cur;
894
		need_check = true;
895 896
		for (; level < BTRFS_MAX_LEVEL; level++) {
			if (!path2->nodes[level]) {
897
				ASSERT(btrfs_root_bytenr(&root->root_item) ==
898
				       lower->bytenr);
899 900 901 902
				if (should_ignore_root(root))
					list_add(&lower->list, &useless);
				else
					lower->root = root;
903 904 905
				break;
			}

906
			edge = alloc_backref_edge(cache);
907 908 909 910 911 912 913 914
			if (!edge) {
				err = -ENOMEM;
				goto out;
			}

			eb = path2->nodes[level];
			rb_node = tree_search(&cache->rb_root, eb->start);
			if (!rb_node) {
915
				upper = alloc_backref_node(cache);
916
				if (!upper) {
917
					free_backref_edge(cache, edge);
918 919 920 921 922 923
					err = -ENOMEM;
					goto out;
				}
				upper->bytenr = eb->start;
				upper->owner = btrfs_header_owner(eb);
				upper->level = lower->level + 1;
924 925
				if (!test_bit(BTRFS_ROOT_REF_COWS,
					      &root->state))
926
					upper->cowonly = 1;
927 928 929 930 931 932 933 934 935 936 937 938

				/*
				 * if we know the block isn't shared
				 * we can void checking its backrefs.
				 */
				if (btrfs_block_can_be_shared(root, eb))
					upper->checked = 0;
				else
					upper->checked = 1;

				/*
				 * add the block to pending list if we
939 940 941
				 * need check its backrefs, we only do this once
				 * while walking up a tree as we will catch
				 * anything else later on.
942
				 */
943 944
				if (!upper->checked && need_check) {
					need_check = false;
945 946
					list_add_tail(&edge->list[UPPER],
						      &list);
947 948 949
				} else {
					if (upper->checked)
						need_check = true;
950
					INIT_LIST_HEAD(&edge->list[UPPER]);
951
				}
952 953 954
			} else {
				upper = rb_entry(rb_node, struct backref_node,
						 rb_node);
955
				ASSERT(upper->checked);
956
				INIT_LIST_HEAD(&edge->list[UPPER]);
957 958
				if (!upper->owner)
					upper->owner = btrfs_header_owner(eb);
959 960 961
			}
			list_add_tail(&edge->list[LOWER], &lower->upper);
			edge->node[LOWER] = lower;
962
			edge->node[UPPER] = upper;
963 964 965 966 967 968

			if (rb_node)
				break;
			lower = upper;
			upper = NULL;
		}
969
		btrfs_release_path(path2);
970 971 972 973 974 975 976 977 978 979 980 981
next:
		if (ptr < end) {
			ptr += btrfs_extent_inline_ref_size(key.type);
			if (ptr >= end) {
				WARN_ON(ptr > end);
				ptr = 0;
				end = 0;
			}
		}
		if (ptr >= end)
			path1->slots[0]++;
	}
982
	btrfs_release_path(path1);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	cur->checked = 1;
	WARN_ON(exist);

	/* the pending list isn't empty, take the first block to process */
	if (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		cur = edge->node[UPPER];
		goto again;
	}

	/*
	 * everything goes well, connect backref nodes and insert backref nodes
	 * into the cache.
	 */
999
	ASSERT(node->checked);
1000 1001 1002 1003
	cowonly = node->cowonly;
	if (!cowonly) {
		rb_node = tree_insert(&cache->rb_root, node->bytenr,
				      &node->rb_node);
1004 1005
		if (rb_node)
			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 1007
		list_add_tail(&node->lower, &cache->leaves);
	}
1008 1009 1010 1011 1012 1013 1014 1015

	list_for_each_entry(edge, &node->upper, list[LOWER])
		list_add_tail(&edge->list[UPPER], &list);

	while (!list_empty(&list)) {
		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		upper = edge->node[UPPER];
1016 1017 1018 1019 1020 1021 1022 1023
		if (upper->detached) {
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);
			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
			continue;
		}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

		if (!RB_EMPTY_NODE(&upper->rb_node)) {
			if (upper->lowest) {
				list_del_init(&upper->lower);
				upper->lowest = 0;
			}

			list_add_tail(&edge->list[UPPER], &upper->lower);
			continue;
		}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		if (!upper->checked) {
			/*
			 * Still want to blow up for developers since this is a
			 * logic bug.
			 */
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}
		if (cowonly != upper->cowonly) {
			ASSERT(0);
			err = -EINVAL;
			goto out;
		}

1050 1051 1052
		if (!cowonly) {
			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
					      &upper->rb_node);
1053 1054 1055
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   upper->bytenr);
1056
		}
1057 1058 1059 1060 1061 1062

		list_add_tail(&edge->list[UPPER], &upper->lower);

		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER], &list);
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * process useless backref nodes. backref nodes for tree leaves
	 * are deleted from the cache. backref nodes for upper level
	 * tree blocks are left in the cache to avoid unnecessary backref
	 * lookup.
	 */
	while (!list_empty(&useless)) {
		upper = list_entry(useless.next, struct backref_node, list);
		list_del_init(&upper->list);
1072
		ASSERT(list_empty(&upper->upper));
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (upper == node)
			node = NULL;
		if (upper->lowest) {
			list_del_init(&upper->lower);
			upper->lowest = 0;
		}
		while (!list_empty(&upper->lower)) {
			edge = list_entry(upper->lower.next,
					  struct backref_edge, list[UPPER]);
			list_del(&edge->list[UPPER]);
			list_del(&edge->list[LOWER]);
			lower = edge->node[LOWER];
			free_backref_edge(cache, edge);

			if (list_empty(&lower->upper))
				list_add(&lower->list, &useless);
		}
		__mark_block_processed(rc, upper);
		if (upper->level > 0) {
			list_add(&upper->list, &cache->detached);
			upper->detached = 1;
		} else {
			rb_erase(&upper->rb_node, &cache->rb_root);
			free_backref_node(cache, upper);
		}
	}
1099 1100 1101 1102
out:
	btrfs_free_path(path1);
	btrfs_free_path(path2);
	if (err) {
1103 1104
		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
1105 1106
					   struct backref_node, list);
			list_del_init(&lower->list);
1107
		}
1108 1109 1110 1111
		while (!list_empty(&list)) {
			edge = list_first_entry(&list, struct backref_edge,
						list[UPPER]);
			list_del(&edge->list[UPPER]);
1112
			list_del(&edge->list[LOWER]);
1113
			lower = edge->node[LOWER];
1114
			upper = edge->node[UPPER];
1115
			free_backref_edge(cache, edge);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

			/*
			 * Lower is no longer linked to any upper backref nodes
			 * and isn't in the cache, we can free it ourselves.
			 */
			if (list_empty(&lower->upper) &&
			    RB_EMPTY_NODE(&lower->rb_node))
				list_add(&lower->list, &useless);

			if (!RB_EMPTY_NODE(&upper->rb_node))
				continue;

1128
			/* Add this guy's upper edges to the list to process */
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			list_for_each_entry(edge, &upper->upper, list[LOWER])
				list_add_tail(&edge->list[UPPER], &list);
			if (list_empty(&upper->upper))
				list_add(&upper->list, &useless);
		}

		while (!list_empty(&useless)) {
			lower = list_entry(useless.next,
					   struct backref_node, list);
			list_del_init(&lower->list);
L
Liu Bo 已提交
1139 1140
			if (lower == node)
				node = NULL;
1141
			free_backref_node(cache, lower);
1142
		}
L
Liu Bo 已提交
1143 1144

		free_backref_node(cache, node);
1145 1146
		return ERR_PTR(err);
	}
1147
	ASSERT(!node || !node->detached);
1148 1149 1150
	return node;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/*
 * helper to add backref node for the newly created snapshot.
 * the backref node is created by cloning backref node that
 * corresponds to root of source tree
 */
static int clone_backref_node(struct btrfs_trans_handle *trans,
			      struct reloc_control *rc,
			      struct btrfs_root *src,
			      struct btrfs_root *dest)
{
	struct btrfs_root *reloc_root = src->reloc_root;
	struct backref_cache *cache = &rc->backref_cache;
	struct backref_node *node = NULL;
	struct backref_node *new_node;
	struct backref_edge *edge;
	struct backref_edge *new_edge;
	struct rb_node *rb_node;

	if (cache->last_trans > 0)
		update_backref_cache(trans, cache);

	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct backref_node, rb_node);
		if (node->detached)
			node = NULL;
		else
			BUG_ON(node->new_bytenr != reloc_root->node->start);
	}

	if (!node) {
		rb_node = tree_search(&cache->rb_root,
				      reloc_root->commit_root->start);
		if (rb_node) {
			node = rb_entry(rb_node, struct backref_node,
					rb_node);
			BUG_ON(node->detached);
		}
	}

	if (!node)
		return 0;

	new_node = alloc_backref_node(cache);
	if (!new_node)
		return -ENOMEM;

	new_node->bytenr = dest->node->start;
	new_node->level = node->level;
	new_node->lowest = node->lowest;
Y
Yan, Zheng 已提交
1201
	new_node->checked = 1;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	new_node->root = dest;

	if (!node->lowest) {
		list_for_each_entry(edge, &node->lower, list[UPPER]) {
			new_edge = alloc_backref_edge(cache);
			if (!new_edge)
				goto fail;

			new_edge->node[UPPER] = new_node;
			new_edge->node[LOWER] = edge->node[LOWER];
			list_add_tail(&new_edge->list[UPPER],
				      &new_node->lower);
		}
M
Miao Xie 已提交
1215 1216
	} else {
		list_add_tail(&new_node->lower, &cache->leaves);
1217 1218 1219 1220
	}

	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
			      &new_node->rb_node);
1221 1222
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	if (!new_node->lowest) {
		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
			list_add_tail(&new_edge->list[LOWER],
				      &new_edge->node[LOWER]->upper);
		}
	}
	return 0;
fail:
	while (!list_empty(&new_node->lower)) {
		new_edge = list_entry(new_node->lower.next,
				      struct backref_edge, list[UPPER]);
		list_del(&new_edge->list[UPPER]);
		free_backref_edge(cache, new_edge);
	}
	free_backref_node(cache, new_node);
	return -ENOMEM;
}

1242 1243 1244
/*
 * helper to add 'address of tree root -> reloc tree' mapping
 */
1245
static int __must_check __add_reloc_root(struct btrfs_root *root)
1246
{
1247
	struct btrfs_fs_info *fs_info = root->fs_info;
1248 1249
	struct rb_node *rb_node;
	struct mapping_node *node;
1250
	struct reloc_control *rc = fs_info->reloc_ctl;
1251 1252

	node = kmalloc(sizeof(*node), GFP_NOFS);
1253 1254
	if (!node)
		return -ENOMEM;
1255 1256 1257 1258 1259 1260 1261 1262

	node->bytenr = root->node->start;
	node->data = root;

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
1263
	if (rb_node) {
1264
		btrfs_panic(fs_info, -EEXIST,
J
Jeff Mahoney 已提交
1265 1266
			    "Duplicate root found for start=%llu while inserting into relocation tree",
			    node->bytenr);
1267
	}
1268 1269 1270 1271 1272 1273

	list_add_tail(&root->root_list, &rc->reloc_roots);
	return 0;
}

/*
1274
 * helper to delete the 'address of tree root -> reloc tree'
1275 1276
 * mapping
 */
1277
static void __del_reloc_root(struct btrfs_root *root)
1278
{
1279
	struct btrfs_fs_info *fs_info = root->fs_info;
1280 1281
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1282
	struct reloc_control *rc = fs_info->reloc_ctl;
1283 1284 1285

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1286
			      root->node->start);
1287 1288 1289 1290 1291 1292
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
	}
	spin_unlock(&rc->reloc_root_tree.lock);

1293
	if (!node)
1294
		return;
1295 1296
	BUG_ON((struct btrfs_root *)node->data != root);

1297
	spin_lock(&fs_info->trans_lock);
1298
	list_del_init(&root->root_list);
1299
	spin_unlock(&fs_info->trans_lock);
1300 1301 1302 1303 1304 1305 1306 1307 1308
	kfree(node);
}

/*
 * helper to update the 'address of tree root -> reloc tree'
 * mapping
 */
static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
{
1309
	struct btrfs_fs_info *fs_info = root->fs_info;
1310 1311
	struct rb_node *rb_node;
	struct mapping_node *node = NULL;
1312
	struct reloc_control *rc = fs_info->reloc_ctl;
1313 1314 1315 1316 1317 1318 1319

	spin_lock(&rc->reloc_root_tree.lock);
	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
			      root->node->start);
	if (rb_node) {
		node = rb_entry(rb_node, struct mapping_node, rb_node);
		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320
	}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	spin_unlock(&rc->reloc_root_tree.lock);

	if (!node)
		return 0;
	BUG_ON((struct btrfs_root *)node->data != root);

	spin_lock(&rc->reloc_root_tree.lock);
	node->bytenr = new_bytenr;
	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
			      node->bytenr, &node->rb_node);
	spin_unlock(&rc->reloc_root_tree.lock);
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1334 1335 1336
	return 0;
}

1337 1338
static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
					struct btrfs_root *root, u64 objectid)
1339
{
1340
	struct btrfs_fs_info *fs_info = root->fs_info;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	struct btrfs_root *reloc_root;
	struct extent_buffer *eb;
	struct btrfs_root_item *root_item;
	struct btrfs_key root_key;
	int ret;

	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
	BUG_ON(!root_item);

	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
1352
	root_key.offset = objectid;
1353

1354
	if (root->root_key.objectid == objectid) {
1355 1356
		u64 commit_root_gen;

1357 1358 1359 1360
		/* called by btrfs_init_reloc_root */
		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * Set the last_snapshot field to the generation of the commit
		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
		 * correctly (returns true) when the relocation root is created
		 * either inside the critical section of a transaction commit
		 * (through transaction.c:qgroup_account_snapshot()) and when
		 * it's created before the transaction commit is started.
		 */
		commit_root_gen = btrfs_header_generation(root->commit_root);
		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	} else {
		/*
		 * called by btrfs_reloc_post_snapshot_hook.
		 * the source tree is a reloc tree, all tree blocks
		 * modified after it was created have RELOC flag
		 * set in their headers. so it's OK to not update
		 * the 'last_snapshot'.
		 */
		ret = btrfs_copy_root(trans, root, root->node, &eb,
				      BTRFS_TREE_RELOC_OBJECTID);
		BUG_ON(ret);
	}
1383 1384 1385 1386 1387

	memcpy(root_item, &root->root_item, sizeof(*root_item));
	btrfs_set_root_bytenr(root_item, eb->start);
	btrfs_set_root_level(root_item, btrfs_header_level(eb));
	btrfs_set_root_generation(root_item, trans->transid);
1388 1389 1390 1391 1392 1393 1394

	if (root->root_key.objectid == objectid) {
		btrfs_set_root_refs(root_item, 0);
		memset(&root_item->drop_progress, 0,
		       sizeof(struct btrfs_disk_key));
		root_item->drop_level = 0;
	}
1395 1396 1397 1398

	btrfs_tree_unlock(eb);
	free_extent_buffer(eb);

1399
	ret = btrfs_insert_root(trans, fs_info->tree_root,
1400 1401 1402 1403
				&root_key, root_item);
	BUG_ON(ret);
	kfree(root_item);

1404
	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1405 1406
	BUG_ON(IS_ERR(reloc_root));
	reloc_root->last_trans = trans->transid;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	return reloc_root;
}

/*
 * create reloc tree for a given fs tree. reloc tree is just a
 * snapshot of the fs tree with special root objectid.
 */
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root)
{
1417
	struct btrfs_fs_info *fs_info = root->fs_info;
1418
	struct btrfs_root *reloc_root;
1419
	struct reloc_control *rc = fs_info->reloc_ctl;
1420
	struct btrfs_block_rsv *rsv;
1421
	int clear_rsv = 0;
1422
	int ret;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	if (root->reloc_root) {
		reloc_root = root->reloc_root;
		reloc_root->last_trans = trans->transid;
		return 0;
	}

	if (!rc || !rc->create_reloc_tree ||
	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		return 0;

1434 1435
	if (!trans->reloc_reserved) {
		rsv = trans->block_rsv;
1436 1437 1438 1439 1440
		trans->block_rsv = rc->block_rsv;
		clear_rsv = 1;
	}
	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
	if (clear_rsv)
1441
		trans->block_rsv = rsv;
1442

1443 1444
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	root->reloc_root = reloc_root;
	return 0;
}

/*
 * update root item of reloc tree
 */
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
1455
	struct btrfs_fs_info *fs_info = root->fs_info;
1456 1457 1458 1459 1460
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	int ret;

	if (!root->reloc_root)
C
Chris Mason 已提交
1461
		goto out;
1462 1463 1464 1465

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

1466
	if (fs_info->reloc_ctl->merge_reloc_tree &&
1467
	    btrfs_root_refs(root_item) == 0) {
1468
		root->reloc_root = NULL;
1469
		__del_reloc_root(reloc_root);
1470 1471 1472 1473 1474 1475 1476 1477
	}

	if (reloc_root->commit_root != reloc_root->node) {
		btrfs_set_root_node(root_item, reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->commit_root = btrfs_root_node(reloc_root);
	}

1478
	ret = btrfs_update_root(trans, fs_info->tree_root,
1479 1480
				&reloc_root->root_key, root_item);
	BUG_ON(ret);
C
Chris Mason 已提交
1481 1482

out:
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	return 0;
}

/*
 * helper to find first cached inode with inode number >= objectid
 * in a subvolume
 */
static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
{
	struct rb_node *node;
	struct rb_node *prev;
	struct btrfs_inode *entry;
	struct inode *inode;

	spin_lock(&root->inode_lock);
again:
	node = root->inode_tree.rb_node;
	prev = NULL;
	while (node) {
		prev = node;
		entry = rb_entry(node, struct btrfs_inode, rb_node);

1505
		if (objectid < btrfs_ino(entry))
1506
			node = node->rb_left;
1507
		else if (objectid > btrfs_ino(entry))
1508 1509 1510 1511 1512 1513 1514
			node = node->rb_right;
		else
			break;
	}
	if (!node) {
		while (prev) {
			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1515
			if (objectid <= btrfs_ino(entry)) {
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
				node = prev;
				break;
			}
			prev = rb_next(prev);
		}
	}
	while (node) {
		entry = rb_entry(node, struct btrfs_inode, rb_node);
		inode = igrab(&entry->vfs_inode);
		if (inode) {
			spin_unlock(&root->inode_lock);
			return inode;
		}

1530
		objectid = btrfs_ino(entry) + 1;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		if (cond_resched_lock(&root->inode_lock))
			goto again;

		node = rb_next(node);
	}
	spin_unlock(&root->inode_lock);
	return NULL;
}

static int in_block_group(u64 bytenr,
			  struct btrfs_block_group_cache *block_group)
{
	if (bytenr >= block_group->key.objectid &&
	    bytenr < block_group->key.objectid + block_group->key.offset)
		return 1;
	return 0;
}

/*
 * get new location of data
 */
static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
			    u64 bytenr, u64 num_bytes)
{
	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
	struct btrfs_path *path;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1566 1567
	ret = btrfs_lookup_file_extent(NULL, root, path,
			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
	       btrfs_file_extent_compression(leaf, fi) ||
	       btrfs_file_extent_encryption(leaf, fi) ||
	       btrfs_file_extent_other_encoding(leaf, fi));

	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1585
		ret = -EINVAL;
1586 1587 1588
		goto out;
	}

1589
	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * update file extent items in the tree leaf to point to
 * the new locations.
 */
1600 1601 1602 1603 1604
static noinline_for_stack
int replace_file_extents(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc,
			 struct btrfs_root *root,
			 struct extent_buffer *leaf)
1605
{
1606
	struct btrfs_fs_info *fs_info = root->fs_info;
1607 1608 1609 1610 1611
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	struct inode *inode = NULL;
	u64 parent;
	u64 bytenr;
1612
	u64 new_bytenr = 0;
1613 1614 1615 1616
	u64 num_bytes;
	u64 end;
	u32 nritems;
	u32 i;
1617
	int ret = 0;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	int first = 1;
	int dirty = 0;

	if (rc->stage != UPDATE_DATA_PTRS)
		return 0;

	/* reloc trees always use full backref */
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		parent = leaf->start;
	else
		parent = 0;

	nritems = btrfs_header_nritems(leaf);
	for (i = 0; i < nritems; i++) {
		cond_resched();
		btrfs_item_key_to_cpu(leaf, &key, i);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			continue;
		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
		if (bytenr == 0)
			continue;
		if (!in_block_group(bytenr, rc->block_group))
			continue;

		/*
		 * if we are modifying block in fs tree, wait for readpage
		 * to complete and drop the extent cache
		 */
		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
			if (first) {
				inode = find_next_inode(root, key.objectid);
				first = 0;
1655
			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1656
				btrfs_add_delayed_iput(inode);
1657 1658
				inode = find_next_inode(root, key.objectid);
			}
1659
			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1660 1661 1662
				end = key.offset +
				      btrfs_file_extent_num_bytes(leaf, fi);
				WARN_ON(!IS_ALIGNED(key.offset,
1663 1664
						    fs_info->sectorsize));
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1665 1666
				end--;
				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1667
						      key.offset, end);
1668 1669 1670
				if (!ret)
					continue;

1671 1672
				btrfs_drop_extent_cache(BTRFS_I(inode),
						key.offset,	end, 1);
1673
				unlock_extent(&BTRFS_I(inode)->io_tree,
1674
					      key.offset, end);
1675 1676 1677 1678 1679
			}
		}

		ret = get_new_location(rc->data_inode, &new_bytenr,
				       bytenr, num_bytes);
1680 1681 1682 1683 1684 1685
		if (ret) {
			/*
			 * Don't have to abort since we've not changed anything
			 * in the file extent yet.
			 */
			break;
1686
		}
1687 1688 1689 1690 1691

		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
		dirty = 1;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
1692
		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1693 1694
					   num_bytes, parent,
					   btrfs_header_owner(leaf),
1695
					   key.objectid, key.offset);
1696
		if (ret) {
1697
			btrfs_abort_transaction(trans, ret);
1698 1699
			break;
		}
1700

1701
		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1702
					parent, btrfs_header_owner(leaf),
1703
					key.objectid, key.offset);
1704
		if (ret) {
1705
			btrfs_abort_transaction(trans, ret);
1706 1707
			break;
		}
1708 1709 1710
	}
	if (dirty)
		btrfs_mark_buffer_dirty(leaf);
1711 1712
	if (inode)
		btrfs_add_delayed_iput(inode);
1713
	return ret;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
}

static noinline_for_stack
int memcmp_node_keys(struct extent_buffer *eb, int slot,
		     struct btrfs_path *path, int level)
{
	struct btrfs_disk_key key1;
	struct btrfs_disk_key key2;
	btrfs_node_key(eb, &key1, slot);
	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
	return memcmp(&key1, &key2, sizeof(key1));
}

/*
 * try to replace tree blocks in fs tree with the new blocks
 * in reloc tree. tree blocks haven't been modified since the
 * reloc tree was create can be replaced.
 *
 * if a block was replaced, level of the block + 1 is returned.
 * if no block got replaced, 0 is returned. if there are other
 * errors, a negative error number is returned.
 */
1736 1737 1738 1739 1740
static noinline_for_stack
int replace_path(struct btrfs_trans_handle *trans,
		 struct btrfs_root *dest, struct btrfs_root *src,
		 struct btrfs_path *path, struct btrfs_key *next_key,
		 int lowest_level, int max_level)
1741
{
1742
	struct btrfs_fs_info *fs_info = dest->fs_info;
1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct extent_buffer *eb;
	struct extent_buffer *parent;
	struct btrfs_key key;
	u64 old_bytenr;
	u64 new_bytenr;
	u64 old_ptr_gen;
	u64 new_ptr_gen;
	u64 last_snapshot;
	u32 blocksize;
1752
	int cow = 0;
1753 1754 1755 1756 1757 1758 1759 1760
	int level;
	int ret;
	int slot;

	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);

	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1761
again:
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	slot = path->slots[lowest_level];
	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);

	eb = btrfs_lock_root_node(dest);
	btrfs_set_lock_blocking(eb);
	level = btrfs_header_level(eb);

	if (level < lowest_level) {
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
		return 0;
	}

1775 1776 1777 1778
	if (cow) {
		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
		BUG_ON(ret);
	}
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	btrfs_set_lock_blocking(eb);

	if (next_key) {
		next_key->objectid = (u64)-1;
		next_key->type = (u8)-1;
		next_key->offset = (u64)-1;
	}

	parent = eb;
	while (1) {
1789 1790
		struct btrfs_key first_key;

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		level = btrfs_header_level(parent);
		BUG_ON(level < lowest_level);

		ret = btrfs_bin_search(parent, &key, level, &slot);
		if (ret && slot > 0)
			slot--;

		if (next_key && slot + 1 < btrfs_header_nritems(parent))
			btrfs_node_key_to_cpu(parent, next_key, slot + 1);

		old_bytenr = btrfs_node_blockptr(parent, slot);
1802
		blocksize = fs_info->nodesize;
1803
		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1804
		btrfs_node_key_to_cpu(parent, &first_key, slot);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

		if (level <= max_level) {
			eb = path->nodes[level];
			new_bytenr = btrfs_node_blockptr(eb,
							path->slots[level]);
			new_ptr_gen = btrfs_node_ptr_generation(eb,
							path->slots[level]);
		} else {
			new_bytenr = 0;
			new_ptr_gen = 0;
		}

1817
		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1818 1819 1820 1821 1822 1823
			ret = level;
			break;
		}

		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
		    memcmp_node_keys(parent, slot, path, level)) {
1824
			if (level <= lowest_level) {
1825 1826 1827 1828
				ret = 0;
				break;
			}

1829 1830
			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
					     level - 1, &first_key);
1831 1832
			if (IS_ERR(eb)) {
				ret = PTR_ERR(eb);
1833
				break;
1834 1835
			} else if (!extent_buffer_uptodate(eb)) {
				ret = -EIO;
1836
				free_extent_buffer(eb);
1837
				break;
1838
			}
1839
			btrfs_tree_lock(eb);
1840 1841 1842 1843
			if (cow) {
				ret = btrfs_cow_block(trans, dest, eb, parent,
						      slot, &eb);
				BUG_ON(ret);
1844
			}
1845
			btrfs_set_lock_blocking(eb);
1846 1847 1848 1849 1850 1851 1852 1853

			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);

			parent = eb;
			continue;
		}

1854 1855 1856 1857 1858 1859 1860
		if (!cow) {
			btrfs_tree_unlock(parent);
			free_extent_buffer(parent);
			cow = 1;
			goto again;
		}

1861 1862
		btrfs_node_key_to_cpu(path->nodes[level], &key,
				      path->slots[level]);
1863
		btrfs_release_path(path);
1864 1865 1866 1867 1868 1869

		path->lowest_level = level;
		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
		path->lowest_level = 0;
		BUG_ON(ret);

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/*
		 * Info qgroup to trace both subtrees.
		 *
		 * We must trace both trees.
		 * 1) Tree reloc subtree
		 *    If not traced, we will leak data numbers
		 * 2) Fs subtree
		 *    If not traced, we will double count old data
		 *    and tree block numbers, if current trans doesn't free
		 *    data reloc tree inode.
		 */
		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
				btrfs_header_generation(parent),
				btrfs_header_level(parent));
		if (ret < 0)
			break;
		ret = btrfs_qgroup_trace_subtree(trans, dest,
				path->nodes[level],
				btrfs_header_generation(path->nodes[level]),
				btrfs_header_level(path->nodes[level]));
		if (ret < 0)
			break;

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		/*
		 * swap blocks in fs tree and reloc tree.
		 */
		btrfs_set_node_blockptr(parent, slot, new_bytenr);
		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
		btrfs_mark_buffer_dirty(parent);

		btrfs_set_node_blockptr(path->nodes[level],
					path->slots[level], old_bytenr);
		btrfs_set_node_ptr_generation(path->nodes[level],
					      path->slots[level], old_ptr_gen);
		btrfs_mark_buffer_dirty(path->nodes[level]);

1906
		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1907
					blocksize, path->nodes[level]->start,
1908
					src->root_key.objectid, level - 1, 0);
1909
		BUG_ON(ret);
1910
		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1911 1912
					blocksize, 0, dest->root_key.objectid,
					level - 1, 0);
1913 1914
		BUG_ON(ret);

1915
		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1916
					path->nodes[level]->start,
1917
					src->root_key.objectid, level - 1, 0);
1918 1919
		BUG_ON(ret);

1920
		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1921
					0, dest->root_key.objectid, level - 1,
1922
					0);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		BUG_ON(ret);

		btrfs_unlock_up_safe(path, 0);

		ret = level;
		break;
	}
	btrfs_tree_unlock(parent);
	free_extent_buffer(parent);
	return ret;
}

/*
 * helper to find next relocated block in reloc tree
 */
static noinline_for_stack
int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
		       int *level)
{
	struct extent_buffer *eb;
	int i;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = 0; i < *level; i++) {
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}

	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] + 1 < nritems) {
			path->slots[i]++;
			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
			    last_snapshot)
				continue;

			*level = i;
			return 0;
		}
		free_extent_buffer(path->nodes[i]);
		path->nodes[i] = NULL;
	}
	return 1;
}

/*
 * walk down reloc tree to find relocated block of lowest level
 */
static noinline_for_stack
int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
			 int *level)
{
1979
	struct btrfs_fs_info *fs_info = root->fs_info;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	struct extent_buffer *eb = NULL;
	int i;
	u64 bytenr;
	u64 ptr_gen = 0;
	u64 last_snapshot;
	u32 nritems;

	last_snapshot = btrfs_root_last_snapshot(&root->root_item);

	for (i = *level; i > 0; i--) {
1990 1991
		struct btrfs_key first_key;

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		eb = path->nodes[i];
		nritems = btrfs_header_nritems(eb);
		while (path->slots[i] < nritems) {
			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
			if (ptr_gen > last_snapshot)
				break;
			path->slots[i]++;
		}
		if (path->slots[i] >= nritems) {
			if (i == *level)
				break;
			*level = i + 1;
			return 0;
		}
		if (i == 1) {
			*level = i;
			return 0;
		}

		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2012 2013 2014
		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
				     &first_key);
2015 2016 2017
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
2018 2019 2020
			free_extent_buffer(eb);
			return -EIO;
		}
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		BUG_ON(btrfs_header_level(eb) != i - 1);
		path->nodes[i - 1] = eb;
		path->slots[i - 1] = 0;
	}
	return 1;
}

/*
 * invalidate extent cache for file extents whose key in range of
 * [min_key, max_key)
 */
static int invalidate_extent_cache(struct btrfs_root *root,
				   struct btrfs_key *min_key,
				   struct btrfs_key *max_key)
{
2036
	struct btrfs_fs_info *fs_info = root->fs_info;
2037 2038 2039
	struct inode *inode = NULL;
	u64 objectid;
	u64 start, end;
L
Li Zefan 已提交
2040
	u64 ino;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	objectid = min_key->objectid;
	while (1) {
		cond_resched();
		iput(inode);

		if (objectid > max_key->objectid)
			break;

		inode = find_next_inode(root, objectid);
		if (!inode)
			break;
2053
		ino = btrfs_ino(BTRFS_I(inode));
2054

L
Li Zefan 已提交
2055
		if (ino > max_key->objectid) {
2056 2057 2058 2059
			iput(inode);
			break;
		}

L
Li Zefan 已提交
2060
		objectid = ino + 1;
2061 2062 2063
		if (!S_ISREG(inode->i_mode))
			continue;

L
Li Zefan 已提交
2064
		if (unlikely(min_key->objectid == ino)) {
2065 2066 2067 2068 2069 2070
			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
				continue;
			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
				start = 0;
			else {
				start = min_key->offset;
2071
				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2072 2073 2074 2075 2076
			}
		} else {
			start = 0;
		}

L
Li Zefan 已提交
2077
		if (unlikely(max_key->objectid == ino)) {
2078 2079 2080 2081 2082 2083 2084 2085
			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
				continue;
			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
				end = (u64)-1;
			} else {
				if (max_key->offset == 0)
					continue;
				end = max_key->offset;
2086
				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2087 2088 2089 2090 2091 2092 2093
				end--;
			}
		} else {
			end = (u64)-1;
		}

		/* the lock_extent waits for readpage to complete */
2094
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2095
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2096
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	}
	return 0;
}

static int find_next_key(struct btrfs_path *path, int level,
			 struct btrfs_key *key)

{
	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			break;
		if (path->slots[level] + 1 <
		    btrfs_header_nritems(path->nodes[level])) {
			btrfs_node_key_to_cpu(path->nodes[level], key,
					      path->slots[level] + 1);
			return 0;
		}
		level++;
	}
	return 1;
}

/*
 * merge the relocated tree blocks in reloc tree with corresponding
 * fs tree.
 */
static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
					       struct btrfs_root *root)
{
2126
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2127 2128 2129
	LIST_HEAD(inode_list);
	struct btrfs_key key;
	struct btrfs_key next_key;
2130
	struct btrfs_trans_handle *trans = NULL;
2131 2132 2133
	struct btrfs_root *reloc_root;
	struct btrfs_root_item *root_item;
	struct btrfs_path *path;
2134
	struct extent_buffer *leaf;
2135 2136 2137 2138 2139
	int level;
	int max_level;
	int replaced = 0;
	int ret;
	int err = 0;
2140
	u32 min_reserved;
2141 2142 2143 2144

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
2145
	path->reada = READA_FORWARD;
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

	reloc_root = root->reloc_root;
	root_item = &reloc_root->root_item;

	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
		level = btrfs_root_level(root_item);
		extent_buffer_get(reloc_root->node);
		path->nodes[level] = reloc_root->node;
		path->slots[level] = 0;
	} else {
		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);

		level = root_item->drop_level;
		BUG_ON(level == 0);
		path->lowest_level = level;
		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2162
		path->lowest_level = 0;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		if (ret < 0) {
			btrfs_free_path(path);
			return ret;
		}

		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
				      path->slots[level]);
		WARN_ON(memcmp(&key, &next_key, sizeof(key)));

		btrfs_unlock_up_safe(path, 0);
	}

2175
	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2176
	memset(&next_key, 0, sizeof(next_key));
2177

2178
	while (1) {
M
Miao Xie 已提交
2179 2180
		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
					     BTRFS_RESERVE_FLUSH_ALL);
2181
		if (ret) {
2182 2183
			err = ret;
			goto out;
2184
		}
2185 2186 2187 2188 2189 2190 2191
		trans = btrfs_start_transaction(root, 0);
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			goto out;
		}
		trans->block_rsv = rc->block_rsv;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

		replaced = 0;
		max_level = level;

		ret = walk_down_reloc_tree(reloc_root, path, &level);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0)
			break;

		if (!find_next_key(path, level, &key) &&
		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
			ret = 0;
		} else {
2208 2209
			ret = replace_path(trans, root, reloc_root, path,
					   &next_key, level, max_level);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		}
		if (ret < 0) {
			err = ret;
			goto out;
		}

		if (ret > 0) {
			level = ret;
			btrfs_node_key_to_cpu(path->nodes[level], &key,
					      path->slots[level]);
			replaced = 1;
		}

		ret = walk_up_reloc_tree(reloc_root, path, &level);
		if (ret > 0)
			break;

		BUG_ON(level == 0);
		/*
		 * save the merging progress in the drop_progress.
		 * this is OK since root refs == 1 in this case.
		 */
		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
			       path->slots[level]);
		root_item->drop_level = level;

2236
		btrfs_end_transaction_throttle(trans);
2237
		trans = NULL;
2238

2239
		btrfs_btree_balance_dirty(fs_info);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

		if (replaced && rc->stage == UPDATE_DATA_PTRS)
			invalidate_extent_cache(root, &key, &next_key);
	}

	/*
	 * handle the case only one block in the fs tree need to be
	 * relocated and the block is tree root.
	 */
	leaf = btrfs_lock_root_node(root);
	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
	btrfs_tree_unlock(leaf);
	free_extent_buffer(leaf);
	if (ret < 0)
		err = ret;
out:
	btrfs_free_path(path);

	if (err == 0) {
		memset(&root_item->drop_progress, 0,
		       sizeof(root_item->drop_progress));
		root_item->drop_level = 0;
		btrfs_set_root_refs(root_item, 0);
2263
		btrfs_update_reloc_root(trans, root);
2264 2265
	}

2266
	if (trans)
2267
		btrfs_end_transaction_throttle(trans);
2268

2269
	btrfs_btree_balance_dirty(fs_info);
2270 2271 2272 2273 2274 2275 2276

	if (replaced && rc->stage == UPDATE_DATA_PTRS)
		invalidate_extent_cache(root, &key, &next_key);

	return err;
}

2277 2278
static noinline_for_stack
int prepare_to_merge(struct reloc_control *rc, int err)
2279
{
2280
	struct btrfs_root *root = rc->extent_root;
2281
	struct btrfs_fs_info *fs_info = root->fs_info;
2282
	struct btrfs_root *reloc_root;
2283 2284 2285 2286 2287
	struct btrfs_trans_handle *trans;
	LIST_HEAD(reloc_roots);
	u64 num_bytes = 0;
	int ret;

2288 2289
	mutex_lock(&fs_info->reloc_mutex);
	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2290
	rc->merging_rsv_size += rc->nodes_relocated * 2;
2291
	mutex_unlock(&fs_info->reloc_mutex);
C
Chris Mason 已提交
2292

2293 2294 2295
again:
	if (!err) {
		num_bytes = rc->merging_rsv_size;
M
Miao Xie 已提交
2296 2297
		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
					  BTRFS_RESERVE_FLUSH_ALL);
2298 2299 2300 2301
		if (ret)
			err = ret;
	}

2302
	trans = btrfs_join_transaction(rc->extent_root);
2303 2304
	if (IS_ERR(trans)) {
		if (!err)
2305 2306
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2307 2308
		return PTR_ERR(trans);
	}
2309 2310 2311

	if (!err) {
		if (num_bytes != rc->merging_rsv_size) {
2312
			btrfs_end_transaction(trans);
2313 2314
			btrfs_block_rsv_release(fs_info, rc->block_rsv,
						num_bytes);
2315 2316 2317
			goto again;
		}
	}
2318

2319 2320 2321 2322 2323 2324
	rc->merge_reloc_tree = 1;

	while (!list_empty(&rc->reloc_roots)) {
		reloc_root = list_entry(rc->reloc_roots.next,
					struct btrfs_root, root_list);
		list_del_init(&reloc_root->root_list);
2325

2326
		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2327 2328 2329
		BUG_ON(IS_ERR(root));
		BUG_ON(root->reloc_root != reloc_root);

2330 2331 2332 2333 2334 2335
		/*
		 * set reference count to 1, so btrfs_recover_relocation
		 * knows it should resumes merging
		 */
		if (!err)
			btrfs_set_root_refs(&reloc_root->root_item, 1);
2336 2337
		btrfs_update_reloc_root(trans, root);

2338 2339
		list_add(&reloc_root->root_list, &reloc_roots);
	}
2340

2341
	list_splice(&reloc_roots, &rc->reloc_roots);
2342

2343
	if (!err)
2344
		btrfs_commit_transaction(trans);
2345
	else
2346
		btrfs_end_transaction(trans);
2347
	return err;
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357
static noinline_for_stack
void free_reloc_roots(struct list_head *list)
{
	struct btrfs_root *reloc_root;

	while (!list_empty(list)) {
		reloc_root = list_entry(list->next, struct btrfs_root,
					root_list);
2358
		__del_reloc_root(reloc_root);
2359 2360 2361 2362
		free_extent_buffer(reloc_root->node);
		free_extent_buffer(reloc_root->commit_root);
		reloc_root->node = NULL;
		reloc_root->commit_root = NULL;
2363 2364 2365
	}
}

2366
static noinline_for_stack
2367
void merge_reloc_roots(struct reloc_control *rc)
2368
{
2369
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2370
	struct btrfs_root *root;
2371 2372 2373
	struct btrfs_root *reloc_root;
	LIST_HEAD(reloc_roots);
	int found = 0;
2374
	int ret = 0;
2375 2376
again:
	root = rc->extent_root;
C
Chris Mason 已提交
2377 2378 2379 2380 2381 2382 2383

	/*
	 * this serializes us with btrfs_record_root_in_transaction,
	 * we have to make sure nobody is in the middle of
	 * adding their roots to the list while we are
	 * doing this splice
	 */
2384
	mutex_lock(&fs_info->reloc_mutex);
2385
	list_splice_init(&rc->reloc_roots, &reloc_roots);
2386
	mutex_unlock(&fs_info->reloc_mutex);
2387

2388 2389 2390 2391
	while (!list_empty(&reloc_roots)) {
		found = 1;
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
2392

2393
		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2394
			root = read_fs_root(fs_info,
2395 2396 2397
					    reloc_root->root_key.offset);
			BUG_ON(IS_ERR(root));
			BUG_ON(root->reloc_root != reloc_root);
2398

2399
			ret = merge_reloc_root(rc, root);
2400
			if (ret) {
2401 2402 2403
				if (list_empty(&reloc_root->root_list))
					list_add_tail(&reloc_root->root_list,
						      &reloc_roots);
2404
				goto out;
2405
			}
2406 2407 2408
		} else {
			list_del_init(&reloc_root->root_list);
		}
M
Miao Xie 已提交
2409

2410
		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 2412 2413 2414 2415 2416
		if (ret < 0) {
			if (list_empty(&reloc_root->root_list))
				list_add_tail(&reloc_root->root_list,
					      &reloc_roots);
			goto out;
		}
2417 2418
	}

2419 2420 2421 2422
	if (found) {
		found = 0;
		goto again;
	}
2423 2424
out:
	if (ret) {
2425
		btrfs_handle_fs_error(fs_info, ret, NULL);
2426 2427
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2428 2429

		/* new reloc root may be added */
2430
		mutex_lock(&fs_info->reloc_mutex);
2431
		list_splice_init(&rc->reloc_roots, &reloc_roots);
2432
		mutex_unlock(&fs_info->reloc_mutex);
2433 2434
		if (!list_empty(&reloc_roots))
			free_reloc_roots(&reloc_roots);
2435 2436
	}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
}

static void free_block_list(struct rb_root *blocks)
{
	struct tree_block *block;
	struct rb_node *rb_node;
	while ((rb_node = rb_first(blocks))) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		rb_erase(rb_node, blocks);
		kfree(block);
	}
}

static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
				      struct btrfs_root *reloc_root)
{
2454
	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2455 2456 2457 2458 2459
	struct btrfs_root *root;

	if (reloc_root->last_trans == trans->transid)
		return 0;

2460
	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2461 2462 2463 2464 2465 2466
	BUG_ON(IS_ERR(root));
	BUG_ON(root->reloc_root != reloc_root);

	return btrfs_record_root_in_trans(trans, root);
}

2467 2468 2469 2470
static noinline_for_stack
struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
				     struct reloc_control *rc,
				     struct backref_node *node,
2471
				     struct backref_edge *edges[])
2472 2473 2474
{
	struct backref_node *next;
	struct btrfs_root *root;
2475 2476
	int index = 0;

2477 2478 2479 2480 2481
	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
2482
		BUG_ON(!root);
2483
		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2484 2485 2486 2487 2488 2489

		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
			record_reloc_root_in_trans(trans, root);
			break;
		}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		btrfs_record_root_in_trans(trans, root);
		root = root->reloc_root;

		if (next->new_bytenr != root->node->start) {
			BUG_ON(next->new_bytenr);
			BUG_ON(!list_empty(&next->list));
			next->new_bytenr = root->node->start;
			next->root = root;
			list_add_tail(&next->list,
				      &rc->backref_cache.changed);
			__mark_block_processed(rc, next);
2501 2502 2503
			break;
		}

2504
		WARN_ON(1);
2505 2506 2507 2508 2509
		root = NULL;
		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}
2510 2511
	if (!root)
		return NULL;
2512

2513 2514 2515 2516 2517 2518 2519
	next = node;
	/* setup backref node path for btrfs_reloc_cow_block */
	while (1) {
		rc->backref_cache.path[next->level] = next;
		if (--index < 0)
			break;
		next = edges[index]->node[UPPER];
2520 2521 2522 2523
	}
	return root;
}

2524 2525 2526 2527 2528 2529
/*
 * select a tree root for relocation. return NULL if the block
 * is reference counted. we should use do_relocation() in this
 * case. return a tree root pointer if the block isn't reference
 * counted. return -ENOENT if the block is root of reloc tree.
 */
2530
static noinline_for_stack
2531
struct btrfs_root *select_one_root(struct backref_node *node)
2532
{
2533 2534 2535
	struct backref_node *next;
	struct btrfs_root *root;
	struct btrfs_root *fs_root = NULL;
2536
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2537 2538 2539 2540 2541 2542 2543 2544 2545
	int index = 0;

	next = node;
	while (1) {
		cond_resched();
		next = walk_up_backref(next, edges, &index);
		root = next->root;
		BUG_ON(!root);

L
Lucas De Marchi 已提交
2546
		/* no other choice for non-references counted tree */
2547
		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
			return root;

		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
			fs_root = root;

		if (next != node)
			return NULL;

		next = walk_down_backref(edges, &index);
		if (!next || next->level <= node->level)
			break;
	}

	if (!fs_root)
		return ERR_PTR(-ENOENT);
	return fs_root;
2564 2565 2566
}

static noinline_for_stack
2567 2568
u64 calcu_metadata_size(struct reloc_control *rc,
			struct backref_node *node, int reserve)
2569
{
2570
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	u64 num_bytes = 0;
	int index = 0;

	BUG_ON(reserve && node->processed);

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed && (reserve || next != node))
				break;

2585
			num_bytes += fs_info->nodesize;
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
	return num_bytes;
2598 2599
}

2600 2601 2602
static int reserve_metadata_space(struct btrfs_trans_handle *trans,
				  struct reloc_control *rc,
				  struct backref_node *node)
2603
{
2604
	struct btrfs_root *root = rc->extent_root;
2605
	struct btrfs_fs_info *fs_info = root->fs_info;
2606 2607
	u64 num_bytes;
	int ret;
2608
	u64 tmp;
2609 2610

	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2611

2612
	trans->block_rsv = rc->block_rsv;
2613
	rc->reserved_bytes += num_bytes;
2614 2615 2616 2617 2618 2619

	/*
	 * We are under a transaction here so we can only do limited flushing.
	 * If we get an enospc just kick back -EAGAIN so we know to drop the
	 * transaction and try to refill when we can flush all the things.
	 */
2620
	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2621
				BTRFS_RESERVE_FLUSH_LIMIT);
2622
	if (ret) {
2623
		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2624 2625 2626 2627 2628 2629 2630 2631 2632
		while (tmp <= rc->reserved_bytes)
			tmp <<= 1;
		/*
		 * only one thread can access block_rsv at this point,
		 * so we don't need hold lock to protect block_rsv.
		 * we expand more reservation size here to allow enough
		 * space for relocation and we will return eailer in
		 * enospc case.
		 */
2633 2634
		rc->block_rsv->size = tmp + fs_info->nodesize *
				      RELOCATION_RESERVED_NODES;
2635
		return -EAGAIN;
2636
	}
2637 2638 2639 2640

	return 0;
}

2641 2642 2643 2644 2645 2646 2647 2648
/*
 * relocate a block tree, and then update pointers in upper level
 * blocks that reference the block to point to the new location.
 *
 * if called by link_to_upper, the block has already been relocated.
 * in that case this function just updates pointers.
 */
static int do_relocation(struct btrfs_trans_handle *trans,
2649
			 struct reloc_control *rc,
2650 2651 2652 2653
			 struct backref_node *node,
			 struct btrfs_key *key,
			 struct btrfs_path *path, int lowest)
{
2654
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	struct backref_node *upper;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	struct btrfs_root *root;
	struct extent_buffer *eb;
	u32 blocksize;
	u64 bytenr;
	u64 generation;
	int slot;
	int ret;
	int err = 0;

	BUG_ON(lowest && node->eb);

	path->lowest_level = node->level + 1;
2670
	rc->backref_cache.path[node->level] = node;
2671
	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2672 2673
		struct btrfs_key first_key;

2674 2675 2676
		cond_resched();

		upper = edge->node[UPPER];
2677
		root = select_reloc_root(trans, rc, upper, edges);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		BUG_ON(!root);

		if (upper->eb && !upper->locked) {
			if (!lowest) {
				ret = btrfs_bin_search(upper->eb, key,
						       upper->level, &slot);
				BUG_ON(ret);
				bytenr = btrfs_node_blockptr(upper->eb, slot);
				if (node->eb->start == bytenr)
					goto next;
			}
2689
			drop_node_buffer(upper);
2690
		}
2691 2692 2693

		if (!upper->eb) {
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694 2695 2696 2697 2698 2699 2700
			if (ret) {
				if (ret < 0)
					err = ret;
				else
					err = -ENOENT;

				btrfs_release_path(path);
2701 2702 2703
				break;
			}

2704 2705 2706 2707 2708 2709
			if (!upper->eb) {
				upper->eb = path->nodes[upper->level];
				path->nodes[upper->level] = NULL;
			} else {
				BUG_ON(upper->eb != path->nodes[upper->level]);
			}
2710

2711 2712
			upper->locked = 1;
			path->locks[upper->level] = 0;
2713

2714
			slot = path->slots[upper->level];
2715
			btrfs_release_path(path);
2716 2717 2718 2719 2720 2721 2722
		} else {
			ret = btrfs_bin_search(upper->eb, key, upper->level,
					       &slot);
			BUG_ON(ret);
		}

		bytenr = btrfs_node_blockptr(upper->eb, slot);
2723
		if (lowest) {
L
Liu Bo 已提交
2724 2725 2726 2727 2728 2729 2730 2731
			if (bytenr != node->bytenr) {
				btrfs_err(root->fs_info,
		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
					  bytenr, node->bytenr, slot,
					  upper->eb->start);
				err = -EIO;
				goto next;
			}
2732
		} else {
2733 2734
			if (node->eb->start == bytenr)
				goto next;
2735 2736
		}

2737
		blocksize = root->fs_info->nodesize;
2738
		generation = btrfs_node_ptr_generation(upper->eb, slot);
2739 2740 2741
		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
		eb = read_tree_block(fs_info, bytenr, generation,
				     upper->level - 1, &first_key);
2742 2743 2744 2745
		if (IS_ERR(eb)) {
			err = PTR_ERR(eb);
			goto next;
		} else if (!extent_buffer_uptodate(eb)) {
2746
			free_extent_buffer(eb);
2747 2748 2749
			err = -EIO;
			goto next;
		}
2750 2751 2752 2753 2754 2755
		btrfs_tree_lock(eb);
		btrfs_set_lock_blocking(eb);

		if (!node->eb) {
			ret = btrfs_cow_block(trans, root, eb, upper->eb,
					      slot, &eb);
2756 2757
			btrfs_tree_unlock(eb);
			free_extent_buffer(eb);
2758 2759
			if (ret < 0) {
				err = ret;
2760
				goto next;
2761
			}
2762
			BUG_ON(node->eb != eb);
2763 2764 2765 2766 2767 2768 2769
		} else {
			btrfs_set_node_blockptr(upper->eb, slot,
						node->eb->start);
			btrfs_set_node_ptr_generation(upper->eb, slot,
						      trans->transid);
			btrfs_mark_buffer_dirty(upper->eb);

2770
			ret = btrfs_inc_extent_ref(trans, root,
2771 2772 2773
						node->eb->start, blocksize,
						upper->eb->start,
						btrfs_header_owner(upper->eb),
2774
						node->level, 0);
2775 2776 2777 2778 2779
			BUG_ON(ret);

			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
			BUG_ON(ret);
		}
2780 2781 2782 2783 2784 2785 2786
next:
		if (!upper->pending)
			drop_node_buffer(upper);
		else
			unlock_node_buffer(upper);
		if (err)
			break;
2787
	}
2788 2789 2790 2791 2792 2793 2794

	if (!err && node->pending) {
		drop_node_buffer(node);
		list_move_tail(&node->list, &rc->backref_cache.changed);
		node->pending = 0;
	}

2795
	path->lowest_level = 0;
2796
	BUG_ON(err == -ENOSPC);
2797 2798 2799 2800
	return err;
}

static int link_to_upper(struct btrfs_trans_handle *trans,
2801
			 struct reloc_control *rc,
2802 2803 2804 2805 2806 2807
			 struct backref_node *node,
			 struct btrfs_path *path)
{
	struct btrfs_key key;

	btrfs_node_key_to_cpu(node->eb, &key, 0);
2808
	return do_relocation(trans, rc, node, &key, path, 0);
2809 2810 2811
}

static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2812 2813
				struct reloc_control *rc,
				struct btrfs_path *path, int err)
2814
{
2815 2816
	LIST_HEAD(list);
	struct backref_cache *cache = &rc->backref_cache;
2817 2818 2819 2820 2821 2822 2823
	struct backref_node *node;
	int level;
	int ret;

	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
		while (!list_empty(&cache->pending[level])) {
			node = list_entry(cache->pending[level].next,
2824 2825 2826
					  struct backref_node, list);
			list_move_tail(&node->list, &list);
			BUG_ON(!node->pending);
2827

2828 2829 2830 2831 2832
			if (!err) {
				ret = link_to_upper(trans, rc, node, path);
				if (ret < 0)
					err = ret;
			}
2833
		}
2834
		list_splice_init(&list, &cache->pending[level]);
2835 2836 2837 2838 2839
	}
	return err;
}

static void mark_block_processed(struct reloc_control *rc,
2840 2841 2842
				 u64 bytenr, u32 blocksize)
{
	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2843
			EXTENT_DIRTY);
2844 2845 2846 2847
}

static void __mark_block_processed(struct reloc_control *rc,
				   struct backref_node *node)
2848 2849 2850 2851
{
	u32 blocksize;
	if (node->level == 0 ||
	    in_block_group(node->bytenr, rc->block_group)) {
2852
		blocksize = rc->extent_root->fs_info->nodesize;
2853
		mark_block_processed(rc, node->bytenr, blocksize);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	}
	node->processed = 1;
}

/*
 * mark a block and all blocks directly/indirectly reference the block
 * as processed.
 */
static void update_processed_blocks(struct reloc_control *rc,
				    struct backref_node *node)
{
	struct backref_node *next = node;
	struct backref_edge *edge;
	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
	int index = 0;

	while (next) {
		cond_resched();
		while (1) {
			if (next->processed)
				break;

2876
			__mark_block_processed(rc, next);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889

			if (list_empty(&next->upper))
				break;

			edge = list_entry(next->upper.next,
					  struct backref_edge, list[LOWER]);
			edges[index++] = edge;
			next = edge->node[UPPER];
		}
		next = walk_down_backref(edges, &index);
	}
}

2890
static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2891
{
2892
	u32 blocksize = rc->extent_root->fs_info->nodesize;
2893

2894 2895 2896 2897
	if (test_range_bit(&rc->processed_blocks, bytenr,
			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
		return 1;
	return 0;
2898 2899
}

2900
static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2901 2902 2903 2904 2905
			      struct tree_block *block)
{
	struct extent_buffer *eb;

	BUG_ON(block->key_ready);
2906 2907
	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
			     block->level, NULL);
2908 2909 2910
	if (IS_ERR(eb)) {
		return PTR_ERR(eb);
	} else if (!extent_buffer_uptodate(eb)) {
2911 2912 2913
		free_extent_buffer(eb);
		return -EIO;
	}
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	WARN_ON(btrfs_header_level(eb) != block->level);
	if (block->level == 0)
		btrfs_item_key_to_cpu(eb, &block->key, 0);
	else
		btrfs_node_key_to_cpu(eb, &block->key, 0);
	free_extent_buffer(eb);
	block->key_ready = 1;
	return 0;
}

/*
 * helper function to relocate a tree block
 */
static int relocate_tree_block(struct btrfs_trans_handle *trans,
				struct reloc_control *rc,
				struct backref_node *node,
				struct btrfs_key *key,
				struct btrfs_path *path)
{
	struct btrfs_root *root;
2934 2935 2936 2937
	int ret = 0;

	if (!node)
		return 0;
2938

2939
	BUG_ON(node->processed);
2940
	root = select_one_root(node);
2941
	if (root == ERR_PTR(-ENOENT)) {
2942
		update_processed_blocks(rc, node);
2943
		goto out;
2944 2945
	}

2946
	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2947 2948
		ret = reserve_metadata_space(trans, rc, node);
		if (ret)
2949 2950 2951
			goto out;
	}

2952
	if (root) {
2953
		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
			BUG_ON(node->new_bytenr);
			BUG_ON(!list_empty(&node->list));
			btrfs_record_root_in_trans(trans, root);
			root = root->reloc_root;
			node->new_bytenr = root->node->start;
			node->root = root;
			list_add_tail(&node->list, &rc->backref_cache.changed);
		} else {
			path->lowest_level = node->level;
			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2964
			btrfs_release_path(path);
2965 2966 2967 2968 2969 2970 2971 2972
			if (ret > 0)
				ret = 0;
		}
		if (!ret)
			update_processed_blocks(rc, node);
	} else {
		ret = do_relocation(trans, rc, node, key, path, 1);
	}
2973
out:
2974
	if (ret || node->level == 0 || node->cowonly)
2975
		remove_backref_node(&rc->backref_cache, node);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	return ret;
}

/*
 * relocate a list of blocks
 */
static noinline_for_stack
int relocate_tree_blocks(struct btrfs_trans_handle *trans,
			 struct reloc_control *rc, struct rb_root *blocks)
{
2986
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2987 2988 2989 2990 2991 2992 2993 2994
	struct backref_node *node;
	struct btrfs_path *path;
	struct tree_block *block;
	struct rb_node *rb_node;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
2995 2996
	if (!path) {
		err = -ENOMEM;
2997
		goto out_free_blocks;
2998
	}
2999 3000 3001 3002 3003

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
		if (!block->key_ready)
3004
			readahead_tree_block(fs_info, block->bytenr);
3005 3006 3007 3008 3009 3010
		rb_node = rb_next(rb_node);
	}

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);
3011
		if (!block->key_ready) {
3012
			err = get_tree_block_key(fs_info, block);
3013 3014 3015
			if (err)
				goto out_free_path;
		}
3016 3017 3018 3019 3020 3021 3022
		rb_node = rb_next(rb_node);
	}

	rb_node = rb_first(blocks);
	while (rb_node) {
		block = rb_entry(rb_node, struct tree_block, rb_node);

3023
		node = build_backref_tree(rc, &block->key,
3024 3025 3026 3027 3028 3029 3030 3031 3032
					  block->level, block->bytenr);
		if (IS_ERR(node)) {
			err = PTR_ERR(node);
			goto out;
		}

		ret = relocate_tree_block(trans, rc, node, &block->key,
					  path);
		if (ret < 0) {
3033 3034
			if (ret != -EAGAIN || rb_node == rb_first(blocks))
				err = ret;
3035 3036 3037 3038 3039
			goto out;
		}
		rb_node = rb_next(rb_node);
	}
out:
3040
	err = finish_pending_nodes(trans, rc, path, err);
3041

3042
out_free_path:
3043
	btrfs_free_path(path);
3044
out_free_blocks:
3045
	free_block_list(blocks);
3046 3047 3048
	return err;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static noinline_for_stack
int prealloc_file_extent_cluster(struct inode *inode,
				 struct file_extent_cluster *cluster)
{
	u64 alloc_hint = 0;
	u64 start;
	u64 end;
	u64 offset = BTRFS_I(inode)->index_cnt;
	u64 num_bytes;
	int nr = 0;
	int ret = 0;
3060 3061
	u64 prealloc_start = cluster->start - offset;
	u64 prealloc_end = cluster->end - offset;
3062
	u64 cur_offset;
3063
	struct extent_changeset *data_reserved = NULL;
3064 3065

	BUG_ON(cluster->start != cluster->boundary[0]);
A
Al Viro 已提交
3066
	inode_lock(inode);
3067

3068
	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3069
					  prealloc_end + 1 - prealloc_start);
3070 3071 3072
	if (ret)
		goto out;

3073
	cur_offset = prealloc_start;
3074 3075 3076 3077 3078 3079 3080
	while (nr < cluster->nr) {
		start = cluster->boundary[nr] - offset;
		if (nr + 1 < cluster->nr)
			end = cluster->boundary[nr + 1] - 1 - offset;
		else
			end = cluster->end - offset;

3081
		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3082
		num_bytes = end + 1 - start;
3083
		if (cur_offset < start)
3084 3085
			btrfs_free_reserved_data_space(inode, data_reserved,
					cur_offset, start - cur_offset);
3086 3087 3088
		ret = btrfs_prealloc_file_range(inode, 0, start,
						num_bytes, num_bytes,
						end + 1, &alloc_hint);
3089
		cur_offset = end + 1;
3090
		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3091 3092 3093 3094
		if (ret)
			break;
		nr++;
	}
3095
	if (cur_offset < prealloc_end)
3096 3097
		btrfs_free_reserved_data_space(inode, data_reserved,
				cur_offset, prealloc_end + 1 - cur_offset);
3098
out:
A
Al Viro 已提交
3099
	inode_unlock(inode);
3100
	extent_changeset_free(data_reserved);
3101 3102 3103
	return ret;
}

3104
static noinline_for_stack
3105 3106 3107
int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
			 u64 block_start)
{
3108
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3109 3110 3111 3112
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
	struct extent_map *em;
	int ret = 0;

3113
	em = alloc_extent_map();
3114 3115 3116 3117 3118 3119 3120
	if (!em)
		return -ENOMEM;

	em->start = start;
	em->len = end + 1 - start;
	em->block_len = em->len;
	em->block_start = block_start;
3121
	em->bdev = fs_info->fs_devices->latest_bdev;
3122 3123
	set_bit(EXTENT_FLAG_PINNED, &em->flags);

3124
	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3125 3126
	while (1) {
		write_lock(&em_tree->lock);
J
Josef Bacik 已提交
3127
		ret = add_extent_mapping(em_tree, em, 0);
3128 3129 3130 3131 3132
		write_unlock(&em_tree->lock);
		if (ret != -EEXIST) {
			free_extent_map(em);
			break;
		}
3133
		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3134
	}
3135
	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3136 3137 3138 3139 3140
	return ret;
}

static int relocate_file_extent_cluster(struct inode *inode,
					struct file_extent_cluster *cluster)
3141
{
3142
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3143 3144
	u64 page_start;
	u64 page_end;
3145 3146
	u64 offset = BTRFS_I(inode)->index_cnt;
	unsigned long index;
3147 3148 3149
	unsigned long last_index;
	struct page *page;
	struct file_ra_state *ra;
3150
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3151
	int nr = 0;
3152 3153
	int ret = 0;

3154 3155 3156
	if (!cluster->nr)
		return 0;

3157 3158 3159 3160
	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

3161 3162 3163
	ret = prealloc_file_extent_cluster(inode, cluster);
	if (ret)
		goto out;
3164

3165
	file_ra_state_init(ra, inode->i_mapping);
3166

3167 3168
	ret = setup_extent_mapping(inode, cluster->start - offset,
				   cluster->end - offset, cluster->start);
3169
	if (ret)
3170
		goto out;
3171

3172 3173
	index = (cluster->start - offset) >> PAGE_SHIFT;
	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3174
	while (index <= last_index) {
3175 3176
		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
				PAGE_SIZE);
3177 3178 3179
		if (ret)
			goto out;

3180
		page = find_lock_page(inode->i_mapping, index);
3181
		if (!page) {
3182 3183 3184
			page_cache_sync_readahead(inode->i_mapping,
						  ra, NULL, index,
						  last_index + 1 - index);
3185
			page = find_or_create_page(inode->i_mapping, index,
3186
						   mask);
3187
			if (!page) {
3188
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3189
							PAGE_SIZE, true);
3190
				ret = -ENOMEM;
3191
				goto out;
3192
			}
3193
		}
3194 3195 3196 3197 3198 3199 3200

		if (PageReadahead(page)) {
			page_cache_async_readahead(inode->i_mapping,
						   ra, NULL, page, index,
						   last_index + 1 - index);
		}

3201 3202 3203 3204 3205
		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
3206
				put_page(page);
3207
				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3208
							PAGE_SIZE, true);
J
Josef Bacik 已提交
3209
				btrfs_delalloc_release_extents(BTRFS_I(inode),
3210
							       PAGE_SIZE, true);
3211
				ret = -EIO;
3212
				goto out;
3213 3214 3215
			}
		}

M
Miao Xie 已提交
3216
		page_start = page_offset(page);
3217
		page_end = page_start + PAGE_SIZE - 1;
3218

3219
		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3220

3221 3222
		set_page_extent_mapped(page);

3223 3224 3225 3226
		if (nr < cluster->nr &&
		    page_start + offset == cluster->boundary[nr]) {
			set_extent_bits(&BTRFS_I(inode)->io_tree,
					page_start, page_end,
3227
					EXTENT_BOUNDARY);
3228 3229
			nr++;
		}
3230

3231 3232 3233 3234 3235 3236
		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
						NULL, 0);
		if (ret) {
			unlock_page(page);
			put_page(page);
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3237
							 PAGE_SIZE, true);
3238
			btrfs_delalloc_release_extents(BTRFS_I(inode),
3239
			                               PAGE_SIZE, true);
3240 3241 3242 3243 3244 3245 3246

			clear_extent_bits(&BTRFS_I(inode)->io_tree,
					  page_start, page_end,
					  EXTENT_LOCKED | EXTENT_BOUNDARY);
			goto out;

		}
3247 3248
		set_page_dirty(page);

3249
		unlock_extent(&BTRFS_I(inode)->io_tree,
3250
			      page_start, page_end);
3251
		unlock_page(page);
3252
		put_page(page);
3253 3254

		index++;
3255 3256
		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
					       false);
3257
		balance_dirty_pages_ratelimited(inode->i_mapping);
3258
		btrfs_throttle(fs_info);
3259
	}
3260
	WARN_ON(nr != cluster->nr);
3261
out:
3262 3263 3264 3265 3266
	kfree(ra);
	return ret;
}

static noinline_for_stack
3267 3268
int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
			 struct file_extent_cluster *cluster)
3269
{
3270
	int ret;
3271

3272 3273 3274 3275 3276
	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
3277 3278
	}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	if (!cluster->nr)
		cluster->start = extent_key->objectid;
	else
		BUG_ON(cluster->nr >= MAX_EXTENTS);
	cluster->end = extent_key->objectid + extent_key->offset - 1;
	cluster->boundary[cluster->nr] = extent_key->objectid;
	cluster->nr++;

	if (cluster->nr >= MAX_EXTENTS) {
		ret = relocate_file_extent_cluster(inode, cluster);
		if (ret)
			return ret;
		cluster->nr = 0;
	}
	return 0;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
}

/*
 * helper to add a tree block to the list.
 * the major work is getting the generation and level of the block
 */
static int add_tree_block(struct reloc_control *rc,
			  struct btrfs_key *extent_key,
			  struct btrfs_path *path,
			  struct rb_root *blocks)
{
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_tree_block_info *bi;
	struct tree_block *block;
	struct rb_node *rb_node;
	u32 item_size;
	int level = -1;
3312
	u64 generation;
3313 3314 3315 3316

	eb =  path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

3317 3318
	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3319 3320
		ei = btrfs_item_ptr(eb, path->slots[0],
				struct btrfs_extent_item);
3321 3322 3323 3324 3325 3326
		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
			bi = (struct btrfs_tree_block_info *)(ei + 1);
			level = btrfs_tree_block_level(eb, bi);
		} else {
			level = (int)extent_key->offset;
		}
3327
		generation = btrfs_extent_generation(eb, ei);
3328
	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3329 3330 3331
		btrfs_print_v0_err(eb->fs_info);
		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
		return -EINVAL;
3332 3333 3334 3335
	} else {
		BUG();
	}

3336
	btrfs_release_path(path);
3337 3338 3339 3340 3341 3342 3343 3344

	BUG_ON(level == -1);

	block = kmalloc(sizeof(*block), GFP_NOFS);
	if (!block)
		return -ENOMEM;

	block->bytenr = extent_key->objectid;
3345
	block->key.objectid = rc->extent_root->fs_info->nodesize;
3346 3347 3348 3349 3350
	block->key.offset = generation;
	block->level = level;
	block->key_ready = 0;

	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3351 3352
	if (rb_node)
		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

	return 0;
}

/*
 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
 */
static int __add_tree_block(struct reloc_control *rc,
			    u64 bytenr, u32 blocksize,
			    struct rb_root *blocks)
{
3364
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3365 3366 3367
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
3368
	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3369

3370
	if (tree_block_processed(bytenr, rc))
3371 3372 3373 3374 3375 3376 3377 3378
		return 0;

	if (tree_search(blocks, bytenr))
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3379
again:
3380
	key.objectid = bytenr;
3381 3382 3383 3384 3385 3386 3387
	if (skinny) {
		key.type = BTRFS_METADATA_ITEM_KEY;
		key.offset = (u64)-1;
	} else {
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = blocksize;
	}
3388 3389 3390 3391 3392 3393 3394

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (ret > 0 && skinny) {
		if (path->slots[0]) {
			path->slots[0]--;
			btrfs_item_key_to_cpu(path->nodes[0], &key,
					      path->slots[0]);
			if (key.objectid == bytenr &&
			    (key.type == BTRFS_METADATA_ITEM_KEY ||
			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
			      key.offset == blocksize)))
				ret = 0;
		}

		if (ret) {
			skinny = false;
			btrfs_release_path(path);
			goto again;
		}
3412
	}
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	if (ret) {
		ASSERT(ret == 1);
		btrfs_print_leaf(path->nodes[0]);
		btrfs_err(fs_info,
	     "tree block extent item (%llu) is not found in extent tree",
		     bytenr);
		WARN_ON(1);
		ret = -EINVAL;
		goto out;
	}
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	ret = add_tree_block(rc, &key, path, blocks);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to check if the block use full backrefs for pointers in it
 */
static int block_use_full_backref(struct reloc_control *rc,
				  struct extent_buffer *eb)
{
	u64 flags;
	int ret;

	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
		return 1;

3443
	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3444 3445
				       eb->start, btrfs_header_level(eb), 1,
				       NULL, &flags);
3446 3447 3448 3449 3450 3451 3452 3453 3454
	BUG_ON(ret);

	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
		ret = 1;
	else
		ret = 0;
	return ret;
}

3455
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3456 3457 3458
				    struct btrfs_block_group_cache *block_group,
				    struct inode *inode,
				    u64 ino)
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
{
	struct btrfs_key key;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_trans_handle *trans;
	int ret = 0;

	if (inode)
		goto truncate;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3473 3474
	if (IS_ERR(inode) || is_bad_inode(inode)) {
		if (!IS_ERR(inode))
3475 3476 3477 3478 3479
			iput(inode);
		return -ENOENT;
	}

truncate:
3480
	ret = btrfs_check_trunc_cache_free_space(fs_info,
3481 3482 3483 3484
						 &fs_info->global_block_rsv);
	if (ret)
		goto out;

3485
	trans = btrfs_join_transaction(root);
3486
	if (IS_ERR(trans)) {
3487
		ret = PTR_ERR(trans);
3488 3489 3490
		goto out;
	}

3491
	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3492

3493
	btrfs_end_transaction(trans);
3494
	btrfs_btree_balance_dirty(fs_info);
3495 3496 3497 3498 3499
out:
	iput(inode);
	return ret;
}

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
/*
 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
 * this function scans fs tree to find blocks reference the data extent
 */
static int find_data_references(struct reloc_control *rc,
				struct btrfs_key *extent_key,
				struct extent_buffer *leaf,
				struct btrfs_extent_data_ref *ref,
				struct rb_root *blocks)
{
3510
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	struct btrfs_path *path;
	struct tree_block *block;
	struct btrfs_root *root;
	struct btrfs_file_extent_item *fi;
	struct rb_node *rb_node;
	struct btrfs_key key;
	u64 ref_root;
	u64 ref_objectid;
	u64 ref_offset;
	u32 ref_count;
	u32 nritems;
	int err = 0;
	int added = 0;
	int counted;
	int ret;

	ref_root = btrfs_extent_data_ref_root(leaf, ref);
	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
	ref_count = btrfs_extent_data_ref_count(leaf, ref);

3532 3533 3534 3535 3536
	/*
	 * This is an extent belonging to the free space cache, lets just delete
	 * it and redo the search.
	 */
	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3537
		ret = delete_block_group_cache(fs_info, rc->block_group,
3538 3539 3540 3541 3542 3543 3544 3545 3546
					       NULL, ref_objectid);
		if (ret != -ENOENT)
			return ret;
		ret = 0;
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
3547
	path->reada = READA_FORWARD;
3548

3549
	root = read_fs_root(fs_info, ref_root);
3550 3551 3552 3553 3554 3555 3556
	if (IS_ERR(root)) {
		err = PTR_ERR(root);
		goto out;
	}

	key.objectid = ref_objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
3557 3558 3559 3560
	if (ref_offset > ((u64)-1 << 32))
		key.offset = 0;
	else
		key.offset = ref_offset;
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

	path->search_commit_root = 1;
	path->skip_locking = 1;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0) {
		err = ret;
		goto out;
	}

	leaf = path->nodes[0];
	nritems = btrfs_header_nritems(leaf);
	/*
	 * the references in tree blocks that use full backrefs
	 * are not counted in
	 */
	if (block_use_full_backref(rc, leaf))
		counted = 0;
	else
		counted = 1;
	rb_node = tree_search(blocks, leaf->start);
	if (rb_node) {
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
	}

	while (ref_count > 0) {
		while (path->slots[0] >= nritems) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				err = ret;
				goto out;
			}
3595
			if (WARN_ON(ret > 0))
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
				goto out;

			leaf = path->nodes[0];
			nritems = btrfs_header_nritems(leaf);
			added = 0;

			if (block_use_full_backref(rc, leaf))
				counted = 0;
			else
				counted = 1;
			rb_node = tree_search(blocks, leaf->start);
			if (rb_node) {
				if (counted)
					added = 1;
				else
					path->slots[0] = nritems;
			}
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3616 3617
		if (WARN_ON(key.objectid != ref_objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY))
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
			break;

		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);

		if (btrfs_file_extent_type(leaf, fi) ==
		    BTRFS_FILE_EXTENT_INLINE)
			goto next;

		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
		    extent_key->objectid)
			goto next;

		key.offset -= btrfs_file_extent_offset(leaf, fi);
		if (key.offset != ref_offset)
			goto next;

		if (counted)
			ref_count--;
		if (added)
			goto next;

3640
		if (!tree_block_processed(leaf->start, rc)) {
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
			block = kmalloc(sizeof(*block), GFP_NOFS);
			if (!block) {
				err = -ENOMEM;
				break;
			}
			block->bytenr = leaf->start;
			btrfs_item_key_to_cpu(leaf, &block->key, 0);
			block->level = 0;
			block->key_ready = 1;
			rb_node = tree_insert(blocks, block->bytenr,
					      &block->rb_node);
3652 3653 3654
			if (rb_node)
				backref_tree_panic(rb_node, -EEXIST,
						   block->bytenr);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
		}
		if (counted)
			added = 1;
		else
			path->slots[0] = nritems;
next:
		path->slots[0]++;

	}
out:
	btrfs_free_path(path);
	return err;
}

/*
L
Liu Bo 已提交
3670
 * helper to find all tree blocks that reference a given data extent
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
 */
static noinline_for_stack
int add_data_references(struct reloc_control *rc,
			struct btrfs_key *extent_key,
			struct btrfs_path *path,
			struct rb_root *blocks)
{
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_extent_data_ref *dref;
	struct btrfs_extent_inline_ref *iref;
	unsigned long ptr;
	unsigned long end;
3684
	u32 blocksize = rc->extent_root->fs_info->nodesize;
3685
	int ret = 0;
3686 3687 3688 3689 3690
	int err = 0;

	eb = path->nodes[0];
	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3691
	ptr += sizeof(struct btrfs_extent_item);
3692 3693 3694

	while (ptr < end) {
		iref = (struct btrfs_extent_inline_ref *)ptr;
3695 3696
		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_DATA);
3697 3698 3699 3700 3701 3702 3703 3704 3705
		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
		} else {
3706
			ret = -EUCLEAN;
3707 3708 3709
			btrfs_err(rc->extent_root->fs_info,
		     "extent %llu slot %d has an invalid inline ref type",
			     eb->start, path->slots[0]);
3710
		}
3711 3712 3713 3714
		if (ret) {
			err = ret;
			goto out;
		}
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
		ptr += btrfs_extent_inline_ref_size(key.type);
	}
	WARN_ON(ptr > end);

	while (1) {
		cond_resched();
		eb = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret < 0) {
				err = ret;
				break;
			}
			if (ret > 0)
				break;
			eb = path->nodes[0];
		}

		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
		if (key.objectid != extent_key->objectid)
			break;

		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
			ret = __add_tree_block(rc, key.offset, blocksize,
					       blocks);
		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
			dref = btrfs_item_ptr(eb, path->slots[0],
					      struct btrfs_extent_data_ref);
			ret = find_data_references(rc, extent_key,
						   eb, dref, blocks);
3745
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3746 3747 3748
			btrfs_print_v0_err(eb->fs_info);
			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
			ret = -EINVAL;
3749 3750 3751 3752 3753 3754 3755 3756 3757
		} else {
			ret = 0;
		}
		if (ret) {
			err = ret;
			break;
		}
		path->slots[0]++;
	}
3758
out:
3759
	btrfs_release_path(path);
3760 3761 3762 3763 3764 3765
	if (err)
		free_block_list(blocks);
	return err;
}

/*
L
Liu Bo 已提交
3766
 * helper to find next unprocessed extent
3767 3768
 */
static noinline_for_stack
3769
int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3770
		     struct btrfs_key *extent_key)
3771
{
3772
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	struct btrfs_key key;
	struct extent_buffer *leaf;
	u64 start, end, last;
	int ret;

	last = rc->block_group->key.objectid + rc->block_group->key.offset;
	while (1) {
		cond_resched();
		if (rc->search_start >= last) {
			ret = 1;
			break;
		}

		key.objectid = rc->search_start;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = 0;

		path->search_commit_root = 1;
		path->skip_locking = 1;
		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
					0, 0);
		if (ret < 0)
			break;
next:
		leaf = path->nodes[0];
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(rc->extent_root, path);
			if (ret != 0)
				break;
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid >= last) {
			ret = 1;
			break;
		}

3811 3812 3813 3814 3815 3816 3817
		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
		    key.type != BTRFS_METADATA_ITEM_KEY) {
			path->slots[0]++;
			goto next;
		}

		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3818 3819 3820 3821 3822
		    key.objectid + key.offset <= rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3823
		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3824
		    key.objectid + fs_info->nodesize <=
3825 3826 3827 3828 3829
		    rc->search_start) {
			path->slots[0]++;
			goto next;
		}

3830 3831
		ret = find_first_extent_bit(&rc->processed_blocks,
					    key.objectid, &start, &end,
3832
					    EXTENT_DIRTY, NULL);
3833 3834

		if (ret == 0 && start <= key.objectid) {
3835
			btrfs_release_path(path);
3836 3837
			rc->search_start = end + 1;
		} else {
3838 3839 3840 3841
			if (key.type == BTRFS_EXTENT_ITEM_KEY)
				rc->search_start = key.objectid + key.offset;
			else
				rc->search_start = key.objectid +
3842
					fs_info->nodesize;
3843
			memcpy(extent_key, &key, sizeof(key));
3844 3845 3846
			return 0;
		}
	}
3847
	btrfs_release_path(path);
3848 3849 3850 3851 3852 3853
	return ret;
}

static void set_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3854 3855

	mutex_lock(&fs_info->reloc_mutex);
3856
	fs_info->reloc_ctl = rc;
C
Chris Mason 已提交
3857
	mutex_unlock(&fs_info->reloc_mutex);
3858 3859 3860 3861 3862
}

static void unset_reloc_control(struct reloc_control *rc)
{
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
C
Chris Mason 已提交
3863 3864

	mutex_lock(&fs_info->reloc_mutex);
3865
	fs_info->reloc_ctl = NULL;
C
Chris Mason 已提交
3866
	mutex_unlock(&fs_info->reloc_mutex);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
}

static int check_extent_flags(u64 flags)
{
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
		return 1;
	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
		return 1;
	return 0;
}

3883 3884 3885 3886
static noinline_for_stack
int prepare_to_relocate(struct reloc_control *rc)
{
	struct btrfs_trans_handle *trans;
3887
	int ret;
3888

3889
	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3890
					      BTRFS_BLOCK_RSV_TEMP);
3891 3892 3893 3894 3895 3896 3897 3898
	if (!rc->block_rsv)
		return -ENOMEM;

	memset(&rc->cluster, 0, sizeof(rc->cluster));
	rc->search_start = rc->block_group->key.objectid;
	rc->extents_found = 0;
	rc->nodes_relocated = 0;
	rc->merging_rsv_size = 0;
3899
	rc->reserved_bytes = 0;
3900
	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3901
			      RELOCATION_RESERVED_NODES;
3902 3903 3904 3905 3906
	ret = btrfs_block_rsv_refill(rc->extent_root,
				     rc->block_rsv, rc->block_rsv->size,
				     BTRFS_RESERVE_FLUSH_ALL);
	if (ret)
		return ret;
3907 3908 3909 3910

	rc->create_reloc_tree = 1;
	set_reloc_control(rc);

3911
	trans = btrfs_join_transaction(rc->extent_root);
3912 3913 3914 3915 3916 3917 3918 3919 3920
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		/*
		 * extent tree is not a ref_cow tree and has no reloc_root to
		 * cleanup.  And callers are responsible to free the above
		 * block rsv.
		 */
		return PTR_ERR(trans);
	}
3921
	btrfs_commit_transaction(trans);
3922 3923
	return 0;
}
3924

3925 3926
static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
{
3927
	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3928 3929 3930 3931 3932 3933 3934 3935 3936
	struct rb_root blocks = RB_ROOT;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	struct btrfs_extent_item *ei;
	u64 flags;
	u32 item_size;
	int ret;
	int err = 0;
3937
	int progress = 0;
3938 3939

	path = btrfs_alloc_path();
3940
	if (!path)
3941
		return -ENOMEM;
3942
	path->reada = READA_FORWARD;
3943

3944 3945 3946 3947 3948
	ret = prepare_to_relocate(rc);
	if (ret) {
		err = ret;
		goto out_free;
	}
3949 3950

	while (1) {
3951 3952 3953 3954 3955 3956 3957 3958
		rc->reserved_bytes = 0;
		ret = btrfs_block_rsv_refill(rc->extent_root,
					rc->block_rsv, rc->block_rsv->size,
					BTRFS_RESERVE_FLUSH_ALL);
		if (ret) {
			err = ret;
			break;
		}
3959
		progress++;
3960
		trans = btrfs_start_transaction(rc->extent_root, 0);
3961 3962 3963 3964 3965
		if (IS_ERR(trans)) {
			err = PTR_ERR(trans);
			trans = NULL;
			break;
		}
3966
restart:
3967
		if (update_backref_cache(trans, &rc->backref_cache)) {
3968
			btrfs_end_transaction(trans);
3969 3970 3971
			continue;
		}

3972
		ret = find_next_extent(rc, path, &key);
3973 3974 3975 3976 3977 3978 3979 3980 3981
		if (ret < 0)
			err = ret;
		if (ret != 0)
			break;

		rc->extents_found++;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_extent_item);
3982
		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3983 3984 3985 3986
		if (item_size >= sizeof(*ei)) {
			flags = btrfs_extent_flags(path->nodes[0], ei);
			ret = check_extent_flags(flags);
			BUG_ON(ret);
3987
		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3988 3989 3990 3991
			err = -EINVAL;
			btrfs_print_v0_err(trans->fs_info);
			btrfs_abort_transaction(trans, err);
			break;
3992 3993 3994 3995 3996 3997 3998
		} else {
			BUG();
		}

		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			ret = add_tree_block(rc, &key, path, &blocks);
		} else if (rc->stage == UPDATE_DATA_PTRS &&
3999
			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4000 4001
			ret = add_data_references(rc, &key, path, &blocks);
		} else {
4002
			btrfs_release_path(path);
4003 4004 4005
			ret = 0;
		}
		if (ret < 0) {
4006
			err = ret;
4007 4008 4009 4010 4011 4012
			break;
		}

		if (!RB_EMPTY_ROOT(&blocks)) {
			ret = relocate_tree_blocks(trans, rc, &blocks);
			if (ret < 0) {
4013 4014 4015 4016 4017 4018
				/*
				 * if we fail to relocate tree blocks, force to update
				 * backref cache when committing transaction.
				 */
				rc->backref_cache.last_trans = trans->transid - 1;

4019 4020 4021 4022 4023 4024 4025 4026 4027
				if (ret != -EAGAIN) {
					err = ret;
					break;
				}
				rc->extents_found--;
				rc->search_start = key.objectid;
			}
		}

4028
		btrfs_end_transaction_throttle(trans);
4029
		btrfs_btree_balance_dirty(fs_info);
4030 4031 4032 4033 4034
		trans = NULL;

		if (rc->stage == MOVE_DATA_EXTENTS &&
		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
			rc->found_file_extent = 1;
4035
			ret = relocate_data_extent(rc->data_inode,
4036
						   &key, &rc->cluster);
4037 4038 4039 4040 4041 4042
			if (ret < 0) {
				err = ret;
				break;
			}
		}
	}
4043
	if (trans && progress && err == -ENOSPC) {
4044
		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4045
		if (ret == 1) {
4046 4047 4048 4049 4050
			err = 0;
			progress = 0;
			goto restart;
		}
	}
4051

4052
	btrfs_release_path(path);
4053
	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4054 4055

	if (trans) {
4056
		btrfs_end_transaction_throttle(trans);
4057
		btrfs_btree_balance_dirty(fs_info);
4058 4059
	}

4060
	if (!err) {
4061 4062
		ret = relocate_file_extent_cluster(rc->data_inode,
						   &rc->cluster);
4063 4064 4065 4066
		if (ret < 0)
			err = ret;
	}

4067 4068
	rc->create_reloc_tree = 0;
	set_reloc_control(rc);
4069

4070
	backref_cache_cleanup(&rc->backref_cache);
4071
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4072

4073
	err = prepare_to_merge(rc, err);
4074 4075 4076

	merge_reloc_roots(rc);

4077
	rc->merge_reloc_tree = 0;
4078
	unset_reloc_control(rc);
4079
	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4080 4081

	/* get rid of pinned extents */
4082
	trans = btrfs_join_transaction(rc->extent_root);
4083
	if (IS_ERR(trans)) {
4084
		err = PTR_ERR(trans);
4085 4086
		goto out_free;
	}
4087
	btrfs_commit_transaction(trans);
4088
out_free:
4089
	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4090
	btrfs_free_path(path);
4091 4092 4093 4094
	return err;
}

static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4095
				 struct btrfs_root *root, u64 objectid)
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
{
	struct btrfs_path *path;
	struct btrfs_inode_item *item;
	struct extent_buffer *leaf;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4112
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4113
	btrfs_set_inode_generation(leaf, item, 1);
4114
	btrfs_set_inode_size(leaf, item, 0);
4115
	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4116 4117
	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
					  BTRFS_INODE_PREALLOC);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * helper to create inode for data relocation.
 * the inode is in data relocation tree and its link count is 0
 */
4128 4129 4130
static noinline_for_stack
struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
				 struct btrfs_block_group_cache *group)
4131 4132 4133 4134 4135
{
	struct inode *inode = NULL;
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root;
	struct btrfs_key key;
4136
	u64 objectid;
4137 4138 4139 4140 4141 4142
	int err = 0;

	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
	if (IS_ERR(root))
		return ERR_CAST(root);

4143
	trans = btrfs_start_transaction(root, 6);
4144 4145
	if (IS_ERR(trans))
		return ERR_CAST(trans);
4146

4147
	err = btrfs_find_free_objectid(root, &objectid);
4148 4149 4150
	if (err)
		goto out;

4151
	err = __insert_orphan_inode(trans, root, objectid);
4152 4153 4154 4155 4156
	BUG_ON(err);

	key.objectid = objectid;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
4157
	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4158 4159 4160
	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
	BTRFS_I(inode)->index_cnt = group->key.objectid;

4161
	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4162
out:
4163
	btrfs_end_transaction(trans);
4164
	btrfs_btree_balance_dirty(fs_info);
4165 4166 4167 4168 4169 4170 4171 4172
	if (err) {
		if (inode)
			iput(inode);
		inode = ERR_PTR(err);
	}
	return inode;
}

4173
static struct reloc_control *alloc_reloc_control(void)
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
{
	struct reloc_control *rc;

	rc = kzalloc(sizeof(*rc), GFP_NOFS);
	if (!rc)
		return NULL;

	INIT_LIST_HEAD(&rc->reloc_roots);
	backref_cache_init(&rc->backref_cache);
	mapping_tree_init(&rc->reloc_root_tree);
4184
	extent_io_tree_init(&rc->processed_blocks, NULL);
4185 4186 4187
	return rc;
}

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
/*
 * Print the block group being relocated
 */
static void describe_relocation(struct btrfs_fs_info *fs_info,
				struct btrfs_block_group_cache *block_group)
{
	char buf[128];		/* prefixed by a '|' that'll be dropped */
	u64 flags = block_group->flags;

	/* Shouldn't happen */
	if (!flags) {
		strcpy(buf, "|NONE");
	} else {
		char *bp = buf;

#define DESCRIBE_FLAG(f, d) \
		if (flags & BTRFS_BLOCK_GROUP_##f) { \
			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
			flags &= ~BTRFS_BLOCK_GROUP_##f; \
		}
		DESCRIBE_FLAG(DATA,     "data");
		DESCRIBE_FLAG(SYSTEM,   "system");
		DESCRIBE_FLAG(METADATA, "metadata");
		DESCRIBE_FLAG(RAID0,    "raid0");
		DESCRIBE_FLAG(RAID1,    "raid1");
		DESCRIBE_FLAG(DUP,      "dup");
		DESCRIBE_FLAG(RAID10,   "raid10");
		DESCRIBE_FLAG(RAID5,    "raid5");
		DESCRIBE_FLAG(RAID6,    "raid6");
		if (flags)
4218
			snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4219 4220 4221 4222 4223 4224 4225 4226
#undef DESCRIBE_FLAG
	}

	btrfs_info(fs_info,
		   "relocating block group %llu flags %s",
		   block_group->key.objectid, buf + 1);
}

4227 4228 4229
/*
 * function to relocate all extents in a block group.
 */
4230
int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4231
{
4232
	struct btrfs_root *extent_root = fs_info->extent_root;
4233
	struct reloc_control *rc;
4234 4235
	struct inode *inode;
	struct btrfs_path *path;
4236
	int ret;
4237
	int rw = 0;
4238 4239
	int err = 0;

4240
	rc = alloc_reloc_control();
4241 4242 4243
	if (!rc)
		return -ENOMEM;

4244
	rc->extent_root = extent_root;
4245

4246 4247 4248
	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
	BUG_ON(!rc->block_group);

4249
	ret = btrfs_inc_block_group_ro(rc->block_group);
4250 4251 4252
	if (ret) {
		err = ret;
		goto out;
4253
	}
4254
	rw = 1;
4255

4256 4257 4258 4259 4260 4261
	path = btrfs_alloc_path();
	if (!path) {
		err = -ENOMEM;
		goto out;
	}

4262
	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4263 4264 4265
	btrfs_free_path(path);

	if (!IS_ERR(inode))
4266
		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4267 4268 4269 4270 4271 4272 4273 4274
	else
		ret = PTR_ERR(inode);

	if (ret && ret != -ENOENT) {
		err = ret;
		goto out;
	}

4275 4276 4277 4278 4279 4280 4281
	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
	if (IS_ERR(rc->data_inode)) {
		err = PTR_ERR(rc->data_inode);
		rc->data_inode = NULL;
		goto out;
	}

4282
	describe_relocation(fs_info, rc->block_group);
4283

4284
	btrfs_wait_block_group_reservations(rc->block_group);
4285
	btrfs_wait_nocow_writers(rc->block_group);
4286
	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4287 4288
				 rc->block_group->key.objectid,
				 rc->block_group->key.offset);
4289 4290

	while (1) {
4291
		mutex_lock(&fs_info->cleaner_mutex);
4292
		ret = relocate_block_group(rc);
4293
		mutex_unlock(&fs_info->cleaner_mutex);
4294 4295
		if (ret < 0) {
			err = ret;
4296
			goto out;
4297 4298 4299 4300 4301
		}

		if (rc->extents_found == 0)
			break;

4302
		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4303 4304

		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4305 4306 4307 4308 4309 4310
			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
						       (u64)-1);
			if (ret) {
				err = ret;
				goto out;
			}
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
			invalidate_mapping_pages(rc->data_inode->i_mapping,
						 0, -1);
			rc->stage = UPDATE_DATA_PTRS;
		}
	}

	WARN_ON(rc->block_group->pinned > 0);
	WARN_ON(rc->block_group->reserved > 0);
	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
out:
4321
	if (err && rw)
4322
		btrfs_dec_block_group_ro(rc->block_group);
4323 4324 4325 4326 4327 4328
	iput(rc->data_inode);
	btrfs_put_block_group(rc->block_group);
	kfree(rc);
	return err;
}

4329 4330
static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
{
4331
	struct btrfs_fs_info *fs_info = root->fs_info;
4332
	struct btrfs_trans_handle *trans;
4333
	int ret, err;
4334

4335
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4336 4337
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4338 4339 4340 4341 4342

	memset(&root->root_item.drop_progress, 0,
		sizeof(root->root_item.drop_progress));
	root->root_item.drop_level = 0;
	btrfs_set_root_refs(&root->root_item, 0);
4343
	ret = btrfs_update_root(trans, fs_info->tree_root,
4344 4345
				&root->root_key, &root->root_item);

4346
	err = btrfs_end_transaction(trans);
4347 4348 4349
	if (err)
		return err;
	return ret;
4350 4351
}

4352 4353 4354 4355 4356 4357 4358 4359
/*
 * recover relocation interrupted by system crash.
 *
 * this function resumes merging reloc trees with corresponding fs trees.
 * this is important for keeping the sharing of tree blocks
 */
int btrfs_recover_relocation(struct btrfs_root *root)
{
4360
	struct btrfs_fs_info *fs_info = root->fs_info;
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
	LIST_HEAD(reloc_roots);
	struct btrfs_key key;
	struct btrfs_root *fs_root;
	struct btrfs_root *reloc_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct reloc_control *rc = NULL;
	struct btrfs_trans_handle *trans;
	int ret;
	int err = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
4375
	path->reada = READA_BACK;
4376 4377 4378 4379 4380 4381

	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;

	while (1) {
4382
		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
					path, 0, 0);
		if (ret < 0) {
			err = ret;
			goto out;
		}
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4395
		btrfs_release_path(path);
4396 4397 4398 4399 4400

		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
		    key.type != BTRFS_ROOT_ITEM_KEY)
			break;

4401
		reloc_root = btrfs_read_fs_root(root, &key);
4402 4403 4404 4405 4406 4407 4408 4409
		if (IS_ERR(reloc_root)) {
			err = PTR_ERR(reloc_root);
			goto out;
		}

		list_add(&reloc_root->root_list, &reloc_roots);

		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4410
			fs_root = read_fs_root(fs_info,
4411 4412
					       reloc_root->root_key.offset);
			if (IS_ERR(fs_root)) {
4413 4414 4415 4416 4417
				ret = PTR_ERR(fs_root);
				if (ret != -ENOENT) {
					err = ret;
					goto out;
				}
4418 4419 4420 4421 4422
				ret = mark_garbage_root(reloc_root);
				if (ret < 0) {
					err = ret;
					goto out;
				}
4423 4424 4425 4426 4427 4428 4429 4430
			}
		}

		if (key.offset == 0)
			break;

		key.offset--;
	}
4431
	btrfs_release_path(path);
4432 4433 4434 4435

	if (list_empty(&reloc_roots))
		goto out;

4436
	rc = alloc_reloc_control();
4437 4438 4439 4440 4441
	if (!rc) {
		err = -ENOMEM;
		goto out;
	}

4442
	rc->extent_root = fs_info->extent_root;
4443 4444 4445

	set_reloc_control(rc);

4446
	trans = btrfs_join_transaction(rc->extent_root);
4447 4448 4449 4450 4451
	if (IS_ERR(trans)) {
		unset_reloc_control(rc);
		err = PTR_ERR(trans);
		goto out_free;
	}
4452 4453 4454

	rc->merge_reloc_tree = 1;

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	while (!list_empty(&reloc_roots)) {
		reloc_root = list_entry(reloc_roots.next,
					struct btrfs_root, root_list);
		list_del(&reloc_root->root_list);

		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
			list_add_tail(&reloc_root->root_list,
				      &rc->reloc_roots);
			continue;
		}

4466
		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4467 4468 4469 4470
		if (IS_ERR(fs_root)) {
			err = PTR_ERR(fs_root);
			goto out_free;
		}
4471

4472
		err = __add_reloc_root(reloc_root);
4473
		BUG_ON(err < 0); /* -ENOMEM or logic error */
4474 4475 4476
		fs_root->reloc_root = reloc_root;
	}

4477
	err = btrfs_commit_transaction(trans);
4478 4479
	if (err)
		goto out_free;
4480 4481 4482 4483 4484

	merge_reloc_roots(rc);

	unset_reloc_control(rc);

4485
	trans = btrfs_join_transaction(rc->extent_root);
4486
	if (IS_ERR(trans)) {
4487
		err = PTR_ERR(trans);
4488 4489
		goto out_free;
	}
4490
	err = btrfs_commit_transaction(trans);
4491
out_free:
4492
	kfree(rc);
4493
out:
4494 4495 4496
	if (!list_empty(&reloc_roots))
		free_reloc_roots(&reloc_roots);

4497 4498 4499 4500
	btrfs_free_path(path);

	if (err == 0) {
		/* cleanup orphan inode in data relocation tree */
4501
		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4502 4503
		if (IS_ERR(fs_root))
			err = PTR_ERR(fs_root);
4504
		else
4505
			err = btrfs_orphan_cleanup(fs_root);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	}
	return err;
}

/*
 * helper to add ordered checksum for data relocation.
 *
 * cloning checksum properly handles the nodatasum extents.
 * it also saves CPU time to re-calculate the checksum.
 */
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
{
4518
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4519 4520 4521 4522
	struct btrfs_ordered_sum *sums;
	struct btrfs_ordered_extent *ordered;
	int ret;
	u64 disk_bytenr;
4523
	u64 new_bytenr;
4524 4525 4526 4527 4528 4529
	LIST_HEAD(list);

	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);

	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4530
	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
A
Arne Jansen 已提交
4531
				       disk_bytenr + len - 1, &list, 0);
4532 4533
	if (ret)
		goto out;
4534 4535 4536 4537 4538

	while (!list_empty(&list)) {
		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
		list_del_init(&sums->list);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
		/*
		 * We need to offset the new_bytenr based on where the csum is.
		 * We need to do this because we will read in entire prealloc
		 * extents but we may have written to say the middle of the
		 * prealloc extent, so we need to make sure the csum goes with
		 * the right disk offset.
		 *
		 * We can do this because the data reloc inode refers strictly
		 * to the on disk bytes, so we don't have to worry about
		 * disk_len vs real len like with real inodes since it's all
		 * disk length.
		 */
		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
		sums->bytenr = new_bytenr;
4553 4554 4555

		btrfs_add_ordered_sum(inode, ordered, sums);
	}
4556
out:
4557
	btrfs_put_ordered_extent(ordered);
4558
	return ret;
4559
}
4560

4561 4562 4563
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *buf,
			  struct extent_buffer *cow)
4564
{
4565
	struct btrfs_fs_info *fs_info = root->fs_info;
4566 4567 4568 4569
	struct reloc_control *rc;
	struct backref_node *node;
	int first_cow = 0;
	int level;
4570
	int ret = 0;
4571

4572
	rc = fs_info->reloc_ctl;
4573
	if (!rc)
4574
		return 0;
4575 4576 4577 4578

	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);

4579 4580 4581 4582 4583
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (buf == root->node)
			__update_reloc_root(root, cow->start);
	}

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	level = btrfs_header_level(buf);
	if (btrfs_header_generation(buf) <=
	    btrfs_root_last_snapshot(&root->root_item))
		first_cow = 1;

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
	    rc->create_reloc_tree) {
		WARN_ON(!first_cow && level == 0);

		node = rc->backref_cache.path[level];
		BUG_ON(node->bytenr != buf->start &&
		       node->new_bytenr != buf->start);

		drop_node_buffer(node);
		extent_buffer_get(cow);
		node->eb = cow;
		node->new_bytenr = cow->start;

		if (!node->pending) {
			list_move_tail(&node->list,
				       &rc->backref_cache.pending[level]);
			node->pending = 1;
		}

		if (first_cow)
			__mark_block_processed(rc, node);

		if (first_cow && level > 0)
			rc->nodes_relocated += buf->len;
	}

4615
	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4616
		ret = replace_file_extents(trans, rc, root, cow);
4617
	return ret;
4618 4619 4620 4621
}

/*
 * called before creating snapshot. it calculates metadata reservation
4622
 * required for relocating tree blocks in the snapshot
4623
 */
4624
void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
			      u64 *bytes_to_reserve)
{
	struct btrfs_root *root;
	struct reloc_control *rc;

	root = pending->root;
	if (!root->reloc_root)
		return;

	rc = root->fs_info->reloc_ctl;
	if (!rc->merge_reloc_tree)
		return;

	root = root->reloc_root;
	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
	/*
	 * relocation is in the stage of merging trees. the space
	 * used by merging a reloc tree is twice the size of
	 * relocated tree nodes in the worst case. half for cowing
	 * the reloc tree, half for cowing the fs tree. the space
	 * used by cowing the reloc tree will be freed after the
	 * tree is dropped. if we create snapshot, cowing the fs
	 * tree may use more space than it frees. so we need
	 * reserve extra space.
	 */
	*bytes_to_reserve += rc->nodes_relocated;
}

/*
 * called after snapshot is created. migrate block reservation
 * and create reloc root for the newly created snapshot
 */
4657
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4658 4659 4660 4661 4662 4663 4664 4665 4666
			       struct btrfs_pending_snapshot *pending)
{
	struct btrfs_root *root = pending->root;
	struct btrfs_root *reloc_root;
	struct btrfs_root *new_root;
	struct reloc_control *rc;
	int ret;

	if (!root->reloc_root)
4667
		return 0;
4668 4669 4670 4671 4672 4673 4674

	rc = root->fs_info->reloc_ctl;
	rc->merging_rsv_size += rc->nodes_relocated;

	if (rc->merge_reloc_tree) {
		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
					      rc->block_rsv,
4675
					      rc->nodes_relocated, 1);
4676 4677
		if (ret)
			return ret;
4678 4679 4680 4681 4682
	}

	new_root = pending->snap;
	reloc_root = create_reloc_root(trans, root->reloc_root,
				       new_root->root_key.objectid);
4683 4684
	if (IS_ERR(reloc_root))
		return PTR_ERR(reloc_root);
4685

4686 4687
	ret = __add_reloc_root(reloc_root);
	BUG_ON(ret < 0);
4688 4689
	new_root->reloc_root = reloc_root;

4690
	if (rc->create_reloc_tree)
4691
		ret = clone_backref_node(trans, rc, root, reloc_root);
4692
	return ret;
4693
}