intel_engine_cs.c 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28 29 30
#include "i915_drv.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

31 32 33 34 35 36 37 38 39
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

40
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 42
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 46 47

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

48
struct engine_class_info {
49
	const char *name;
50 51
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
52 53

	u8 uabi_class;
54 55 56 57 58 59 60
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
61
		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 63 64 65 66
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
67
		.uabi_class = I915_ENGINE_CLASS_COPY,
68 69 70 71 72
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
73
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 75 76 77 78
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
79
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 81 82
	},
};

83
#define MAX_MMIO_BASES 3
84
struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99
		.uabi_id = I915_EXEC_RENDER,
100 101
		.class = RENDER_CLASS,
		.instance = 0,
102 103 104
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
105 106
	},
	[BCS] = {
107
		.hw_id = BCS_HW,
108
		.uabi_id = I915_EXEC_BLT,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114 115
	},
	[VCS] = {
116
		.hw_id = VCS_HW,
117
		.uabi_id = I915_EXEC_BSD,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
120 121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
125 126
	},
	[VCS2] = {
127
		.hw_id = VCS2_HW,
128
		.uabi_id = I915_EXEC_BSD,
129 130
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
131 132 133 134
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
135
	},
136 137 138 139 140
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
141 142 143
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
144 145 146 147 148 149
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
150 151 152
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
153
	},
154
	[VECS] = {
155
		.hw_id = VECS_HW,
156
		.uabi_id = I915_EXEC_VEBOX,
157 158
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
159 160 161 162
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
163
	},
164 165 166 167 168
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
169 170 171
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
172
	},
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
201
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 203
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
204
		case 10:
O
Oscar Mateo 已提交
205
			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 207 208
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
209
			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

256 257 258 259 260 261 262
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

263
static int
264 265 266 267
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
268 269
	struct intel_engine_cs *engine;

270 271
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

272 273 274
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

275 276 277 278 279 280 281 282 283
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

284 285 286 287
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
288 289 290

	engine->id = id;
	engine->i915 = dev_priv;
291
	__sprint_engine_name(engine->name, info);
292
	engine->hw_id = engine->guc_id = info->hw_id;
293
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
294 295
	engine->class = info->class;
	engine->instance = info->instance;
296

297
	engine->uabi_id = info->uabi_id;
298
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
299

300 301 302 303 304
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;

305 306 307
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

308
	seqlock_init(&engine->stats.lock);
309

310 311
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

312
	dev_priv->engine_class[info->class][info->instance] = engine;
313 314
	dev_priv->engine[id] = engine;
	return 0;
315 316 317
}

/**
318
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
319
 * @dev_priv: i915 device private
320 321 322
 *
 * Return: non-zero if the initialization failed.
 */
323
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
324
{
325
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
326
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
327 328
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
329
	unsigned int mask = 0;
330
	unsigned int i;
331
	int err;
332

333 334
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
335 336 337 338 339 340
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

356 357 358 359 360 361
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

362 363
	device_info->num_rings = hweight32(mask);

364 365
	i915_check_and_clear_faults(dev_priv);

366 367 368 369 370 371 372 373 374
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
375
 * intel_engines_init() - init the Engine Command Streamers
376 377 378 379 380 381 382 383
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
384
	int err;
385 386

	for_each_engine(engine, dev_priv, id) {
387 388
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
389 390
		int (*init)(struct intel_engine_cs *engine);

391
		if (HAS_EXECLISTS(dev_priv))
392
			init = class_info->init_execlists;
393
		else
394
			init = class_info->init_legacy;
395 396 397 398 399 400

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
401

402
		err = init(engine);
403
		if (err)
404 405
			goto cleanup;

406
		GEM_BUG_ON(!engine->submit_request);
407 408 409 410 411
	}

	return 0;

cleanup:
412
	for_each_engine(engine, dev_priv, id) {
413
		if (id >= err_id) {
414
			kfree(engine);
415 416
			dev_priv->engine[id] = NULL;
		} else {
417
			dev_priv->gt.cleanup_engine(engine);
418
		}
419
	}
420
	return err;
421 422
}

423
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
443
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
444

445 446 447 448
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
449 450

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
451 452
}

453 454 455 456 457
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

458 459 460 461
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

462 463 464 465
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

466
	execlists->queue_priority = INT_MIN;
467 468 469 470
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

471 472 473 474 475 476 477 478 479 480 481
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
482 483
	i915_timeline_init(engine->i915, &engine->timeline, engine->name);

484
	intel_engine_init_execlist(engine);
485
	intel_engine_init_hangcheck(engine);
486
	intel_engine_init_batch_pool(engine);
487
	intel_engine_init_cmd_parser(engine);
488 489
}

490 491
int intel_engine_create_scratch(struct intel_engine_cs *engine,
				unsigned int size)
492 493 494 495 496 497 498
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

499
	obj = i915_gem_object_create_stolen(engine->i915, size);
500
	if (!obj)
501
		obj = i915_gem_object_create_internal(engine->i915, size);
502 503 504 505 506
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

507
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

525
void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
526
{
527
	i915_vma_unpin_and_release(&engine->scratch);
528 529
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

577
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
596 597
	else
		flags |= PIN_HIGH;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

637 638 639 640 641 642
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

643 644 645 646 647 648 649 650 651 652 653 654 655
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
656 657
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
658 659
	int ret;

660 661
	engine->set_default_submission(engine);

662 663 664 665 666 667 668
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
669 670 671
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
672

673 674 675 676
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
677 678 679 680
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
681 682 683 684
			goto err_unpin_kernel;
		}
	}

685 686
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
687
		goto err_unpin_preempt;
688

689
	if (HWS_NEEDS_PHYSICAL(i915))
690 691 692 693
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
694
		goto err_breadcrumbs;
695

696
	return 0;
697

698 699
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
700
err_unpin_preempt:
701 702 703
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

704
err_unpin_kernel:
705
	__intel_context_unpin(i915->kernel_context, engine);
706
	return ret;
707
}
708 709 710 711 712 713 714 715 716 717

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
718 719
	struct drm_i915_private *i915 = engine->i915;

720 721
	intel_engine_cleanup_scratch(engine);

722 723 724 725 726
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

727
	intel_engine_fini_breadcrumbs(engine);
728
	intel_engine_cleanup_cmd_parser(engine);
729
	i915_gem_batch_pool_fini(&engine->batch_pool);
730

731 732 733
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

734 735 736
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
737 738

	i915_timeline_fini(&engine->timeline);
739
}
740

741
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

757
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
758 759 760 761 762 763 764 765 766 767 768 769
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

800 801 802 803 804 805 806 807 808 809 810
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

811 812 813 814 815 816 817 818 819 820
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

	if (INTEL_GEN(dev_priv) == 10)
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
821 822 823
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
824 825 826 827 828 829
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

830 831 832 833
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
834 835
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
836
	uint32_t default_mcr_s_ss_select;
837 838 839 840
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

841 842 843 844 845 846 847 848 849 850 851 852
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

853 854
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

855 856 857 858 859 860 861 862 863 864
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
865 866 867 868

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

869 870
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
871 872 873 874
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

875
	mcr &= ~mcr_slice_subslice_mask;
876 877
	mcr |= default_mcr_s_ss_select;

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
940

941 942 943 944 945
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

946 947 948
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
949

950 951 952 953 954
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

955 956 957 958 959 960 961 962 963
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

964 965 966 967 968 969 970 971 972 973 974
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

975 976 977 978
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

979 980 981 982 983
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

984 985 986
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

987
	/* Waiting to drain ELSP? */
988 989 990
	if (READ_ONCE(engine->execlists.active)) {
		struct intel_engine_execlists *execlists = &engine->execlists;

991
		local_bh_disable();
992 993 994 995
		if (tasklet_trylock(&execlists->tasklet)) {
			execlists->tasklet.func(execlists->tasklet.data);
			tasklet_unlock(&execlists->tasklet);
		}
996
		local_bh_enable();
997 998 999 1000

		if (READ_ONCE(execlists->active))
			return false;
	}
1001

1002
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1003
	if (READ_ONCE(engine->execlists.first))
1004 1005
		return false;

1006
	/* Ring stopped? */
1007
	if (!ring_is_idle(engine))
1008 1009 1010 1011 1012
		return false;

	return true;
}

1013 1014 1015 1016 1017
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1018 1019
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1020 1021 1022 1023 1024
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1025 1026 1027 1028 1029 1030 1031 1032
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1033 1034 1035 1036 1037 1038 1039 1040
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1041 1042
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1043 1044
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1045
	struct i915_request *rq;
1046 1047 1048 1049 1050 1051 1052 1053

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1054
	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1055
	if (rq)
1056
		return rq->hw_context == kernel_context;
1057 1058
	else
		return engine->last_retired_context == kernel_context;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
void intel_engines_sanitize(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}
}

1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1101 1102 1103 1104 1105
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1106 1107
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1108
		tasklet_kill(&engine->execlists.tasklet);
1109

1110 1111 1112 1113 1114
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1115
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1116 1117
			struct drm_printer p = drm_debug_printer(__func__);

1118 1119 1120
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1121
			intel_engine_dump(engine, &p, NULL);
1122 1123
		}

1124 1125 1126
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1127 1128 1129
		if (engine->park)
			engine->park(engine);

1130 1131 1132 1133 1134
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1135
		i915_gem_batch_pool_fini(&engine->batch_pool);
1136
		engine->execlists.no_priolist = false;
1137 1138 1139
	}
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1162 1163
		if (engine->unpark)
			engine->unpark(engine);
1164 1165

		intel_engine_init_hangcheck(engine);
1166 1167 1168
	}
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1180
	struct intel_context *ce;
1181 1182 1183

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1184 1185 1186
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1187 1188
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1218 1219 1220
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1221 1222
{
	if (attr->priority == I915_PRIORITY_INVALID)
1223 1224 1225 1226
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1227

1228
	return x;
1229 1230
}

1231
static void print_request(struct drm_printer *m,
1232
			  struct i915_request *rq,
1233 1234
			  const char *prefix)
{
1235
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1236
	char buf[80] = "";
1237 1238 1239
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1240

1241
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1242
		   prefix,
1243
		   rq->global_seqno,
1244
		   i915_request_completed(rq) ? "!" : "",
1245 1246
		   rq->fence.context, rq->fence.seqno,
		   buf,
1247
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1248
		   name);
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1273
		drm_printf(m, "[%04zx] %s\n", pos, line);
1274 1275 1276 1277 1278 1279

		prev = buf + pos;
		skip = false;
	}
}

1280 1281
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1282 1283
{
	struct drm_i915_private *dev_priv = engine->i915;
1284 1285
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1286 1287
	u64 addr;

1288 1289
	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1290 1291 1292 1293 1294 1295
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1296
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1297
		   I915_READ(RING_CTL(engine->mmio_base)),
1298 1299 1300 1301 1302 1303
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1304 1305 1306 1307 1308

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1309
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1310 1311 1312 1313 1314 1315 1316 1317
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1318 1319 1320 1321 1322 1323 1324

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1343

1344
	if (HAS_EXECLISTS(dev_priv)) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
1356
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s, tasklet queued? %s (%s)\n",
1357 1358 1359 1360
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
			   yesno(test_bit(ENGINE_IRQ_EXECLIST,
1361 1362 1363 1364
					  &engine->irq_posted)),
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1383
			struct i915_request *rq;
1384 1385 1386 1387
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1388 1389
				char hdr[80];

1390
				snprintf(hdr, sizeof(hdr),
1391 1392 1393
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1394
				print_request(m, rq, hdr);
1395
			} else {
1396
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1397 1398
			}
		}
1399
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1400 1401 1402 1403 1404 1405 1406 1407 1408
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1444 1445 1446 1447
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1448
	const int MAX_REQUESTS_TO_SHOW = 8;
1449 1450 1451
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1452
	struct i915_request *rq, *last;
1453
	unsigned long flags;
1454
	struct rb_node *rb;
1455
	int count;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1468
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1469 1470 1471
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1472
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1473 1474 1475 1476 1477 1478 1479 1480
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1481
	rq = list_first_entry(&engine->timeline.requests,
1482
			      struct i915_request, link);
1483
	if (&rq->link != &engine->timeline.requests)
1484 1485
		print_request(m, rq, "\t\tfirst  ");

1486
	rq = list_last_entry(&engine->timeline.requests,
1487
			     struct i915_request, link);
1488
	if (&rq->link != &engine->timeline.requests)
1489 1490 1491 1492 1493
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1494

1495
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1496
			   i915_ggtt_offset(rq->ring->vma));
1497
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1498
			   rq->ring->head);
1499
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1500
			   rq->ring->tail);
1501 1502 1503 1504
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1505 1506

		print_request_ring(m, rq);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1517

1518 1519
	local_irq_save(flags);
	spin_lock(&engine->timeline.lock);
1520 1521 1522

	last = NULL;
	count = 0;
1523
	list_for_each_entry(rq, &engine->timeline.requests, link) {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1540
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1541 1542 1543 1544
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

1545 1546 1547 1548 1549 1550
		list_for_each_entry(rq, &p->requests, sched.link) {
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1551
	}
1552 1553 1554 1555 1556 1557 1558 1559 1560
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1561
	spin_unlock(&engine->timeline.lock);
1562

1563
	spin_lock(&b->rb_lock);
1564 1565 1566 1567 1568 1569
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
1570 1571
	spin_unlock(&b->rb_lock);
	local_irq_restore(flags);
1572

1573 1574 1575 1576 1577 1578
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)),
		   yesno(test_bit(ENGINE_IRQ_EXECLIST,
				  &engine->irq_posted)));
1579 1580 1581 1582

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1583
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1619
	struct intel_engine_execlists *execlists = &engine->execlists;
1620
	unsigned long flags;
1621
	int err = 0;
1622

1623
	if (!intel_engine_supports_stats(engine))
1624 1625
		return -ENODEV;

1626
	tasklet_disable(&execlists->tasklet);
1627
	write_seqlock_irqsave(&engine->stats.lock, flags);
1628 1629 1630 1631 1632 1633

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1634 1635 1636 1637
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1638
		engine->stats.enabled_at = ktime_get();
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1649

1650
unlock:
1651
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1652
	tasklet_enable(&execlists->tasklet);
1653

1654
	return err;
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1680
	unsigned int seq;
1681 1682
	ktime_t total;

1683 1684 1685 1686
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1701
	if (!intel_engine_supports_stats(engine))
1702 1703
		return;

1704
	write_seqlock_irqsave(&engine->stats.lock, flags);
1705 1706 1707 1708 1709
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1710
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1711 1712
}

1713 1714
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1715
#include "selftests/intel_engine_cs.c"
1716
#endif