intel_engine_cs.c 54.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28
#include "i915_vgpu.h"
29 30 31
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

32 33 34 35 36 37 38 39 40 41 42
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44 45 46

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

47
struct engine_class_info {
48
	const char *name;
49 50
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
51 52

	u8 uabi_class;
53 54 55 56 57 58 59
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
60
		.uabi_class = I915_ENGINE_CLASS_RENDER,
61 62 63 64 65
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
66
		.uabi_class = I915_ENGINE_CLASS_COPY,
67 68 69 70 71
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
72
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
73 74 75 76 77
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
78
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
79 80 81 82
	},
};

struct engine_info {
83
	unsigned int hw_id;
84
	unsigned int uabi_id;
85 86
	u8 class;
	u8 instance;
87 88
	u32 mmio_base;
	unsigned irq_shift;
89 90 91
};

static const struct engine_info intel_engines[] = {
92
	[RCS] = {
93
		.hw_id = RCS_HW,
94
		.uabi_id = I915_EXEC_RENDER,
95 96
		.class = RENDER_CLASS,
		.instance = 0,
97 98 99 100
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
101
		.hw_id = BCS_HW,
102
		.uabi_id = I915_EXEC_BLT,
103 104
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
105 106 107 108
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
109
		.hw_id = VCS_HW,
110
		.uabi_id = I915_EXEC_BSD,
111 112
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
113 114 115 116
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
117
		.hw_id = VCS2_HW,
118
		.uabi_id = I915_EXEC_BSD,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
121 122 123 124
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
125
		.hw_id = VECS_HW,
126
		.uabi_id = I915_EXEC_VEBOX,
127 128
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
129 130 131 132 133
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
160
		case 10:
O
Oscar Mateo 已提交
161
			return GEN10_LR_CONTEXT_RENDER_SIZE;
162 163 164
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
165
			return GEN8_LR_CONTEXT_RENDER_SIZE;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

197
static int
198 199 200 201
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
202
	const struct engine_class_info *class_info;
203 204
	struct intel_engine_cs *engine;

205 206 207
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
	class_info = &intel_engine_classes[info->class];

208 209 210 211 212 213 214 215 216
	if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
		return -EINVAL;

	if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
		return -EINVAL;

	if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
		return -EINVAL;

217 218 219 220
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
221 222 223

	engine->id = id;
	engine->i915 = dev_priv;
224
	WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s%u",
225 226
			 class_info->name, info->instance) >=
		sizeof(engine->name));
227
	engine->hw_id = engine->guc_id = info->hw_id;
228 229
	engine->mmio_base = info->mmio_base;
	engine->irq_shift = info->irq_shift;
230 231
	engine->class = info->class;
	engine->instance = info->instance;
232

233 234 235
	engine->uabi_id = info->uabi_id;
	engine->uabi_class = class_info->uabi_class;

236 237 238 239 240
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;

241 242 243
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

244 245
	spin_lock_init(&engine->stats.lock);

246 247
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

248
	dev_priv->engine_class[info->class][info->instance] = engine;
249 250
	dev_priv->engine[id] = engine;
	return 0;
251 252 253
}

/**
254
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
255
 * @dev_priv: i915 device private
256 257 258
 *
 * Return: non-zero if the initialization failed.
 */
259
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
260
{
261
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
262
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
263 264
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
265
	unsigned int mask = 0;
266
	unsigned int i;
267
	int err;
268

269 270
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
271 272 273 274 275 276
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));

	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

292 293 294 295 296 297
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

298 299
	device_info->num_rings = hweight32(mask);

300 301
	i915_check_and_clear_faults(dev_priv);

302 303 304 305 306 307 308 309 310
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
311
 * intel_engines_init() - init the Engine Command Streamers
312 313 314 315 316 317 318 319
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
320
	int err;
321 322

	for_each_engine(engine, dev_priv, id) {
323 324
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
325 326
		int (*init)(struct intel_engine_cs *engine);

327
		if (HAS_EXECLISTS(dev_priv))
328
			init = class_info->init_execlists;
329
		else
330
			init = class_info->init_legacy;
331 332 333 334 335 336

		err = -EINVAL;
		err_id = id;

		if (GEM_WARN_ON(!init))
			goto cleanup;
337

338
		err = init(engine);
339
		if (err)
340 341
			goto cleanup;

342
		GEM_BUG_ON(!engine->submit_request);
343 344 345 346 347
	}

	return 0;

cleanup:
348
	for_each_engine(engine, dev_priv, id) {
349
		if (id >= err_id) {
350
			kfree(engine);
351 352
			dev_priv->engine[id] = NULL;
		} else {
353
			dev_priv->gt.cleanup_engine(engine);
354
		}
355
	}
356
	return err;
357 358
}

359
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
379
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
380

381 382 383 384
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
385 386

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
387 388
}

389
static void intel_engine_init_timeline(struct intel_engine_cs *engine)
390
{
391
	engine->timeline = &engine->i915->gt.global_timeline.engine[engine->id];
392 393
}

394 395 396 397 398 399 400 401 402 403
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

404 405 406 407
	/* Older GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915))
		return true;

408 409 410 411 412 413 414 415 416
	return false;
}

static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	execlists->csb_use_mmio = csb_force_mmio(engine->i915);

417 418 419 420
	execlists->port_mask = 1;
	BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

421 422 423 424
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
}

425 426 427 428 429 430 431 432 433 434 435
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
436
	intel_engine_init_execlist(engine);
437

438
	intel_engine_init_timeline(engine);
439
	intel_engine_init_hangcheck(engine);
440
	i915_gem_batch_pool_init(engine, &engine->batch_pool);
441 442

	intel_engine_init_cmd_parser(engine);
443 444
}

445 446 447 448 449 450 451 452
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	WARN_ON(engine->scratch);

453
	obj = i915_gem_object_create_stolen(engine->i915, size);
454
	if (!obj)
455
		obj = i915_gem_object_create_internal(engine->i915, size);
456 457 458 459 460
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

461
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
462 463 464 465 466 467 468 469 470 471
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	engine->scratch = vma;
472 473
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
474 475 476 477 478 479 480 481 482
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
{
483
	i915_vma_unpin_and_release(&engine->scratch);
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!dev_priv->status_page_dmah)
		return;

	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
	engine->status_page.page_addr = NULL;
}

static void cleanup_status_page(struct intel_engine_cs *engine)
{
	struct i915_vma *vma;
	struct drm_i915_gem_object *obj;

	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;

	obj = vma->obj;

	i915_vma_unpin(vma);
	i915_vma_close(vma);

	i915_gem_object_unpin_map(obj);
	__i915_gem_object_release_unless_active(obj);
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
552 553
	else
		flags |= PIN_HIGH;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);

	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			 engine->name, i915_ggtt_offset(vma));
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_BUG_ON(engine->id != RCS);

	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;

	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);

	return 0;
}

596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
609
	struct intel_ring *ring;
610 611
	int ret;

612 613
	engine->set_default_submission(engine);

614 615 616 617 618 619 620
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
621 622 623
	ring = engine->context_pin(engine, engine->i915->kernel_context);
	if (IS_ERR(ring))
		return PTR_ERR(ring);
624

625 626 627 628
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
629
	if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
630 631 632 633 634 635 636 637
		ring = engine->context_pin(engine,
					   engine->i915->preempt_context);
		if (IS_ERR(ring)) {
			ret = PTR_ERR(ring);
			goto err_unpin_kernel;
		}
	}

638 639
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
640
		goto err_unpin_preempt;
641

642 643 644 645 646
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
647
		goto err_breadcrumbs;
648

649
	return 0;
650

651 652
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
653
err_unpin_preempt:
654
	if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
655 656
		engine->context_unpin(engine, engine->i915->preempt_context);
err_unpin_kernel:
657 658
	engine->context_unpin(engine, engine->i915->kernel_context);
	return ret;
659
}
660 661 662 663 664 665 666 667 668 669

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
670 671
	intel_engine_cleanup_scratch(engine);

672 673 674 675 676
	if (HWS_NEEDS_PHYSICAL(engine->i915))
		cleanup_phys_status_page(engine);
	else
		cleanup_status_page(engine);

677
	intel_engine_fini_breadcrumbs(engine);
678
	intel_engine_cleanup_cmd_parser(engine);
679
	i915_gem_batch_pool_fini(&engine->batch_pool);
680

681 682 683
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

684
	if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
685
		engine->context_unpin(engine, engine->i915->preempt_context);
686
	engine->context_unpin(engine, engine->i915->kernel_context);
687
}
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
	/*
	 * The HW expects the slice and sublice selectors to be reset to 0
	 * after reading out the registers.
	 */
	WARN_ON_ONCE(mcr & (GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK));
	mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
	mcr |= GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

	mcr &= ~(GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK);
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static int wa_add(struct drm_i915_private *dev_priv,
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
}

#define WA_REG(addr, mask, val) do { \
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
		if (r) \
			return r; \
	} while (0)

#define WA_SET_BIT_MASKED(addr, mask) \
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))

#define WA_CLR_BIT_MASKED(addr, mask) \
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))

#define WA_SET_FIELD_MASKED(addr, mask, value) \
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))

static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_workarounds *wa = &dev_priv->workarounds;
	const uint32_t index = wa->hw_whitelist_count[engine->id];

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

866 867
	I915_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
		   i915_mmio_reg_offset(reg));
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	wa->hw_whitelist_count[engine->id]++;

	return 0;
}

static int gen8_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);

	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
			  HDC_FORCE_NON_COHERENT);

	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

	return 0;
}

static int bdw_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen8_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the related UCGTCL1 write in broadwell_init_clock_gating()
	 * to disable EUTC clock gating.
	 */
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);

	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);

	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));

	return 0;
}

static int chv_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen8_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);

	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

	return 0;
}

static int gen9_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

979
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
980 981
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

982
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
983 984 985
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

R
Rodrigo Vivi 已提交
986 987 988 989
	/* WaDisableKillLogic:bxt,skl,kbl */
	if (!IS_COFFEELAKE(dev_priv))
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   ECOCHK_DIS_TLB);
990

991 992 993 994 995 996 997 998 999 1000
	if (HAS_LLC(dev_priv)) {
		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
		 *
		 * Must match Display Engine. See
		 * WaCompressedResourceDisplayNewHashMode.
		 */
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN9_PBE_COMPRESSED_HASH_SELECTION);
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
				  GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
1001 1002 1003 1004 1005

		I915_WRITE(MMCD_MISC_CTRL,
			   I915_READ(MMCD_MISC_CTRL) |
			   MMCD_PCLA |
			   MMCD_HOTSPOT_EN);
1006 1007
	}

1008 1009
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
1010 1011 1012 1013 1014
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  FLOW_CONTROL_ENABLE |
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
1015 1016 1017
	if (!IS_COFFEELAKE(dev_priv))
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
1018

1019 1020
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
1021
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
1022
			  GEN9_ENABLE_YV12_BUGFIX |
1023 1024
			  GEN9_ENABLE_GPGPU_PREEMPTION);

1025 1026
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
1027 1028 1029
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));

1030
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
1031 1032 1033
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

1034
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);

	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

1052
	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
1053 1054 1055
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

R
Rodrigo Vivi 已提交
1056 1057 1058
	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);
1059

1060
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
1061 1062
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
1063
	    IS_COFFEELAKE(dev_priv))
1064 1065 1066
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

1067
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
1068 1069
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

1070 1071 1072 1073 1074 1075 1076 1077 1078
	/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
	if (IS_GEN9_LP(dev_priv)) {
		u32 val = I915_READ(GEN8_L3SQCREG1);

		val &= ~L3_PRIO_CREDITS_MASK;
		val |= L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2);
		I915_WRITE(GEN8_L3SQCREG1, val);
	}

1079
	/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
1080 1081 1082
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * Supporting preemption with fine-granularity requires changes in the
	 * batch buffer programming. Since we can't break old userspace, we
	 * need to set our default preemption level to safe value. Userspace is
	 * still able to use more fine-grained preemption levels, since in
	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
	 * not real HW workarounds, but merely a way to start using preemption
	 * while maintaining old contract with userspace.
	 */

	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
	WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);

	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
	WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);

1101
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1102 1103 1104 1105
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

1106 1107 1108 1109
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	ret = wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1110 1111 1112
	if (ret)
		return ret;

1113
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
	if (ret)
		return ret;

	return 0;
}

static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

static int skl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:skl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaDisableGafsUnitClkGating:skl */
1176 1177
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1178 1179 1180

	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1181 1182 1183
		I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
			   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	/* WaDisableLSQCROPERFforOCL:skl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

	return skl_tune_iz_hashing(engine);
}

static int bxt_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

	/* WaDisablePooledEuLoadBalancingFix:bxt */
1207 1208
	I915_WRITE(FF_SLICE_CS_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE));
1209 1210

	/* WaToEnableHwFixForPushConstHWBug:bxt */
1211 1212
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1213 1214

	/* WaInPlaceDecompressionHang:bxt */
1215 1216 1217
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1218 1219 1220 1221

	return 0;
}

1222 1223 1224 1225 1226
static int cnl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1227
	/* WaDisableI2mCycleOnWRPort:cnl (pre-prod) */
1228
	if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
1229 1230 1231
		I915_WRITE(GAMT_CHKN_BIT_REG,
			   (I915_READ(GAMT_CHKN_BIT_REG) |
			    GAMT_CHKN_DISABLE_I2M_CYCLE_ON_WR_PORT));
1232

1233 1234 1235 1236
	/* WaForceContextSaveRestoreNonCoherent:cnl */
	WA_SET_BIT_MASKED(CNL_HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);

1237 1238 1239 1240
	/* WaThrottleEUPerfToAvoidTDBackPressure:cnl(pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_B0, CNL_REVID_B0))
		WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, THROTTLE_12_5);

1241 1242 1243 1244
	/* WaDisableReplayBufferBankArbitrationOptimization:cnl */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1245 1246 1247 1248 1249
	/* WaDisableEnhancedSBEVertexCaching:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, 0, CNL_REVID_B0))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE);

1250
	/* WaInPlaceDecompressionHang:cnl */
1251 1252 1253
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1254

1255
	/* WaPushConstantDereferenceHoldDisable:cnl */
1256
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2, PUSH_CONSTANT_DEREF_DISABLE);
1257

1258 1259 1260
	/* FtrEnableFastAnisoL1BankingFix: cnl */
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, CNL_FAST_ANISO_L1_BANKING_FIX);

1261 1262 1263 1264 1265 1266 1267
	/* WaDisable3DMidCmdPreemption:cnl */
	WA_CLR_BIT_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);

	/* WaDisableGPGPUMidCmdPreemption:cnl */
	WA_SET_FIELD_MASKED(GEN8_CS_CHICKEN1, GEN9_PREEMPT_GPGPU_LEVEL_MASK,
			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);

1268
	/* WaEnablePreemptionGranularityControlByUMD:cnl */
1269 1270
	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1271 1272 1273 1274
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
	if (ret)
		return ret;

1275 1276 1277
	/* WaDisableEarlyEOT:cnl */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, DISABLE_EARLY_EOT);

1278 1279 1280
	return 0;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1296 1297 1298
		I915_WRITE(GAMT_CHKN_BIT_REG,
			   (I915_READ(GAMT_CHKN_BIT_REG) |
			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING));
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	/* WaDisableGafsUnitClkGating:kbl */
1311 1312
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1313 1314 1315 1316 1317 1318 1319

	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

	/* WaInPlaceDecompressionHang:kbl */
1320 1321 1322
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

	return 0;
}

static int glk_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaToEnableHwFixForPushConstHWBug:glk */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	return 0;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static int cfl_init_workarounds(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

	/* WaEnableGapsTsvCreditFix:cfl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

	/* WaToEnableHwFixForPushConstHWBug:cfl */
	WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
			  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

	/* WaDisableGafsUnitClkGating:cfl */
1366 1367
	I915_WRITE(GEN7_UCGCTL4, (I915_READ(GEN7_UCGCTL4) |
				  GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE));
1368 1369 1370 1371 1372 1373 1374

	/* WaDisableSbeCacheDispatchPortSharing:cfl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

	/* WaInPlaceDecompressionHang:cfl */
1375 1376 1377
	I915_WRITE(GEN9_GAMT_ECO_REG_RW_IA,
		   (I915_READ(GEN9_GAMT_ECO_REG_RW_IA) |
		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS));
1378 1379 1380 1381

	return 0;
}

1382 1383 1384
int init_workarounds_ring(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1385
	int err;
1386 1387 1388 1389

	WARN_ON(engine->id != RCS);

	dev_priv->workarounds.count = 0;
1390
	dev_priv->workarounds.hw_whitelist_count[engine->id] = 0;
1391 1392

	if (IS_BROADWELL(dev_priv))
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		err = bdw_init_workarounds(engine);
	else if (IS_CHERRYVIEW(dev_priv))
		err = chv_init_workarounds(engine);
	else if (IS_SKYLAKE(dev_priv))
		err =  skl_init_workarounds(engine);
	else if (IS_BROXTON(dev_priv))
		err = bxt_init_workarounds(engine);
	else if (IS_KABYLAKE(dev_priv))
		err = kbl_init_workarounds(engine);
	else if (IS_GEMINILAKE(dev_priv))
		err =  glk_init_workarounds(engine);
1404 1405
	else if (IS_COFFEELAKE(dev_priv))
		err = cfl_init_workarounds(engine);
1406 1407
	else if (IS_CANNONLAKE(dev_priv))
		err = cnl_init_workarounds(engine);
1408 1409 1410 1411
	else
		err = 0;
	if (err)
		return err;
1412

1413 1414
	DRM_DEBUG_DRIVER("%s: Number of context specific w/a: %d\n",
			 engine->name, dev_priv->workarounds.count);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	return 0;
}

int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
	struct i915_workarounds *w = &req->i915->workarounds;
	u32 *cs;
	int ret, i;

	if (w->count == 0)
		return 0;

	ret = req->engine->emit_flush(req, EMIT_BARRIER);
	if (ret)
		return ret;

	cs = intel_ring_begin(req, (w->count * 2 + 2));
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(w->count);
	for (i = 0; i < w->count; i++) {
		*cs++ = i915_mmio_reg_offset(w->reg[i].addr);
		*cs++ = w->reg[i].value;
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(req, cs);

	ret = req->engine->emit_flush(req, EMIT_BARRIER);
	if (ret)
		return ret;

	return 0;
}

1451 1452 1453 1454 1455 1456 1457
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

	intel_runtime_pm_get(dev_priv);

1458 1459 1460 1461 1462
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

1463 1464 1465 1466 1467 1468 1469 1470 1471
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

1483 1484 1485 1486
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1487 1488 1489 1490 1491
	/* Any inflight/incomplete requests? */
	if (!i915_seqno_passed(intel_engine_get_seqno(engine),
			       intel_engine_last_submit(engine)))
		return false;

1492 1493 1494
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

1495 1496 1497 1498
	/* Interrupt/tasklet pending? */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		return false;

1499 1500
	/* Waiting to drain ELSP? */
	if (READ_ONCE(engine->execlists.active))
1501 1502
		return false;

1503
	/* ELSP is empty, but there are ready requests? */
1504
	if (READ_ONCE(engine->execlists.first))
1505 1506
		return false;

1507
	/* Ring stopped? */
1508
	if (!ring_is_idle(engine))
1509 1510 1511 1512 1513
		return false;

	return true;
}

1514 1515 1516 1517 1518
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1519 1520
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1521 1522 1523 1524 1525
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

1526 1527 1528 1529 1530 1531 1532 1533
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1534 1535 1536 1537 1538 1539 1540 1541
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1542 1543
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	const struct i915_gem_context * const kernel_context =
		engine->i915->kernel_context;
	struct drm_i915_gem_request *rq;

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
	rq = __i915_gem_active_peek(&engine->timeline->last_request);
	if (rq)
		return rq->ctx == kernel_context;
	else
		return engine->last_retired_context == kernel_context;
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1571 1572 1573 1574 1575 1576 1577 1578 1579
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1580 1581 1582 1583 1584
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1585 1586
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1587
		tasklet_kill(&engine->execlists.tasklet);
1588

1589 1590 1591 1592 1593
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1594
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1595 1596
			struct drm_printer p = drm_debug_printer(__func__);

1597 1598 1599
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1600
			intel_engine_dump(engine, &p, NULL);
1601 1602
		}

1603 1604 1605 1606
		if (engine->park)
			engine->park(engine);

		i915_gem_batch_pool_fini(&engine->batch_pool);
1607
		engine->execlists.no_priolist = false;
1608 1609 1610
	}
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (engine->unpark)
			engine->unpark(engine);
	}
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1657 1658 1659 1660
static void print_request(struct drm_printer *m,
			  struct drm_i915_gem_request *rq,
			  const char *prefix)
{
1661 1662 1663 1664
	drm_printf(m, "%s%x%s [%x:%x] prio=%d @ %dms: %s\n", prefix,
		   rq->global_seqno,
		   i915_gem_request_completed(rq) ? "!" : "",
		   rq->ctx->hw_id, rq->fence.seqno,
1665 1666 1667 1668 1669
		   rq->priotree.priority,
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
		   rq->timeline->common->name);
}

1670 1671 1672
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
1673
{
1674 1675 1676
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1677 1678 1679
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *rq;
	struct rb_node *rb;
1680
	char hdr[80];
1681 1682
	u64 addr;

1683 1684 1685 1686 1687 1688 1689 1690
	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1691 1692 1693
	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1694 1695 1696 1697 1698 1699
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
		   engine->timeline->inflight_seqnos);
1700 1701 1702
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

	rq = list_first_entry(&engine->timeline->requests,
			      struct drm_i915_gem_request, link);
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tfirst  ");

	rq = list_last_entry(&engine->timeline->requests,
			     struct drm_i915_gem_request, link);
	if (&rq->link != &engine->timeline->requests)
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
		drm_printf(m,
			   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
			   rq->head, rq->postfix, rq->tail,
			   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
			   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
	}

	drm_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
		   I915_READ(RING_START(engine->mmio_base)),
		   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
	drm_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
		   rq ? rq->ring->head : 0);
	drm_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
		   rq ? rq->ring->tail : 0);
1737
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1738
		   I915_READ(RING_CTL(engine->mmio_base)),
1739 1740 1741 1742 1743 1744
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1745
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1746 1747 1748 1749 1750 1751 1752 1753
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1754 1755 1756 1757 1758 1759 1760 1761 1762

	rcu_read_unlock();

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1781

1782
	if (HAS_EXECLISTS(dev_priv)) {
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		u32 ptr, read, write;
		unsigned int idx;

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

		ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
		read = GEN8_CSB_READ_PTR(ptr);
		write = GEN8_CSB_WRITE_PTR(ptr);
		drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s\n",
			   read, execlists->csb_head,
			   write,
			   intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)),
			   yesno(test_bit(ENGINE_IRQ_EXECLIST,
					  &engine->irq_posted)));
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n",
				   idx,
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)),
				   hws[idx * 2 + 1]);
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1822 1823 1824 1825
				snprintf(hdr, sizeof(hdr),
					 "\t\tELSP[%d] count=%d, rq: ",
					 idx, count);
				print_request(m, rq, hdr);
1826
			} else {
1827
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1828 1829
			}
		}
1830
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	spin_lock_irq(&engine->timeline->lock);
	list_for_each_entry(rq, &engine->timeline->requests, link)
		print_request(m, rq, "\t\tE ");
	for (rb = execlists->first; rb; rb = rb_next(rb)) {
		struct i915_priolist *p =
			rb_entry(rb, typeof(*p), node);

		list_for_each_entry(rq, &p->requests, priotree.link)
			print_request(m, rq, "\t\tQ ");
	}
	spin_unlock_irq(&engine->timeline->lock);

1853 1854 1855 1856 1857 1858 1859 1860 1861
	spin_lock_irq(&b->rb_lock);
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

		drm_printf(m, "\t%s [%d] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid, w->seqno);
	}
	spin_unlock_irq(&b->rb_lock);

1862 1863 1864 1865
	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1866 1867 1868 1869 1870 1871
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n",
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)),
		   yesno(test_bit(ENGINE_IRQ_EXECLIST,
				  &engine->irq_posted)));
1872
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1873 1874 1875
	drm_printf(m, "\n");
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1911
	if (!intel_engine_supports_stats(engine))
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		return -ENODEV;

	spin_lock_irqsave(&engine->stats.lock, flags);
	if (engine->stats.enabled == ~0)
		goto busy;
	if (engine->stats.enabled++ == 0)
		engine->stats.enabled_at = ktime_get();
	spin_unlock_irqrestore(&engine->stats.lock, flags);

	return 0;

busy:
	spin_unlock_irqrestore(&engine->stats.lock, flags);

	return -EBUSY;
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total;
	unsigned long flags;

	spin_lock_irqsave(&engine->stats.lock, flags);
	total = __intel_engine_get_busy_time(engine);
	spin_unlock_irqrestore(&engine->stats.lock, flags);

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1972
	if (!intel_engine_supports_stats(engine))
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

1984 1985 1986
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
#endif