vgic-init.c 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright (C) 2015, 2016 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * Initialization rules: there are multiple stages to the vgic
 * initialization, both for the distributor and the CPU interfaces.
 *
 * Distributor:
 *
 * - kvm_vgic_early_init(): initialization of static data that doesn't
 *   depend on any sizing information or emulation type. No allocation
 *   is allowed there.
 *
 * - vgic_init(): allocation and initialization of the generic data
 *   structures that depend on sizing information (number of CPUs,
 *   number of interrupts). Also initializes the vcpu specific data
 *   structures. Can be executed lazily for GICv2.
 *
 * CPU Interface:
 *
 * - kvm_vgic_cpu_early_init(): initialization of static data that
 *   doesn't depend on any sizing information or emulation type. No
 *   allocation is allowed there.
 */

/* EARLY INIT */

/*
 * Those 2 functions should not be needed anymore but they
 * still are called from arm.c
 */
void kvm_vgic_early_init(struct kvm *kvm)
{
}

void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
{
}

61 62 63 64 65 66 67
/* CREATION */

/**
 * kvm_vgic_create: triggered by the instantiation of the VGIC device by
 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
 * or through the generic KVM_CREATE_DEVICE API ioctl.
 * irqchip_in_kernel() tells you if this function succeeded or not.
68 69
 * @kvm: kvm struct pointer
 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70 71 72 73 74 75
 */
int kvm_vgic_create(struct kvm *kvm, u32 type)
{
	int i, vcpu_lock_idx = -1, ret;
	struct kvm_vcpu *vcpu;

76 77
	if (irqchip_in_kernel(kvm))
		return -EEXIST;
78 79 80 81 82 83 84 85

	/*
	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
	 * which had no chance yet to check the availability of the GICv2
	 * emulation. So check this here again. KVM_CREATE_DEVICE does
	 * the proper checks already.
	 */
	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
86 87
		!kvm_vgic_global_state.can_emulate_gicv2)
		return -ENODEV;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
	ret = -EBUSY;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu->arch.has_run_once)
			goto out_unlock;
	}
	ret = 0;

	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
		kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
	else
		kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;

	if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
		ret = -E2BIG;
		goto out_unlock;
	}

	kvm->arch.vgic.in_kernel = true;
	kvm->arch.vgic.vgic_model = type;

	/*
	 * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
	 * it is stored in distributor struct for asm save/restore purpose
	 */
	kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;

	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;

out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}
	return ret;
}

138 139 140 141 142 143 144 145 146 147 148 149 150
/* INIT/DESTROY */

/**
 * kvm_vgic_dist_init: initialize the dist data structures
 * @kvm: kvm struct pointer
 * @nr_spis: number of spis, frozen by caller
 */
static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
	int i;

151 152 153
	INIT_LIST_HEAD(&dist->lpi_list_head);
	spin_lock_init(&dist->lpi_list_lock);

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
	if (!dist->spis)
		return  -ENOMEM;

	/*
	 * In the following code we do not take the irq struct lock since
	 * no other action on irq structs can happen while the VGIC is
	 * not initialized yet:
	 * If someone wants to inject an interrupt or does a MMIO access, we
	 * require prior initialization in case of a virtual GICv3 or trigger
	 * initialization when using a virtual GICv2.
	 */
	for (i = 0; i < nr_spis; i++) {
		struct vgic_irq *irq = &dist->spis[i];

		irq->intid = i + VGIC_NR_PRIVATE_IRQS;
		INIT_LIST_HEAD(&irq->ap_list);
		spin_lock_init(&irq->irq_lock);
		irq->vcpu = NULL;
		irq->target_vcpu = vcpu0;
174
		kref_init(&irq->refcount);
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
		if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
			irq->targets = 0;
		else
			irq->mpidr = 0;
	}
	return 0;
}

/**
 * kvm_vgic_vcpu_init: initialize the vcpu data structures and
 * enable the VCPU interface
 * @vcpu: the VCPU which's VGIC should be initialized
 */
static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int i;

	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
	spin_lock_init(&vgic_cpu->ap_list_lock);

	/*
	 * Enable and configure all SGIs to be edge-triggered and
	 * configure all PPIs as level-triggered.
	 */
	for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
		struct vgic_irq *irq = &vgic_cpu->private_irqs[i];

		INIT_LIST_HEAD(&irq->ap_list);
		spin_lock_init(&irq->irq_lock);
		irq->intid = i;
		irq->vcpu = NULL;
		irq->target_vcpu = vcpu;
		irq->targets = 1U << vcpu->vcpu_id;
209
		kref_init(&irq->refcount);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		if (vgic_irq_is_sgi(i)) {
			/* SGIs */
			irq->enabled = 1;
			irq->config = VGIC_CONFIG_EDGE;
		} else {
			/* PPIs */
			irq->config = VGIC_CONFIG_LEVEL;
		}
	}
	if (kvm_vgic_global_state.type == VGIC_V2)
		vgic_v2_enable(vcpu);
	else
		vgic_v3_enable(vcpu);
}

/*
 * vgic_init: allocates and initializes dist and vcpu data structures
 * depending on two dimensioning parameters:
 * - the number of spis
 * - the number of vcpus
 * The function is generally called when nr_spis has been explicitly set
 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
 * vgic_initialized() returns true when this function has succeeded.
 * Must be called with kvm->lock held!
 */
int vgic_init(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int ret = 0, i;

	if (vgic_initialized(kvm))
		return 0;

	/* freeze the number of spis */
	if (!dist->nr_spis)
		dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;

	ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
	if (ret)
		goto out;

252 253 254
	if (vgic_has_its(kvm))
		dist->msis_require_devid = true;

255 256 257
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_init(vcpu);

258 259 260 261
	ret = kvm_vgic_setup_default_irq_routing(kvm);
	if (ret)
		goto out;

262 263
	vgic_debug_init(kvm);

264
	dist->initialized = true;
265 266 267 268 269 270 271 272 273 274 275 276

	/*
	 * If we're initializing GICv2 on-demand when first running the VCPU
	 * then we need to load the VGIC state onto the CPU.  We can detect
	 * this easily by checking if we are in between vcpu_load and vcpu_put
	 * when we just initialized the VGIC.
	 */
	preempt_disable();
	vcpu = kvm_arm_get_running_vcpu();
	if (vcpu)
		kvm_vgic_load(vcpu);
	preempt_enable();
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
out:
	return ret;
}

static void kvm_vgic_dist_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	dist->ready = false;
	dist->initialized = false;

	kfree(dist->spis);
	dist->nr_spis = 0;
}

void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
}

299 300
/* To be called with kvm->lock held */
static void __kvm_vgic_destroy(struct kvm *kvm)
301 302 303 304
{
	struct kvm_vcpu *vcpu;
	int i;

305 306
	vgic_debug_destroy(kvm);

307 308 309 310 311 312
	kvm_vgic_dist_destroy(kvm);

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);
}

313 314 315 316 317 318 319
void kvm_vgic_destroy(struct kvm *kvm)
{
	mutex_lock(&kvm->lock);
	__kvm_vgic_destroy(kvm);
	mutex_unlock(&kvm->lock);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
 * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
 * @kvm: kvm struct pointer
 */
int vgic_lazy_init(struct kvm *kvm)
{
	int ret = 0;

	if (unlikely(!vgic_initialized(kvm))) {
		/*
		 * We only provide the automatic initialization of the VGIC
		 * for the legacy case of a GICv2. Any other type must
		 * be explicitly initialized once setup with the respective
		 * KVM device call.
		 */
		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
			return -EBUSY;

		mutex_lock(&kvm->lock);
		ret = vgic_init(kvm);
		mutex_unlock(&kvm->lock);
	}

	return ret;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/* RESOURCE MAPPING */

/**
 * Map the MMIO regions depending on the VGIC model exposed to the guest
 * called on the first VCPU run.
 * Also map the virtual CPU interface into the VM.
 * v2/v3 derivatives call vgic_init if not already done.
 * vgic_ready() returns true if this function has succeeded.
 * @kvm: kvm struct pointer
 */
int kvm_vgic_map_resources(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (!irqchip_in_kernel(kvm))
		goto out;

	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
		ret = vgic_v2_map_resources(kvm);
	else
		ret = vgic_v3_map_resources(kvm);
371 372 373 374

	if (ret)
		__kvm_vgic_destroy(kvm);

375 376 377 378 379
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

380 381
/* GENERIC PROBE */

382
static int vgic_init_cpu_starting(unsigned int cpu)
383 384
{
	enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
385
	return 0;
386 387 388
}


389 390 391 392
static int vgic_init_cpu_dying(unsigned int cpu)
{
	disable_percpu_irq(kvm_vgic_global_state.maint_irq);
	return 0;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
}

static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

/**
 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
 * according to the host GIC model. Accordingly calls either
 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
 * instantiated by a guest later on .
 */
int kvm_vgic_hyp_init(void)
{
	const struct gic_kvm_info *gic_kvm_info;
	int ret;

	gic_kvm_info = gic_get_kvm_info();
	if (!gic_kvm_info)
		return -ENODEV;

	if (!gic_kvm_info->maint_irq) {
		kvm_err("No vgic maintenance irq\n");
		return -ENXIO;
	}

	switch (gic_kvm_info->type) {
	case GIC_V2:
		ret = vgic_v2_probe(gic_kvm_info);
		break;
	case GIC_V3:
		ret = vgic_v3_probe(gic_kvm_info);
432 433 434 435
		if (!ret) {
			static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
			kvm_info("GIC system register CPU interface enabled\n");
		}
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		break;
	default:
		ret = -ENODEV;
	};

	if (ret)
		return ret;

	kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
	ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
				 vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n",
			kvm_vgic_global_state.maint_irq);
		return ret;
	}

454
	ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
T
Thomas Gleixner 已提交
455
				"kvm/arm/vgic:starting",
456
				vgic_init_cpu_starting, vgic_init_cpu_dying);
457 458 459 460 461 462 463 464 465 466 467 468 469
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
	return 0;

out_free_irq:
	free_percpu_irq(kvm_vgic_global_state.maint_irq,
			kvm_get_running_vcpus());
	return ret;
}