hci_intel.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 *
 *  Bluetooth HCI UART driver for Intel devices
 *
 *  Copyright (C) 2015  Intel Corporation
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
27
#include <linux/firmware.h>
28
#include <linux/module.h>
29
#include <linux/wait.h>
30 31 32 33
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/acpi.h>
34
#include <linux/interrupt.h>
35
#include <linux/pm_runtime.h>
36 37 38 39 40

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "hci_uart.h"
41 42 43 44 45 46 47
#include "btintel.h"

#define STATE_BOOTLOADER	0
#define STATE_DOWNLOADING	1
#define STATE_FIRMWARE_LOADED	2
#define STATE_FIRMWARE_FAILED	3
#define STATE_BOOTING		4
48 49
#define STATE_LPM_ENABLED	5
#define STATE_TX_ACTIVE		6
50 51
#define STATE_SUSPENDED		7
#define STATE_LPM_TRANSACTION	8
52

53
#define HCI_LPM_WAKE_PKT 0xf0
54 55 56 57 58
#define HCI_LPM_PKT 0xf1
#define HCI_LPM_MAX_SIZE 10
#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE

#define LPM_OP_TX_NOTIFY 0x00
59 60
#define LPM_OP_SUSPEND_ACK 0x02
#define LPM_OP_RESUME_ACK 0x03
61

62 63
#define LPM_SUSPEND_DELAY_MS 1000

64 65 66 67 68
struct hci_lpm_pkt {
	__u8 opcode;
	__u8 dlen;
	__u8 data[0];
} __packed;
69

70 71 72 73
struct intel_device {
	struct list_head list;
	struct platform_device *pdev;
	struct gpio_desc *reset;
74 75
	struct hci_uart *hu;
	struct mutex hu_lock;
76
	int irq;
77 78 79
};

static LIST_HEAD(intel_device_list);
80
static DEFINE_MUTEX(intel_device_list_lock);
81

82 83 84
struct intel_data {
	struct sk_buff *rx_skb;
	struct sk_buff_head txq;
85 86
	struct work_struct busy_work;
	struct hci_uart *hu;
87 88 89
	unsigned long flags;
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static u8 intel_convert_speed(unsigned int speed)
{
	switch (speed) {
	case 9600:
		return 0x00;
	case 19200:
		return 0x01;
	case 38400:
		return 0x02;
	case 57600:
		return 0x03;
	case 115200:
		return 0x04;
	case 230400:
		return 0x05;
	case 460800:
		return 0x06;
	case 921600:
		return 0x07;
	case 1843200:
		return 0x08;
	case 3250000:
		return 0x09;
	case 2000000:
		return 0x0a;
	case 3000000:
		return 0x0b;
	default:
		return 0xff;
	}
}

122 123 124 125 126 127 128 129 130 131
static int intel_wait_booting(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
132
		bt_dev_err(hu->hdev, "Device boot interrupted");
133 134 135 136
		return -EINTR;
	}

	if (err) {
137
		bt_dev_err(hu->hdev, "Device boot timeout");
138 139 140 141 142 143
		return -ETIMEDOUT;
	}

	return err;
}

144
#ifdef CONFIG_PM
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static int intel_wait_lpm_transaction(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
		bt_dev_err(hu->hdev, "LPM transaction interrupted");
		return -EINTR;
	}

	if (err) {
		bt_dev_err(hu->hdev, "LPM transaction timeout");
		return -ETIMEDOUT;
	}

	return err;
}

static int intel_lpm_suspend(struct hci_uart *hu)
{
	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
		return -EAGAIN;

	bt_dev_dbg(hu->hdev, "Suspending");

	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189
	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 191 192

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

193 194
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device suspend error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Suspended");

	hci_uart_set_flow_control(hu, true);

	return 0;
}

static int intel_lpm_resume(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    !test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	bt_dev_dbg(hu->hdev, "Resuming");

	hci_uart_set_flow_control(hu, false);

	skb = bt_skb_alloc(0, GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

233
	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 235 236

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

237 238
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device resume error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Resumed");

	return 0;
}
255
#endif /* CONFIG_PM */
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

static int intel_lpm_host_wake(struct hci_uart *hu)
{
	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	hci_uart_set_flow_control(hu, false);

	clear_bit(STATE_SUSPENDED, &intel->flags);

	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
	       sizeof(lpm_resume_ack));
275
	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276

277 278
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
279 280 281 282 283 284 285
	hci_uart_tx_wakeup(hu);

	bt_dev_dbg(hu->hdev, "Resumed by controller");

	return 0;
}

286 287 288 289 290 291
static irqreturn_t intel_irq(int irq, void *dev_id)
{
	struct intel_device *idev = dev_id;

	dev_info(&idev->pdev->dev, "hci_intel irq\n");

292 293 294 295 296
	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_host_wake(idev->hu);
	mutex_unlock(&idev->hu_lock);

297 298 299 300 301
	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
	pm_runtime_get(&idev->pdev->dev);
	pm_runtime_mark_last_busy(&idev->pdev->dev);
	pm_runtime_put_autosuspend(&idev->pdev->dev);

302 303 304
	return IRQ_HANDLED;
}

305 306 307 308 309
static int intel_set_power(struct hci_uart *hu, bool powered)
{
	struct list_head *p;
	int err = -ENODEV;

310
	mutex_lock(&intel_device_list_lock);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		/* tty device and pdev device should share the same parent
		 * which is the UART port.
		 */
		if (hu->tty->dev->parent != idev->pdev->dev.parent)
			continue;

		if (!idev->reset) {
			err = -ENOTSUPP;
			break;
		}

		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
			hu, dev_name(&idev->pdev->dev), powered);

		gpiod_set_value(idev->reset, powered);
331

332 333 334 335 336 337 338 339 340
		/* Provide to idev a hu reference which is used to run LPM
		 * transactions (lpm suspend/resume) from PM callbacks.
		 * hu needs to be protected against concurrent removing during
		 * these PM ops.
		 */
		mutex_lock(&idev->hu_lock);
		idev->hu = powered ? hu : NULL;
		mutex_unlock(&idev->hu_lock);

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		if (idev->irq < 0)
			break;

		if (powered && device_can_wakeup(&idev->pdev->dev)) {
			err = devm_request_threaded_irq(&idev->pdev->dev,
							idev->irq, NULL,
							intel_irq,
							IRQF_ONESHOT,
							"bt-host-wake", idev);
			if (err) {
				BT_ERR("hu %p, unable to allocate irq-%d",
				       hu, idev->irq);
				break;
			}

			device_wakeup_enable(&idev->pdev->dev);
357 358 359 360 361 362

			pm_runtime_set_active(&idev->pdev->dev);
			pm_runtime_use_autosuspend(&idev->pdev->dev);
			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
							 LPM_SUSPEND_DELAY_MS);
			pm_runtime_enable(&idev->pdev->dev);
363 364 365
		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
			device_wakeup_disable(&idev->pdev->dev);
366 367

			pm_runtime_disable(&idev->pdev->dev);
368
		}
369 370
	}

371
	mutex_unlock(&intel_device_list_lock);
372 373 374 375

	return err;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static void intel_busy_work(struct work_struct *work)
{
	struct list_head *p;
	struct intel_data *intel = container_of(work, struct intel_data,
						busy_work);

	/* Link is busy, delay the suspend */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);
}

398 399 400 401 402 403 404 405 406 407 408
static int intel_open(struct hci_uart *hu)
{
	struct intel_data *intel;

	BT_DBG("hu %p", hu);

	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
	if (!intel)
		return -ENOMEM;

	skb_queue_head_init(&intel->txq);
409 410 411
	INIT_WORK(&intel->busy_work, intel_busy_work);

	intel->hu = hu;
412 413

	hu->priv = intel;
414 415 416 417

	if (!intel_set_power(hu, true))
		set_bit(STATE_BOOTING, &intel->flags);

418 419 420 421 422 423 424 425 426
	return 0;
}

static int intel_close(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

427 428
	cancel_work_sync(&intel->busy_work);

429 430
	intel_set_power(hu, false);

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	skb_queue_purge(&intel->txq);
	kfree_skb(intel->rx_skb);
	kfree(intel);

	hu->priv = NULL;
	return 0;
}

static int intel_flush(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

	skb_queue_purge(&intel->txq);

	return 0;
}

static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
	struct sk_buff *skb;
	struct hci_event_hdr *hdr;
	struct hci_ev_cmd_complete *evt;

	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
	hdr->evt = HCI_EV_CMD_COMPLETE;
	hdr->plen = sizeof(*evt) + 1;

	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
	evt->ncmd = 0x01;
	evt->opcode = cpu_to_le16(opcode);

	*skb_put(skb, 1) = 0x00;

470
	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471 472 473 474

	return hci_recv_frame(hdev, skb);
}

475 476 477 478 479 480
static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
	struct intel_data *intel = hu->priv;
	struct hci_dev *hdev = hu->hdev;
	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
	struct sk_buff *skb;
481 482 483 484 485 486 487 488 489 490
	int err;

	/* This can be the first command sent to the chip, check
	 * that the controller is ready.
	 */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
491
	if (err && err != -ETIMEDOUT)
492
		return err;
493

494
	bt_dev_info(hdev, "Change controller speed to %d", speed);
495 496 497

	speed_cmd[3] = intel_convert_speed(speed);
	if (speed_cmd[3] == 0xff) {
498
		bt_dev_err(hdev, "Unsupported speed");
499 500 501 502 503 504
		return -EINVAL;
	}

	/* Device will not accept speed change if Intel version has not been
	 * previously requested.
	 */
505
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506
	if (IS_ERR(skb)) {
507 508
		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
			   PTR_ERR(skb));
509 510 511 512 513 514
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
	if (!skb) {
515
		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 517 518 519
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

	hci_uart_set_flow_control(hu, true);

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	/* wait 100ms to change baudrate on controller side */
	msleep(100);

	hci_uart_set_baudrate(hu, speed);
	hci_uart_set_flow_control(hu, false);

	return 0;
}

536 537 538 539 540 541 542
static int intel_setup(struct hci_uart *hu)
{
	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
					  0x00, 0x08, 0x04, 0x00 };
	struct intel_data *intel = hu->priv;
	struct hci_dev *hdev = hu->hdev;
	struct sk_buff *skb;
543
	struct intel_version ver;
544
	struct intel_boot_params *params;
545
	struct list_head *p;
546 547 548 549 550 551
	const struct firmware *fw;
	const u8 *fw_ptr;
	char fwname[64];
	u32 frag_len;
	ktime_t calltime, delta, rettime;
	unsigned long long duration;
552 553
	unsigned int init_speed, oper_speed;
	int speed_change = 0;
554 555
	int err;

556
	bt_dev_dbg(hdev, "start intel_setup");
557

558
	hu->hdev->set_diag = btintel_set_diag;
559 560
	hu->hdev->set_bdaddr = btintel_set_bdaddr;

561 562
	calltime = ktime_get();

563 564 565 566 567 568 569 570 571 572 573 574 575
	if (hu->init_speed)
		init_speed = hu->init_speed;
	else
		init_speed = hu->proto->init_speed;

	if (hu->oper_speed)
		oper_speed = hu->oper_speed;
	else
		oper_speed = hu->proto->oper_speed;

	if (oper_speed && init_speed && oper_speed != init_speed)
		speed_change = 1;

576 577 578 579 580 581
	/* Check that the controller is ready */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
582
	if (err && err != -ETIMEDOUT)
583 584
		return err;

585 586 587 588 589 590
	set_bit(STATE_BOOTLOADER, &intel->flags);

	/* Read the Intel version information to determine if the device
	 * is in bootloader mode or if it already has operational firmware
	 * loaded.
	 */
591 592
	 err = btintel_read_version(hdev, &ver);
	 if (err)
593 594 595 596 597
		return err;

	/* The hardware platform number has a fixed value of 0x37 and
	 * for now only accept this single value.
	 */
598
	if (ver.hw_platform != 0x37) {
599
		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
600
			   ver.hw_platform);
601 602 603 604 605 606 607 608
		return -EINVAL;
	}

	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
	 * supported by this firmware loading method. This check has been
	 * put in place to ensure correct forward compatibility options
	 * when newer hardware variants come along.
	 */
609
	if (ver.hw_variant != 0x0b) {
610
		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
611
			   ver.hw_variant);
612 613 614
		return -EINVAL;
	}

615
	btintel_version_info(hdev, &ver);
616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/* The firmware variant determines if the device is in bootloader
	 * mode or is running operational firmware. The value 0x06 identifies
	 * the bootloader and the value 0x23 identifies the operational
	 * firmware.
	 *
	 * When the operational firmware is already present, then only
	 * the check for valid Bluetooth device address is needed. This
	 * determines if the device will be added as configured or
	 * unconfigured controller.
	 *
	 * It is not possible to use the Secure Boot Parameters in this
	 * case since that command is only available in bootloader mode.
	 */
630
	if (ver.fw_variant == 0x23) {
631 632 633 634 635 636 637 638
		clear_bit(STATE_BOOTLOADER, &intel->flags);
		btintel_check_bdaddr(hdev);
		return 0;
	}

	/* If the device is not in bootloader mode, then the only possible
	 * choice is to return an error and abort the device initialization.
	 */
639
	if (ver.fw_variant != 0x06) {
640
		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
641
			   ver.fw_variant);
642 643 644 645 646 647
		return -ENODEV;
	}

	/* Read the secure boot parameters to identify the operating
	 * details of the bootloader.
	 */
648
	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
649
	if (IS_ERR(skb)) {
650 651
		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
			   PTR_ERR(skb));
652 653 654 655
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*params)) {
656
		bt_dev_err(hdev, "Intel boot parameters size mismatch");
657 658 659 660 661 662
		kfree_skb(skb);
		return -EILSEQ;
	}

	params = (struct intel_boot_params *)skb->data;
	if (params->status) {
663 664
		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
			   params->status);
665 666 667 668 669
		err = -bt_to_errno(params->status);
		kfree_skb(skb);
		return err;
	}

670 671
	bt_dev_info(hdev, "Device revision is %u",
		    le16_to_cpu(params->dev_revid));
672

673 674
	bt_dev_info(hdev, "Secure boot is %s",
		    params->secure_boot ? "enabled" : "disabled");
675

676
	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
677 678 679 680 681 682 683 684
		params->min_fw_build_nn, params->min_fw_build_cw,
		2000 + params->min_fw_build_yy);

	/* It is required that every single firmware fragment is acknowledged
	 * with a command complete event. If the boot parameters indicate
	 * that this bootloader does not send them, then abort the setup.
	 */
	if (params->limited_cce != 0x00) {
685 686
		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
			   params->limited_cce);
687 688 689 690 691 692 693 694
		kfree_skb(skb);
		return -EINVAL;
	}

	/* If the OTP has no valid Bluetooth device address, then there will
	 * also be no valid address for the operational firmware.
	 */
	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
695
		bt_dev_info(hdev, "No device address configured");
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
	}

	/* With this Intel bootloader only the hardware variant and device
	 * revision information are used to select the right firmware.
	 *
	 * Currently this bootloader support is limited to hardware variant
	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
	 */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
		 le16_to_cpu(params->dev_revid));

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err < 0) {
710 711
		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
			   err);
712 713 714 715
		kfree_skb(skb);
		return err;
	}

716
	bt_dev_info(hdev, "Found device firmware: %s", fwname);
717

718 719 720 721
	/* Save the DDC file name for later */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
		 le16_to_cpu(params->dev_revid));

722 723 724
	kfree_skb(skb);

	if (fw->size < 644) {
725 726
		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
			   fw->size);
727 728 729 730 731 732 733 734 735
		err = -EBADF;
		goto done;
	}

	set_bit(STATE_DOWNLOADING, &intel->flags);

	/* Start the firmware download transaction with the Init fragment
	 * represented by the 128 bytes of CSS header.
	 */
736
	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
737
	if (err < 0) {
738
		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
739 740 741 742 743 744
		goto done;
	}

	/* Send the 256 bytes of public key information from the firmware
	 * as the PKey fragment.
	 */
745
	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
746
	if (err < 0) {
747 748
		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
			   err);
749 750 751 752 753 754
		goto done;
	}

	/* Send the 256 bytes of signature information from the firmware
	 * as the Sign fragment.
	 */
755
	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
756
	if (err < 0) {
757 758
		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
			   err);
759 760 761 762 763 764 765 766 767 768 769
		goto done;
	}

	fw_ptr = fw->data + 644;
	frag_len = 0;

	while (fw_ptr - fw->data < fw->size) {
		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);

		frag_len += sizeof(*cmd) + cmd->plen;

770 771
		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
			   fw->size);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

		/* The parameter length of the secure send command requires
		 * a 4 byte alignment. It happens so that the firmware file
		 * contains proper Intel_NOP commands to align the fragments
		 * as needed.
		 *
		 * Send set of commands with 4 byte alignment from the
		 * firmware data buffer as a single Data fragement.
		 */
		if (frag_len % 4)
			continue;

		/* Send each command from the firmware data buffer as
		 * a single Data fragment.
		 */
787
		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
788
		if (err < 0) {
789 790
			bt_dev_err(hdev, "Failed to send firmware data (%d)",
				   err);
791 792 793 794 795 796 797 798 799
			goto done;
		}

		fw_ptr += frag_len;
		frag_len = 0;
	}

	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);

800
	bt_dev_info(hdev, "Waiting for firmware download to complete");
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

	/* Before switching the device into operational mode and with that
	 * booting the loaded firmware, wait for the bootloader notification
	 * that all fragments have been successfully received.
	 *
	 * When the event processing receives the notification, then the
	 * STATE_DOWNLOADING flag will be cleared.
	 *
	 * The firmware loading should not take longer than 5 seconds
	 * and thus just timeout if that happens and fail the setup
	 * of this device.
	 */
	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(5000));
	if (err == 1) {
817
		bt_dev_err(hdev, "Firmware loading interrupted");
818 819 820 821 822
		err = -EINTR;
		goto done;
	}

	if (err) {
823
		bt_dev_err(hdev, "Firmware loading timeout");
824 825 826 827 828
		err = -ETIMEDOUT;
		goto done;
	}

	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
829
		bt_dev_err(hdev, "Firmware loading failed");
830 831 832 833 834 835 836 837
		err = -ENOEXEC;
		goto done;
	}

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

838
	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
839 840 841 842 843 844 845

done:
	release_firmware(fw);

	if (err < 0)
		return err;

846 847 848 849 850 851 852
	/* We need to restore the default speed before Intel reset */
	if (speed_change) {
		err = intel_set_baudrate(hu, init_speed);
		if (err)
			return err;
	}

853 854 855 856 857
	calltime = ktime_get();

	set_bit(STATE_BOOTING, &intel->flags);

	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
858
			     HCI_CMD_TIMEOUT);
859 860 861 862 863 864 865 866 867 868 869 870
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	kfree_skb(skb);

	/* The bootloader will not indicate when the device is ready. This
	 * is done by the operational firmware sending bootup notification.
	 *
	 * Booting into operational firmware should not take longer than
	 * 1 second. However if that happens, then just fail the setup
	 * since something went wrong.
	 */
871
	bt_dev_info(hdev, "Waiting for device to boot");
872

873 874 875
	err = intel_wait_booting(hu);
	if (err)
		return err;
876

877
	clear_bit(STATE_BOOTING, &intel->flags);
878 879 880 881 882

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

883
	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
884

885 886 887
	/* Enable LPM if matching pdev with wakeup enabled, set TX active
	 * until further LPM TX notification.
	 */
888
	mutex_lock(&intel_device_list_lock);
889 890 891 892
	list_for_each(p, &intel_device_list) {
		struct intel_device *dev = list_entry(p, struct intel_device,
						      list);
		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893 894 895 896
			if (device_may_wakeup(&dev->pdev->dev)) {
				set_bit(STATE_LPM_ENABLED, &intel->flags);
				set_bit(STATE_TX_ACTIVE, &intel->flags);
			}
897 898 899
			break;
		}
	}
900
	mutex_unlock(&intel_device_list_lock);
901

902 903 904
	/* Ignore errors, device can work without DDC parameters */
	btintel_load_ddc_config(hdev, fwname);

905 906 907 908 909 910 911 912 913 914 915
	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);
	kfree_skb(skb);

	if (speed_change) {
		err = intel_set_baudrate(hu, oper_speed);
		if (err)
			return err;
	}

916
	bt_dev_info(hdev, "Setup complete");
917

918 919 920 921 922 923 924 925 926 927 928
	clear_bit(STATE_BOOTLOADER, &intel->flags);

	return 0;
}

static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
	struct hci_event_hdr *hdr;

929 930
	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
	    !test_bit(STATE_BOOTING, &intel->flags))
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		goto recv;

	hdr = (void *)skb->data;

	/* When the firmware loading completes the device sends
	 * out a vendor specific event indicating the result of
	 * the firmware loading.
	 */
	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
	    skb->data[2] == 0x06) {
		if (skb->data[3] != 0x00)
			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);

		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
		}

	/* When switching to the operational firmware the device
	 * sends a vendor specific event indicating that the bootup
	 * completed.
	 */
	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
		   skb->data[2] == 0x02) {
		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_BOOTING);
		}
	}
recv:
	return hci_recv_frame(hdev, skb);
}

965 966 967 968 969
static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;

970
	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
971

972
	if (value) {
973
		set_bit(STATE_TX_ACTIVE, &intel->flags);
974 975
		schedule_work(&intel->busy_work);
	} else {
976
		clear_bit(STATE_TX_ACTIVE, &intel->flags);
977
	}
978 979 980 981 982
}

static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_lpm_pkt *lpm = (void *)skb->data;
983 984
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
985 986 987

	switch (lpm->opcode) {
	case LPM_OP_TX_NOTIFY:
988 989 990 991 992
		if (lpm->dlen < 1) {
			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
			break;
		}
		intel_recv_lpm_notify(hdev, lpm->data[0]);
993
		break;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	case LPM_OP_SUSPEND_ACK:
		set_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
	case LPM_OP_RESUME_ACK:
		clear_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
1008
	default:
1009
		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		break;
	}

	kfree_skb(skb);

	return 0;
}

#define INTEL_RECV_LPM \
	.type = HCI_LPM_PKT, \
	.hlen = HCI_LPM_HDR_SIZE, \
	.loff = 1, \
	.lsize = 1, \
	.maxlen = HCI_LPM_MAX_SIZE

1025
static const struct h4_recv_pkt intel_recv_pkts[] = {
1026 1027 1028 1029
	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
	{ H4_RECV_EVENT,  .recv = intel_recv_event },
	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
};

static int intel_recv(struct hci_uart *hu, const void *data, int count)
{
	struct intel_data *intel = hu->priv;

	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
		return -EUNATCH;

	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
				    intel_recv_pkts,
				    ARRAY_SIZE(intel_recv_pkts));
	if (IS_ERR(intel->rx_skb)) {
		int err = PTR_ERR(intel->rx_skb);
1044
		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		intel->rx_skb = NULL;
		return err;
	}

	return count;
}

static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
	struct intel_data *intel = hu->priv;
1055
	struct list_head *p;
1056 1057 1058

	BT_DBG("hu %p skb %p", hu, skb);

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/* Be sure our controller is resumed and potential LPM transaction
	 * completed before enqueuing any packet.
	 */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get_sync(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	skb_queue_tail(&intel->txq, skb);

	return 0;
}

static struct sk_buff *intel_dequeue(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	skb = skb_dequeue(&intel->txq);
	if (!skb)
		return skb;

	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1091
	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		struct hci_command_hdr *cmd = (void *)skb->data;
		__u16 opcode = le16_to_cpu(cmd->opcode);

		/* When the 0xfc01 command is issued to boot into
		 * the operational firmware, it will actually not
		 * send a command complete event. To keep the flow
		 * control working inject that event here.
		 */
		if (opcode == 0xfc01)
			inject_cmd_complete(hu->hdev, opcode);
	}

	/* Prepend skb with frame type */
1105
	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1106 1107 1108 1109 1110 1111 1112

	return skb;
}

static const struct hci_uart_proto intel_proto = {
	.id		= HCI_UART_INTEL,
	.name		= "Intel",
1113
	.manufacturer	= 2,
1114
	.init_speed	= 115200,
1115
	.oper_speed	= 3000000,
1116 1117 1118 1119
	.open		= intel_open,
	.close		= intel_close,
	.flush		= intel_flush,
	.setup		= intel_setup,
1120
	.set_baudrate	= intel_set_baudrate,
1121 1122 1123 1124 1125
	.recv		= intel_recv,
	.enqueue	= intel_enqueue,
	.dequeue	= intel_dequeue,
};

1126 1127 1128 1129 1130 1131 1132 1133
#ifdef CONFIG_ACPI
static const struct acpi_device_id intel_acpi_match[] = {
	{ "INT33E1", 0 },
	{ },
};
MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
#endif

1134
#ifdef CONFIG_PM
1135
static int intel_suspend_device(struct device *dev)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
{
	struct intel_device *idev = dev_get_drvdata(dev);

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_suspend(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}

1147
static int intel_resume_device(struct device *dev)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	struct intel_device *idev = dev_get_drvdata(dev);

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_resume(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}
#endif

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
#ifdef CONFIG_PM_SLEEP
static int intel_suspend(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(idev->irq);

	return intel_suspend_device(dev);
}

static int intel_resume(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(idev->irq);

	return intel_resume_device(dev);
}
#endif

1182 1183
static const struct dev_pm_ops intel_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1184
	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1185 1186
};

1187 1188 1189 1190 1191 1192 1193 1194
static int intel_probe(struct platform_device *pdev)
{
	struct intel_device *idev;

	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
	if (!idev)
		return -ENOMEM;

1195 1196
	mutex_init(&idev->hu_lock);

1197 1198
	idev->pdev = pdev;

1199
	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1200 1201 1202 1203 1204
	if (IS_ERR(idev->reset)) {
		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
		return PTR_ERR(idev->reset);
	}

1205 1206 1207 1208 1209 1210
	idev->irq = platform_get_irq(pdev, 0);
	if (idev->irq < 0) {
		struct gpio_desc *host_wake;

		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");

1211
		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		if (IS_ERR(host_wake)) {
			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
			goto no_irq;
		}

		idev->irq = gpiod_to_irq(host_wake);
		if (idev->irq < 0) {
			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
			goto no_irq;
		}
	}

	/* Only enable wake-up/irq when controller is powered */
	device_set_wakeup_capable(&pdev->dev, true);
	device_wakeup_disable(&pdev->dev);

no_irq:
1229 1230 1231
	platform_set_drvdata(pdev, idev);

	/* Place this instance on the device list */
1232
	mutex_lock(&intel_device_list_lock);
1233
	list_add_tail(&idev->list, &intel_device_list);
1234
	mutex_unlock(&intel_device_list_lock);
1235

1236 1237
	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
		 desc_to_gpio(idev->reset), idev->irq);
1238 1239 1240 1241 1242 1243 1244 1245

	return 0;
}

static int intel_remove(struct platform_device *pdev)
{
	struct intel_device *idev = platform_get_drvdata(pdev);

1246 1247
	device_wakeup_disable(&pdev->dev);

1248
	mutex_lock(&intel_device_list_lock);
1249
	list_del(&idev->list);
1250
	mutex_unlock(&intel_device_list_lock);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	dev_info(&pdev->dev, "unregistered.\n");

	return 0;
}

static struct platform_driver intel_driver = {
	.probe = intel_probe,
	.remove = intel_remove,
	.driver = {
		.name = "hci_intel",
		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1263
		.pm = &intel_pm_ops,
1264 1265 1266
	},
};

1267 1268
int __init intel_init(void)
{
1269 1270
	platform_driver_register(&intel_driver);

1271 1272 1273 1274 1275
	return hci_uart_register_proto(&intel_proto);
}

int __exit intel_deinit(void)
{
1276 1277
	platform_driver_unregister(&intel_driver);

1278 1279
	return hci_uart_unregister_proto(&intel_proto);
}