hci_intel.c 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 *
 *  Bluetooth HCI UART driver for Intel devices
 *
 *  Copyright (C) 2015  Intel Corporation
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
27
#include <linux/firmware.h>
28
#include <linux/module.h>
29
#include <linux/wait.h>
30 31 32 33
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/acpi.h>
34
#include <linux/interrupt.h>
35
#include <linux/pm_runtime.h>
36 37 38 39 40

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "hci_uart.h"
41 42 43 44 45 46 47
#include "btintel.h"

#define STATE_BOOTLOADER	0
#define STATE_DOWNLOADING	1
#define STATE_FIRMWARE_LOADED	2
#define STATE_FIRMWARE_FAILED	3
#define STATE_BOOTING		4
48 49
#define STATE_LPM_ENABLED	5
#define STATE_TX_ACTIVE		6
50 51
#define STATE_SUSPENDED		7
#define STATE_LPM_TRANSACTION	8
52

53
#define HCI_LPM_WAKE_PKT 0xf0
54 55 56 57 58
#define HCI_LPM_PKT 0xf1
#define HCI_LPM_MAX_SIZE 10
#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE

#define LPM_OP_TX_NOTIFY 0x00
59 60
#define LPM_OP_SUSPEND_ACK 0x02
#define LPM_OP_RESUME_ACK 0x03
61

62 63
#define LPM_SUSPEND_DELAY_MS 1000

64 65 66 67 68
struct hci_lpm_pkt {
	__u8 opcode;
	__u8 dlen;
	__u8 data[0];
} __packed;
69

70 71 72 73
struct intel_device {
	struct list_head list;
	struct platform_device *pdev;
	struct gpio_desc *reset;
74 75
	struct hci_uart *hu;
	struct mutex hu_lock;
76
	int irq;
77 78 79
};

static LIST_HEAD(intel_device_list);
80
static DEFINE_MUTEX(intel_device_list_lock);
81

82 83 84
struct intel_data {
	struct sk_buff *rx_skb;
	struct sk_buff_head txq;
85 86
	struct work_struct busy_work;
	struct hci_uart *hu;
87 88 89
	unsigned long flags;
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static u8 intel_convert_speed(unsigned int speed)
{
	switch (speed) {
	case 9600:
		return 0x00;
	case 19200:
		return 0x01;
	case 38400:
		return 0x02;
	case 57600:
		return 0x03;
	case 115200:
		return 0x04;
	case 230400:
		return 0x05;
	case 460800:
		return 0x06;
	case 921600:
		return 0x07;
	case 1843200:
		return 0x08;
	case 3250000:
		return 0x09;
	case 2000000:
		return 0x0a;
	case 3000000:
		return 0x0b;
	default:
		return 0xff;
	}
}

122 123 124 125 126 127 128 129 130 131
static int intel_wait_booting(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
132
		bt_dev_err(hu->hdev, "Device boot interrupted");
133 134 135 136
		return -EINTR;
	}

	if (err) {
137
		bt_dev_err(hu->hdev, "Device boot timeout");
138 139 140 141 142 143
		return -ETIMEDOUT;
	}

	return err;
}

144
#ifdef CONFIG_PM
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static int intel_wait_lpm_transaction(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	int err;

	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(1000));

	if (err == 1) {
		bt_dev_err(hu->hdev, "LPM transaction interrupted");
		return -EINTR;
	}

	if (err) {
		bt_dev_err(hu->hdev, "LPM transaction timeout");
		return -ETIMEDOUT;
	}

	return err;
}

static int intel_lpm_suspend(struct hci_uart *hu)
{
	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
		return -EAGAIN;

	bt_dev_dbg(hu->hdev, "Suspending");

	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
	bt_cb(skb)->pkt_type = HCI_LPM_PKT;

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

193 194
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device suspend error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Suspended");

	hci_uart_set_flow_control(hu, true);

	return 0;
}

static int intel_lpm_resume(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
	    !test_bit(STATE_SUSPENDED, &intel->flags))
		return 0;

	bt_dev_dbg(hu->hdev, "Resuming");

	hci_uart_set_flow_control(hu, false);

	skb = bt_skb_alloc(0, GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;

	set_bit(STATE_LPM_TRANSACTION, &intel->flags);

237 238
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	hci_uart_tx_wakeup(hu);

	intel_wait_lpm_transaction(hu);
	/* Even in case of failure, continue and test the suspended flag */

	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);

	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
		bt_dev_err(hu->hdev, "Device resume error");
		return -EINVAL;
	}

	bt_dev_dbg(hu->hdev, "Resumed");

	return 0;
}
255
#endif /* CONFIG_PM */
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

static int intel_lpm_host_wake(struct hci_uart *hu)
{
	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	hci_uart_set_flow_control(hu, false);

	clear_bit(STATE_SUSPENDED, &intel->flags);

	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
	if (!skb) {
		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
	       sizeof(lpm_resume_ack));
	bt_cb(skb)->pkt_type = HCI_LPM_PKT;

277 278
	/* LPM flow is a priority, enqueue packet at list head */
	skb_queue_head(&intel->txq, skb);
279 280 281 282 283 284 285
	hci_uart_tx_wakeup(hu);

	bt_dev_dbg(hu->hdev, "Resumed by controller");

	return 0;
}

286 287 288 289 290 291
static irqreturn_t intel_irq(int irq, void *dev_id)
{
	struct intel_device *idev = dev_id;

	dev_info(&idev->pdev->dev, "hci_intel irq\n");

292 293 294 295 296
	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_host_wake(idev->hu);
	mutex_unlock(&idev->hu_lock);

297 298 299 300 301
	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
	pm_runtime_get(&idev->pdev->dev);
	pm_runtime_mark_last_busy(&idev->pdev->dev);
	pm_runtime_put_autosuspend(&idev->pdev->dev);

302 303 304
	return IRQ_HANDLED;
}

305 306 307 308 309
static int intel_set_power(struct hci_uart *hu, bool powered)
{
	struct list_head *p;
	int err = -ENODEV;

310
	mutex_lock(&intel_device_list_lock);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		/* tty device and pdev device should share the same parent
		 * which is the UART port.
		 */
		if (hu->tty->dev->parent != idev->pdev->dev.parent)
			continue;

		if (!idev->reset) {
			err = -ENOTSUPP;
			break;
		}

		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
			hu, dev_name(&idev->pdev->dev), powered);

		gpiod_set_value(idev->reset, powered);
331

332 333 334 335 336 337 338 339 340
		/* Provide to idev a hu reference which is used to run LPM
		 * transactions (lpm suspend/resume) from PM callbacks.
		 * hu needs to be protected against concurrent removing during
		 * these PM ops.
		 */
		mutex_lock(&idev->hu_lock);
		idev->hu = powered ? hu : NULL;
		mutex_unlock(&idev->hu_lock);

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		if (idev->irq < 0)
			break;

		if (powered && device_can_wakeup(&idev->pdev->dev)) {
			err = devm_request_threaded_irq(&idev->pdev->dev,
							idev->irq, NULL,
							intel_irq,
							IRQF_ONESHOT,
							"bt-host-wake", idev);
			if (err) {
				BT_ERR("hu %p, unable to allocate irq-%d",
				       hu, idev->irq);
				break;
			}

			device_wakeup_enable(&idev->pdev->dev);
357 358 359 360 361 362

			pm_runtime_set_active(&idev->pdev->dev);
			pm_runtime_use_autosuspend(&idev->pdev->dev);
			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
							 LPM_SUSPEND_DELAY_MS);
			pm_runtime_enable(&idev->pdev->dev);
363 364 365
		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
			device_wakeup_disable(&idev->pdev->dev);
366 367

			pm_runtime_disable(&idev->pdev->dev);
368
		}
369 370
	}

371
	mutex_unlock(&intel_device_list_lock);
372 373 374 375

	return err;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static void intel_busy_work(struct work_struct *work)
{
	struct list_head *p;
	struct intel_data *intel = container_of(work, struct intel_data,
						busy_work);

	/* Link is busy, delay the suspend */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);
}

398 399 400 401 402 403 404 405 406 407 408
static int intel_open(struct hci_uart *hu)
{
	struct intel_data *intel;

	BT_DBG("hu %p", hu);

	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
	if (!intel)
		return -ENOMEM;

	skb_queue_head_init(&intel->txq);
409 410 411
	INIT_WORK(&intel->busy_work, intel_busy_work);

	intel->hu = hu;
412 413

	hu->priv = intel;
414 415 416 417

	if (!intel_set_power(hu, true))
		set_bit(STATE_BOOTING, &intel->flags);

418 419 420 421 422 423 424 425 426
	return 0;
}

static int intel_close(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

427 428
	cancel_work_sync(&intel->busy_work);

429 430
	intel_set_power(hu, false);

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	skb_queue_purge(&intel->txq);
	kfree_skb(intel->rx_skb);
	kfree(intel);

	hu->priv = NULL;
	return 0;
}

static int intel_flush(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;

	BT_DBG("hu %p", hu);

	skb_queue_purge(&intel->txq);

	return 0;
}

static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
	struct sk_buff *skb;
	struct hci_event_hdr *hdr;
	struct hci_ev_cmd_complete *evt;

	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
	hdr->evt = HCI_EV_CMD_COMPLETE;
	hdr->plen = sizeof(*evt) + 1;

	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
	evt->ncmd = 0x01;
	evt->opcode = cpu_to_le16(opcode);

	*skb_put(skb, 1) = 0x00;

	bt_cb(skb)->pkt_type = HCI_EVENT_PKT;

	return hci_recv_frame(hdev, skb);
}

475 476 477 478 479 480
static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
	struct intel_data *intel = hu->priv;
	struct hci_dev *hdev = hu->hdev;
	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
	struct sk_buff *skb;
481 482 483 484 485 486 487 488 489 490 491 492
	int err;

	/* This can be the first command sent to the chip, check
	 * that the controller is ready.
	 */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
	if (err && err != ETIMEDOUT)
		return err;
493

494
	bt_dev_info(hdev, "Change controller speed to %d", speed);
495 496 497

	speed_cmd[3] = intel_convert_speed(speed);
	if (speed_cmd[3] == 0xff) {
498
		bt_dev_err(hdev, "Unsupported speed");
499 500 501 502 503 504 505 506
		return -EINVAL;
	}

	/* Device will not accept speed change if Intel version has not been
	 * previously requested.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
507 508
		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
			   PTR_ERR(skb));
509 510 511 512 513 514
		return PTR_ERR(skb);
	}
	kfree_skb(skb);

	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
	if (!skb) {
515
		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		return -ENOMEM;
	}

	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;

	hci_uart_set_flow_control(hu, true);

	skb_queue_tail(&intel->txq, skb);
	hci_uart_tx_wakeup(hu);

	/* wait 100ms to change baudrate on controller side */
	msleep(100);

	hci_uart_set_baudrate(hu, speed);
	hci_uart_set_flow_control(hu, false);

	return 0;
}

536 537 538 539
static int intel_setup(struct hci_uart *hu)
{
	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
					  0x00, 0x08, 0x04, 0x00 };
540
	static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
541
	struct intel_data *intel = hu->priv;
542
	struct intel_device *idev = NULL;
543 544 545 546
	struct hci_dev *hdev = hu->hdev;
	struct sk_buff *skb;
	struct intel_version *ver;
	struct intel_boot_params *params;
547
	struct list_head *p;
548 549 550 551 552 553
	const struct firmware *fw;
	const u8 *fw_ptr;
	char fwname[64];
	u32 frag_len;
	ktime_t calltime, delta, rettime;
	unsigned long long duration;
554 555
	unsigned int init_speed, oper_speed;
	int speed_change = 0;
556 557
	int err;

558
	bt_dev_dbg(hdev, "start intel_setup");
559

560
	hu->hdev->set_diag = btintel_set_diag;
561 562
	hu->hdev->set_bdaddr = btintel_set_bdaddr;

563 564
	calltime = ktime_get();

565 566 567 568 569 570 571 572 573 574 575 576 577
	if (hu->init_speed)
		init_speed = hu->init_speed;
	else
		init_speed = hu->proto->init_speed;

	if (hu->oper_speed)
		oper_speed = hu->oper_speed;
	else
		oper_speed = hu->proto->oper_speed;

	if (oper_speed && init_speed && oper_speed != init_speed)
		speed_change = 1;

578 579 580 581 582 583 584 585 586
	/* Check that the controller is ready */
	err = intel_wait_booting(hu);

	clear_bit(STATE_BOOTING, &intel->flags);

	/* In case of timeout, try to continue anyway */
	if (err && err != ETIMEDOUT)
		return err;

587 588 589 590 591 592 593 594
	set_bit(STATE_BOOTLOADER, &intel->flags);

	/* Read the Intel version information to determine if the device
	 * is in bootloader mode or if it already has operational firmware
	 * loaded.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
595 596
		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
			   PTR_ERR(skb));
597 598 599 600
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*ver)) {
601
		bt_dev_err(hdev, "Intel version event size mismatch");
602 603 604 605 606 607
		kfree_skb(skb);
		return -EILSEQ;
	}

	ver = (struct intel_version *)skb->data;
	if (ver->status) {
608 609
		bt_dev_err(hdev, "Intel version command failure (%02x)",
			   ver->status);
610 611 612 613 614 615 616 617 618
		err = -bt_to_errno(ver->status);
		kfree_skb(skb);
		return err;
	}

	/* The hardware platform number has a fixed value of 0x37 and
	 * for now only accept this single value.
	 */
	if (ver->hw_platform != 0x37) {
619 620
		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
			   ver->hw_platform);
621 622 623 624 625 626 627 628 629 630
		kfree_skb(skb);
		return -EINVAL;
	}

	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
	 * supported by this firmware loading method. This check has been
	 * put in place to ensure correct forward compatibility options
	 * when newer hardware variants come along.
	 */
	if (ver->hw_variant != 0x0b) {
631 632
		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
			   ver->hw_variant);
633 634 635 636
		kfree_skb(skb);
		return -EINVAL;
	}

637
	btintel_version_info(hdev, ver);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

	/* The firmware variant determines if the device is in bootloader
	 * mode or is running operational firmware. The value 0x06 identifies
	 * the bootloader and the value 0x23 identifies the operational
	 * firmware.
	 *
	 * When the operational firmware is already present, then only
	 * the check for valid Bluetooth device address is needed. This
	 * determines if the device will be added as configured or
	 * unconfigured controller.
	 *
	 * It is not possible to use the Secure Boot Parameters in this
	 * case since that command is only available in bootloader mode.
	 */
	if (ver->fw_variant == 0x23) {
		kfree_skb(skb);
		clear_bit(STATE_BOOTLOADER, &intel->flags);
		btintel_check_bdaddr(hdev);
		return 0;
	}

	/* If the device is not in bootloader mode, then the only possible
	 * choice is to return an error and abort the device initialization.
	 */
	if (ver->fw_variant != 0x06) {
663 664
		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
			   ver->fw_variant);
665 666 667 668 669 670 671 672 673 674 675
		kfree_skb(skb);
		return -ENODEV;
	}

	kfree_skb(skb);

	/* Read the secure boot parameters to identify the operating
	 * details of the bootloader.
	 */
	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
	if (IS_ERR(skb)) {
676 677
		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
			   PTR_ERR(skb));
678 679 680 681
		return PTR_ERR(skb);
	}

	if (skb->len != sizeof(*params)) {
682
		bt_dev_err(hdev, "Intel boot parameters size mismatch");
683 684 685 686 687 688
		kfree_skb(skb);
		return -EILSEQ;
	}

	params = (struct intel_boot_params *)skb->data;
	if (params->status) {
689 690
		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
			   params->status);
691 692 693 694 695
		err = -bt_to_errno(params->status);
		kfree_skb(skb);
		return err;
	}

696 697
	bt_dev_info(hdev, "Device revision is %u",
		    le16_to_cpu(params->dev_revid));
698

699 700
	bt_dev_info(hdev, "Secure boot is %s",
		    params->secure_boot ? "enabled" : "disabled");
701

702
	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
703 704 705 706 707 708 709 710
		params->min_fw_build_nn, params->min_fw_build_cw,
		2000 + params->min_fw_build_yy);

	/* It is required that every single firmware fragment is acknowledged
	 * with a command complete event. If the boot parameters indicate
	 * that this bootloader does not send them, then abort the setup.
	 */
	if (params->limited_cce != 0x00) {
711 712
		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
			   params->limited_cce);
713 714 715 716 717 718 719 720
		kfree_skb(skb);
		return -EINVAL;
	}

	/* If the OTP has no valid Bluetooth device address, then there will
	 * also be no valid address for the operational firmware.
	 */
	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
721
		bt_dev_info(hdev, "No device address configured");
722 723 724 725 726 727 728 729 730 731 732 733 734 735
		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
	}

	/* With this Intel bootloader only the hardware variant and device
	 * revision information are used to select the right firmware.
	 *
	 * Currently this bootloader support is limited to hardware variant
	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
	 */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
		 le16_to_cpu(params->dev_revid));

	err = request_firmware(&fw, fwname, &hdev->dev);
	if (err < 0) {
736 737
		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
			   err);
738 739 740 741
		kfree_skb(skb);
		return err;
	}

742
	bt_dev_info(hdev, "Found device firmware: %s", fwname);
743

744 745 746 747
	/* Save the DDC file name for later */
	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
		 le16_to_cpu(params->dev_revid));

748 749 750
	kfree_skb(skb);

	if (fw->size < 644) {
751 752
		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
			   fw->size);
753 754 755 756 757 758 759 760 761
		err = -EBADF;
		goto done;
	}

	set_bit(STATE_DOWNLOADING, &intel->flags);

	/* Start the firmware download transaction with the Init fragment
	 * represented by the 128 bytes of CSS header.
	 */
762
	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
763
	if (err < 0) {
764
		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
765 766 767 768 769 770
		goto done;
	}

	/* Send the 256 bytes of public key information from the firmware
	 * as the PKey fragment.
	 */
771
	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
772
	if (err < 0) {
773 774
		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
			   err);
775 776 777 778 779 780
		goto done;
	}

	/* Send the 256 bytes of signature information from the firmware
	 * as the Sign fragment.
	 */
781
	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
782
	if (err < 0) {
783 784
		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
			   err);
785 786 787 788 789 790 791 792 793 794 795
		goto done;
	}

	fw_ptr = fw->data + 644;
	frag_len = 0;

	while (fw_ptr - fw->data < fw->size) {
		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);

		frag_len += sizeof(*cmd) + cmd->plen;

796 797
		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
			   fw->size);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

		/* The parameter length of the secure send command requires
		 * a 4 byte alignment. It happens so that the firmware file
		 * contains proper Intel_NOP commands to align the fragments
		 * as needed.
		 *
		 * Send set of commands with 4 byte alignment from the
		 * firmware data buffer as a single Data fragement.
		 */
		if (frag_len % 4)
			continue;

		/* Send each command from the firmware data buffer as
		 * a single Data fragment.
		 */
813
		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
814
		if (err < 0) {
815 816
			bt_dev_err(hdev, "Failed to send firmware data (%d)",
				   err);
817 818 819 820 821 822 823 824 825
			goto done;
		}

		fw_ptr += frag_len;
		frag_len = 0;
	}

	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);

826
	bt_dev_info(hdev, "Waiting for firmware download to complete");
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	/* Before switching the device into operational mode and with that
	 * booting the loaded firmware, wait for the bootloader notification
	 * that all fragments have been successfully received.
	 *
	 * When the event processing receives the notification, then the
	 * STATE_DOWNLOADING flag will be cleared.
	 *
	 * The firmware loading should not take longer than 5 seconds
	 * and thus just timeout if that happens and fail the setup
	 * of this device.
	 */
	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
				  TASK_INTERRUPTIBLE,
				  msecs_to_jiffies(5000));
	if (err == 1) {
843
		bt_dev_err(hdev, "Firmware loading interrupted");
844 845 846 847 848
		err = -EINTR;
		goto done;
	}

	if (err) {
849
		bt_dev_err(hdev, "Firmware loading timeout");
850 851 852 853 854
		err = -ETIMEDOUT;
		goto done;
	}

	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
855
		bt_dev_err(hdev, "Firmware loading failed");
856 857 858 859 860 861 862 863
		err = -ENOEXEC;
		goto done;
	}

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

864
	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
865 866 867 868 869 870 871

done:
	release_firmware(fw);

	if (err < 0)
		return err;

872 873 874 875 876 877 878
	/* We need to restore the default speed before Intel reset */
	if (speed_change) {
		err = intel_set_baudrate(hu, init_speed);
		if (err)
			return err;
	}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	calltime = ktime_get();

	set_bit(STATE_BOOTING, &intel->flags);

	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
			     HCI_INIT_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);

	kfree_skb(skb);

	/* The bootloader will not indicate when the device is ready. This
	 * is done by the operational firmware sending bootup notification.
	 *
	 * Booting into operational firmware should not take longer than
	 * 1 second. However if that happens, then just fail the setup
	 * since something went wrong.
	 */
897
	bt_dev_info(hdev, "Waiting for device to boot");
898

899 900 901
	err = intel_wait_booting(hu);
	if (err)
		return err;
902

903
	clear_bit(STATE_BOOTING, &intel->flags);
904 905 906 907 908

	rettime = ktime_get();
	delta = ktime_sub(rettime, calltime);
	duration = (unsigned long long) ktime_to_ns(delta) >> 10;

909
	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
910

911
	/* Enable LPM if matching pdev with wakeup enabled */
912
	mutex_lock(&intel_device_list_lock);
913 914 915 916 917 918 919 920 921
	list_for_each(p, &intel_device_list) {
		struct intel_device *dev = list_entry(p, struct intel_device,
						      list);
		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
			if (device_may_wakeup(&dev->pdev->dev))
				idev = dev;
			break;
		}
	}
922
	mutex_unlock(&intel_device_list_lock);
923 924 925 926

	if (!idev)
		goto no_lpm;

927
	bt_dev_info(hdev, "Enabling LPM");
928 929 930 931

	skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
			     HCI_CMD_TIMEOUT);
	if (IS_ERR(skb)) {
932
		bt_dev_err(hdev, "Failed to enable LPM");
933 934 935 936 937 938 939
		goto no_lpm;
	}
	kfree_skb(skb);

	set_bit(STATE_LPM_ENABLED, &intel->flags);

no_lpm:
940 941 942
	/* Ignore errors, device can work without DDC parameters */
	btintel_load_ddc_config(hdev, fwname);

943 944 945 946 947 948 949 950 951 952 953
	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
	if (IS_ERR(skb))
		return PTR_ERR(skb);
	kfree_skb(skb);

	if (speed_change) {
		err = intel_set_baudrate(hu, oper_speed);
		if (err)
			return err;
	}

954
	bt_dev_info(hdev, "Setup complete");
955

956 957 958 959 960 961 962 963 964 965 966
	clear_bit(STATE_BOOTLOADER, &intel->flags);

	return 0;
}

static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
	struct hci_event_hdr *hdr;

967 968
	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
	    !test_bit(STATE_BOOTING, &intel->flags))
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		goto recv;

	hdr = (void *)skb->data;

	/* When the firmware loading completes the device sends
	 * out a vendor specific event indicating the result of
	 * the firmware loading.
	 */
	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
	    skb->data[2] == 0x06) {
		if (skb->data[3] != 0x00)
			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);

		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
		}

	/* When switching to the operational firmware the device
	 * sends a vendor specific event indicating that the bootup
	 * completed.
	 */
	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
		   skb->data[2] == 0x02) {
		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_BOOTING);
		}
	}
recv:
	return hci_recv_frame(hdev, skb);
}

1003 1004 1005 1006 1007
static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
{
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;

1008
	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
1009

1010
	if (value) {
1011
		set_bit(STATE_TX_ACTIVE, &intel->flags);
1012 1013
		schedule_work(&intel->busy_work);
	} else {
1014
		clear_bit(STATE_TX_ACTIVE, &intel->flags);
1015
	}
1016 1017 1018 1019 1020
}

static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
{
	struct hci_lpm_pkt *lpm = (void *)skb->data;
1021 1022
	struct hci_uart *hu = hci_get_drvdata(hdev);
	struct intel_data *intel = hu->priv;
1023 1024 1025

	switch (lpm->opcode) {
	case LPM_OP_TX_NOTIFY:
1026 1027 1028 1029 1030
		if (lpm->dlen < 1) {
			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
			break;
		}
		intel_recv_lpm_notify(hdev, lpm->data[0]);
1031
		break;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	case LPM_OP_SUSPEND_ACK:
		set_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
	case LPM_OP_RESUME_ACK:
		clear_bit(STATE_SUSPENDED, &intel->flags);
		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
			smp_mb__after_atomic();
			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
		}
		break;
1046
	default:
1047
		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		break;
	}

	kfree_skb(skb);

	return 0;
}

#define INTEL_RECV_LPM \
	.type = HCI_LPM_PKT, \
	.hlen = HCI_LPM_HDR_SIZE, \
	.loff = 1, \
	.lsize = 1, \
	.maxlen = HCI_LPM_MAX_SIZE

1063
static const struct h4_recv_pkt intel_recv_pkts[] = {
1064 1065 1066 1067
	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
	{ H4_RECV_EVENT,  .recv = intel_recv_event },
	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
};

static int intel_recv(struct hci_uart *hu, const void *data, int count)
{
	struct intel_data *intel = hu->priv;

	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
		return -EUNATCH;

	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
				    intel_recv_pkts,
				    ARRAY_SIZE(intel_recv_pkts));
	if (IS_ERR(intel->rx_skb)) {
		int err = PTR_ERR(intel->rx_skb);
1082
		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		intel->rx_skb = NULL;
		return err;
	}

	return count;
}

static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
	struct intel_data *intel = hu->priv;
1093
	struct list_head *p;
1094 1095 1096

	BT_DBG("hu %p skb %p", hu, skb);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/* Be sure our controller is resumed and potential LPM transaction
	 * completed before enqueuing any packet.
	 */
	mutex_lock(&intel_device_list_lock);
	list_for_each(p, &intel_device_list) {
		struct intel_device *idev = list_entry(p, struct intel_device,
						       list);

		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
			pm_runtime_get_sync(&idev->pdev->dev);
			pm_runtime_mark_last_busy(&idev->pdev->dev);
			pm_runtime_put_autosuspend(&idev->pdev->dev);
			break;
		}
	}
	mutex_unlock(&intel_device_list_lock);

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	skb_queue_tail(&intel->txq, skb);

	return 0;
}

static struct sk_buff *intel_dequeue(struct hci_uart *hu)
{
	struct intel_data *intel = hu->priv;
	struct sk_buff *skb;

	skb = skb_dequeue(&intel->txq);
	if (!skb)
		return skb;

	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
	    (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
		struct hci_command_hdr *cmd = (void *)skb->data;
		__u16 opcode = le16_to_cpu(cmd->opcode);

		/* When the 0xfc01 command is issued to boot into
		 * the operational firmware, it will actually not
		 * send a command complete event. To keep the flow
		 * control working inject that event here.
		 */
		if (opcode == 0xfc01)
			inject_cmd_complete(hu->hdev, opcode);
	}

	/* Prepend skb with frame type */
	memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);

	return skb;
}

static const struct hci_uart_proto intel_proto = {
	.id		= HCI_UART_INTEL,
	.name		= "Intel",
1151
	.manufacturer	= 2,
1152
	.init_speed	= 115200,
1153
	.oper_speed	= 3000000,
1154 1155 1156 1157
	.open		= intel_open,
	.close		= intel_close,
	.flush		= intel_flush,
	.setup		= intel_setup,
1158
	.set_baudrate	= intel_set_baudrate,
1159 1160 1161 1162 1163
	.recv		= intel_recv,
	.enqueue	= intel_enqueue,
	.dequeue	= intel_dequeue,
};

1164 1165 1166 1167 1168 1169 1170 1171
#ifdef CONFIG_ACPI
static const struct acpi_device_id intel_acpi_match[] = {
	{ "INT33E1", 0 },
	{ },
};
MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
#endif

1172
#ifdef CONFIG_PM
1173
static int intel_suspend_device(struct device *dev)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
{
	struct intel_device *idev = dev_get_drvdata(dev);

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_suspend(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}

1185
static int intel_resume_device(struct device *dev)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	struct intel_device *idev = dev_get_drvdata(dev);

	mutex_lock(&idev->hu_lock);
	if (idev->hu)
		intel_lpm_resume(idev->hu);
	mutex_unlock(&idev->hu_lock);

	return 0;
}
#endif

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
#ifdef CONFIG_PM_SLEEP
static int intel_suspend(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(idev->irq);

	return intel_suspend_device(dev);
}

static int intel_resume(struct device *dev)
{
	struct intel_device *idev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(idev->irq);

	return intel_resume_device(dev);
}
#endif

1220 1221
static const struct dev_pm_ops intel_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1222
	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1223 1224
};

1225 1226 1227 1228 1229 1230 1231 1232
static int intel_probe(struct platform_device *pdev)
{
	struct intel_device *idev;

	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
	if (!idev)
		return -ENOMEM;

1233 1234
	mutex_init(&idev->hu_lock);

1235 1236 1237 1238 1239 1240 1241 1242 1243
	idev->pdev = pdev;

	idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
					      GPIOD_OUT_LOW);
	if (IS_ERR(idev->reset)) {
		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
		return PTR_ERR(idev->reset);
	}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	idev->irq = platform_get_irq(pdev, 0);
	if (idev->irq < 0) {
		struct gpio_desc *host_wake;

		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");

		host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
						    GPIOD_IN);
		if (IS_ERR(host_wake)) {
			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
			goto no_irq;
		}

		idev->irq = gpiod_to_irq(host_wake);
		if (idev->irq < 0) {
			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
			goto no_irq;
		}
	}

	/* Only enable wake-up/irq when controller is powered */
	device_set_wakeup_capable(&pdev->dev, true);
	device_wakeup_disable(&pdev->dev);

no_irq:
1269 1270 1271
	platform_set_drvdata(pdev, idev);

	/* Place this instance on the device list */
1272
	mutex_lock(&intel_device_list_lock);
1273
	list_add_tail(&idev->list, &intel_device_list);
1274
	mutex_unlock(&intel_device_list_lock);
1275

1276 1277
	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
		 desc_to_gpio(idev->reset), idev->irq);
1278 1279 1280 1281 1282 1283 1284 1285

	return 0;
}

static int intel_remove(struct platform_device *pdev)
{
	struct intel_device *idev = platform_get_drvdata(pdev);

1286 1287
	device_wakeup_disable(&pdev->dev);

1288
	mutex_lock(&intel_device_list_lock);
1289
	list_del(&idev->list);
1290
	mutex_unlock(&intel_device_list_lock);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	dev_info(&pdev->dev, "unregistered.\n");

	return 0;
}

static struct platform_driver intel_driver = {
	.probe = intel_probe,
	.remove = intel_remove,
	.driver = {
		.name = "hci_intel",
		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1303
		.pm = &intel_pm_ops,
1304 1305 1306
	},
};

1307 1308
int __init intel_init(void)
{
1309 1310
	platform_driver_register(&intel_driver);

1311 1312 1313 1314 1315
	return hci_uart_register_proto(&intel_proto);
}

int __exit intel_deinit(void)
{
1316 1317
	platform_driver_unregister(&intel_driver);

1318 1319
	return hci_uart_unregister_proto(&intel_proto);
}