mv88e6xxx.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11
#include <linux/delay.h>
12
#include <linux/etherdevice.h>
13
#include <linux/if_bridge.h>
14
#include <linux/jiffies.h>
15
#include <linux/list.h>
16
#include <linux/module.h>
17 18
#include <linux/netdevice.h>
#include <linux/phy.h>
19
#include <net/dsa.h>
20 21
#include "mv88e6xxx.h"

22
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
23 24 25 26 27 28 29 30 31 32 33 34 35
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
36
		ret = mdiobus_read(bus, sw_addr, SMI_CMD);
37 38 39
		if (ret < 0)
			return ret;

40
		if ((ret & SMI_CMD_BUSY) == 0)
41 42 43 44 45 46 47 48 49 50 51 52 53
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

54
	/* Wait for the bus to become free. */
55 56 57 58
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

59
	/* Transmit the read command. */
60 61
	ret = mdiobus_write(bus, sw_addr, SMI_CMD,
			    SMI_CMD_OP_22_READ | (addr << 5) | reg);
62 63 64
	if (ret < 0)
		return ret;

65
	/* Wait for the read command to complete. */
66 67 68 69
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

70
	/* Read the data. */
71
	ret = mdiobus_read(bus, sw_addr, SMI_DATA);
72 73 74 75 76 77
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

78 79
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
80
{
81
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
82 83
	int ret;

84 85 86 87
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
88 89 90 91 92 93
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

94 95 96
	return ret;
}

97 98 99 100 101 102 103 104 105 106 107 108
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

109 110 111 112 113 114 115 116
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

117
	/* Wait for the bus to become free. */
118 119 120 121
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

122
	/* Transmit the data to write. */
123
	ret = mdiobus_write(bus, sw_addr, SMI_DATA, val);
124 125 126
	if (ret < 0)
		return ret;

127
	/* Transmit the write command. */
128 129
	ret = mdiobus_write(bus, sw_addr, SMI_CMD,
			    SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
130 131 132
	if (ret < 0)
		return ret;

133
	/* Wait for the write command to complete. */
134 135 136 137 138 139 140
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

141 142 143
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
144
{
145
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
146

147 148 149
	if (bus == NULL)
		return -EINVAL;

150 151 152
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

153 154 155 156 157 158 159 160
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

161
	mutex_lock(&ps->smi_mutex);
162
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
163 164 165 166 167
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

168 169
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
170 171 172
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
173 174 175 176

	return 0;
}

177 178 179 180 181 182 183 184
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

185
		/* Write the MAC address byte. */
186 187
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
188

189
		/* Wait for the write to complete. */
190
		for (j = 0; j < 16; j++) {
191 192
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
193 194 195 196 197 198 199 200 201
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

202
/* Must be called with SMI mutex held */
203
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
204 205
{
	if (addr >= 0)
206
		return _mv88e6xxx_reg_read(ds, addr, regnum);
207 208 209
	return 0xffff;
}

210
/* Must be called with SMI mutex held */
211 212
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
213 214
{
	if (addr >= 0)
215
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
216 217 218
	return 0;
}

219 220 221 222
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
223
	unsigned long timeout;
224

225 226 227
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
228

229 230
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
231
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
232
		usleep_range(1000, 2000);
233 234
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
235
			return 0;
236 237 238 239 240 241 242 243
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
244
	unsigned long timeout;
245

246 247
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
248

249 250
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
251
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
252
		usleep_range(1000, 2000);
253 254
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
255
			return 0;
256 257 258 259 260 261 262 263 264 265 266
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
267
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
268

269 270 271
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
272 273 274 275 276 277 278 279 280 281 282 283
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
284
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
285 286 287 288
	int ret;

	mutex_lock(&ps->ppu_mutex);

289
	/* If the PHY polling unit is enabled, disable it so that
290 291 292 293 294
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
295 296 297 298 299 300
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
301
	} else {
302 303
		del_timer(&ps->ppu_timer);
		ret = 0;
304 305 306 307 308 309 310
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
311
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
312

313
	/* Schedule a timer to re-enable the PHY polling unit. */
314 315 316 317 318 319
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
320
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
321 322 323 324 325 326 327 328 329 330 331 332 333 334

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
335 336
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
337 338 339 340 341 342 343 344 345 346 347 348
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
349 350
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
351 352 353 354 355 356
	}

	return ret;
}
#endif

357 358 359 360 361 362
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
363
		int uninitialized_var(port_status);
364 365 366 367 368 369 370 371 372 373 374
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
375 376
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
							 PORT_STATUS);
377 378 379
			if (port_status < 0)
				continue;

380
			link = !!(port_status & PORT_STATUS_LINK);
381 382 383 384
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
385
				netdev_info(dev, "link down\n");
386 387 388 389 390
				netif_carrier_off(dev);
			}
			continue;
		}

391 392
		switch (port_status & PORT_STATUS_SPEED_MASK) {
		case PORT_STATUS_SPEED_10:
393 394
			speed = 10;
			break;
395
		case PORT_STATUS_SPEED_100:
396 397
			speed = 100;
			break;
398
		case PORT_STATUS_SPEED_1000:
399 400 401 402 403 404
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
405 406
		duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
		fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
407 408

		if (!netif_carrier_ok(dev)) {
409 410 411 412 413
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
414 415 416 417 418
			netif_carrier_on(dev);
		}
	}
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

504 505 506 507 508 509 510
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
511 512
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
513 514 515 516 517
		return true;
	}
	return false;
}

518 519
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
520 521 522 523 524
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
525
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
526
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
527 528 529 530 531 532
			return 0;
	}

	return -ETIMEDOUT;
}

533 534
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
535 536 537
{
	int ret;

538 539 540
	if (mv88e6xxx_6352_family(ds))
		port = (port + 1) << 5;

541
	/* Snapshot the hardware statistics counters for this port. */
542 543 544 545 546
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
547

548
	/* Wait for the snapshotting to complete. */
549
	ret = _mv88e6xxx_stats_wait(ds);
550 551 552 553 554 555
	if (ret < 0)
		return ret;

	return 0;
}

556 557
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
558 559 560 561 562 563
{
	u32 _val;
	int ret;

	*val = 0;

564 565 566
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
567 568 569
	if (ret < 0)
		return;

570
	ret = _mv88e6xxx_stats_wait(ds);
571 572 573
	if (ret < 0)
		return;

574
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
575 576 577 578 579
	if (ret < 0)
		return;

	_val = ret << 16;

580
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
581 582 583 584 585 586
	if (ret < 0)
		return;

	*val = _val | ret;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
630 631 632 633 634
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
635 636 637 638 639 640 641 642 643 644
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
645 646 647 648 649 650 651 652 653
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

654 655 656 657
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
658
{
659
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
660 661 662
	int ret;
	int i;

663
	mutex_lock(&ps->smi_mutex);
664

665
	ret = _mv88e6xxx_stats_snapshot(ds, port);
666
	if (ret < 0) {
667
		mutex_unlock(&ps->smi_mutex);
668 669 670
		return;
	}

671
	/* Read each of the counters. */
672 673 674
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
675 676 677 678 679 680 681 682 683
		u32 high = 0;

		if (s->reg >= 0x100) {
			ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
						 s->reg - 0x100);
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
684 685
				ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
							  s->reg - 0x100 + 1);
686 687 688 689 690 691 692
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
693
		_mv88e6xxx_stats_read(ds, s->reg, &low);
694
		if (s->sizeof_stat == 8)
695
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
696 697 698

		data[i] = (((u64)high) << 32) | low;
	}
699
error:
700
	mutex_unlock(&ps->smi_mutex);
701
}
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

760 761 762 763 764 765 766 767 768 769
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

770
	mutex_lock(&ps->smi_mutex);
771

772
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
773 774 775 776
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
777
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
778 779 780
	if (ret < 0)
		goto error;

781
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
782 783 784 785 786 787
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

788
	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
789 790 791 792 793 794
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
795
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
796 797 798 799 800 801
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
802
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
803
	mutex_unlock(&ps->smi_mutex);
804 805 806 807
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

808 809 810
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
811 812 813 814 815 816
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

817 818 819
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
820 821 822 823 824 825 826 827
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

828 829 830 831 832 833 834 835 836 837 838 839 840
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
841
{
842 843
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
844 845 846 847
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
848 849
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
850 851 852 853
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
854 855
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
856 857
}

858 859 860
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
861 862
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
863 864
}

865
/* Must be called with SMI mutex held */
866 867
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
868 869 870
{
	int ret;

871 872 873 874 875
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
876

877
	ret = _mv88e6xxx_phy_wait(ds);
878 879 880
	if (ret < 0)
		return ret;

881
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
882 883
}

884
/* Must be called with SMI mutex held */
885 886
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
887
{
888 889 890 891 892
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
893

894 895 896 897 898
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
899 900
}

901 902
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
903
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
904 905
	int reg;

906
	mutex_lock(&ps->smi_mutex);
907 908

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
909
	if (reg < 0)
910
		goto out;
911 912 913 914

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

915
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
916
	if (reg < 0)
917
		goto out;
918

919
	e->eee_active = !!(reg & PORT_STATUS_EEE);
920
	reg = 0;
921

922
out:
923
	mutex_unlock(&ps->smi_mutex);
924
	return reg;
925 926 927 928 929
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
930 931
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
932 933
	int ret;

934
	mutex_lock(&ps->smi_mutex);
935

936 937 938 939 940 941 942 943 944 945 946 947
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
948
	mutex_unlock(&ps->smi_mutex);
949 950

	return ret;
951 952
}

953 954 955 956 957 958 959 960
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
	if (ret < 0)
		return ret;

961
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

976
	return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
977 978 979 980 981
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
982
	int reg, ret = 0;
983 984 985 986
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

987
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
988 989
	if (reg < 0) {
		ret = reg;
990
		goto abort;
991
	}
992

993
	oldstate = reg & PORT_CONTROL_STATE_MASK;
994 995 996 997 998
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
999 1000
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
1001 1002 1003 1004
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
1005 1006 1007
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

1028
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
		ps->fid_mask |= 1 << ps->fid[port];
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

	newfid = __ffs(ps->fid_mask);
	ps->fid[port] = newfid;
	ps->fid_mask &= (1 << newfid);
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1140
		stp_state = PORT_CONTROL_STATE_DISABLED;
1141 1142 1143
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1144
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1145 1146
		break;
	case BR_STATE_LEARNING:
1147
		stp_state = PORT_CONTROL_STATE_LEARNING;
1148 1149 1150
		break;
	case BR_STATE_FORWARDING:
	default:
1151
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1167 1168 1169 1170 1171 1172
static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
				  const unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1173 1174 1175
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1188 1189
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
				    const unsigned char *addr, int state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

1214
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
1215 1216 1217 1218
				   (0x10 << port) | state);
	if (ret)
		return ret;

1219
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
1220 1221 1222 1223 1224 1225 1226 1227

	return ret;
}

int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	int state = is_multicast_ether_addr(addr) ?
1228 1229
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1247 1248
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
				    unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret, state;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

	do {
1270
		ret = _mv88e6xxx_atu_cmd(ds, fid,  GLOBAL_ATU_OP_GET_NEXT_DB);
1271 1272 1273
		if (ret < 0)
			return ret;

1274
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1275 1276
		if (ret < 0)
			return ret;
1277 1278
		state = ret & GLOBAL_ATU_DATA_STATE_MASK;
		if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
1279 1280 1281 1282 1283 1284 1285 1286
			return -ENOENT;
	} while (!(((ret >> 4) & 0xff) & (1 << port)));

	ret = __mv88e6xxx_read_addr(ds, addr);
	if (ret < 0)
		return ret;

	*is_static = state == (is_multicast_ether_addr(addr) ?
1287 1288
			       GLOBAL_ATU_DATA_STATE_MC_STATIC :
			       GLOBAL_ATU_DATA_STATE_UC_STATIC);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	return 0;
}

/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
			       unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1323
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1324 1325
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1326
	int ret, fid;
1327
	u16 reg;
1328 1329 1330

	mutex_lock(&ps->smi_mutex);

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6065_family(ds)) {
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
		if (dsa_is_cpu_port(ds, port) ||
		    ds->dsa_port_mask & (1 << port)) {
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
	    mv88e6xxx_6185_family(ds))
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
		    mv88e6xxx_6185_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds)) {
		if (ds->dsa_port_mask & (1 << port))
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control 2: don't force a good FCS, set the maximum
	 * frame size to 10240 bytes, don't let the switch add or
	 * strip 802.1q tags, don't discard tagged or untagged frames
	 * on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't
	 * send a copy of all transmitted/received frames on this port
	 * to the CPU.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds))
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds))
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
				   1 << port);
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

1529 1530
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
1531
	 */
1532
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
1533 1534 1535 1536 1537 1538 1539 1540
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
1541 1542 1543 1544 1545 1546
	fid = __ffs(ps->fid_mask);
	ps->fid[port] = fid;
	ps->fid_mask &= ~(1 << fid);

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
1547

1548
	ret = _mv88e6xxx_update_port_config(ds, port);
1549 1550 1551 1552 1553 1554
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
1555 1556
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
1557 1558 1559 1560 1561
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

1576 1577 1578 1579 1580 1581
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);

1582
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
1583

1584 1585 1586 1587
	ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;

	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

1588 1589 1590
	return 0;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

	return 0;
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
1699 1700
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

1729 1730 1731 1732 1733
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1734
	mutex_lock(&ps->smi_mutex);
1735
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1736 1737
	if (ret < 0)
		goto error;
1738
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
1739
error:
1740
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1741
	mutex_unlock(&ps->smi_mutex);
1742 1743 1744 1745 1746 1747 1748 1749 1750
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1751
	mutex_lock(&ps->smi_mutex);
1752
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1753 1754 1755
	if (ret < 0)
		goto error;

1756
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
1757
error:
1758
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1759
	mutex_unlock(&ps->smi_mutex);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1782
	mutex_lock(&ps->smi_mutex);
1783
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
1784
	mutex_unlock(&ps->smi_mutex);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1798
	mutex_lock(&ps->smi_mutex);
1799
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
1800
	mutex_unlock(&ps->smi_mutex);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1814
	mutex_lock(&ps->smi_mutex);
1815
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
1816
	mutex_unlock(&ps->smi_mutex);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1831
	mutex_lock(&ps->smi_mutex);
1832
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
1833
	mutex_unlock(&ps->smi_mutex);
1834 1835 1836
	return ret;
}

1837 1838 1839 1840 1841 1842 1843
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
1844
#endif
1845 1846 1847
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
1848 1849
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
1850 1851 1852 1853 1854 1855 1856
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
1857 1858 1859
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
1860 1861 1862 1863 1864 1865 1866 1867
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
1868 1869 1870 1871

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");