Locking 22.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
	The text below describes the locking rules for VFS-related methods.
It is (believed to be) up-to-date. *Please*, if you change anything in
prototypes or locking protocols - update this file. And update the relevant
instances in the tree, don't leave that to maintainers of filesystems/devices/
etc. At the very least, put the list of dubious cases in the end of this file.
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
be able to use diff(1).
	Thing currently missing here: socket operations. Alexey?

--------------------------- dentry_operations --------------------------
prototypes:
12
	int (*d_revalidate)(struct dentry *, unsigned int);
13
	int (*d_weak_revalidate)(struct dentry *, unsigned int);
N
Nick Piggin 已提交
14 15
	int (*d_hash)(const struct dentry *, const struct inode *,
			struct qstr *);
N
Nick Piggin 已提交
16 17 18
	int (*d_compare)(const struct dentry *, const struct inode *,
			const struct dentry *, const struct inode *,
			unsigned int, const char *, const struct qstr *);
L
Linus Torvalds 已提交
19 20 21
	int (*d_delete)(struct dentry *);
	void (*d_release)(struct dentry *);
	void (*d_iput)(struct dentry *, struct inode *);
22
	char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
23
	struct vfsmount *(*d_automount)(struct path *path);
24
	int (*d_manage)(struct dentry *, bool);
L
Linus Torvalds 已提交
25 26

locking rules:
27 28
		rename_lock	->d_lock	may block	rcu-walk
d_revalidate:	no		no		yes (ref-walk)	maybe
29
d_weak_revalidate:no		no		yes	 	no
30 31 32 33
d_hash		no		no		no		maybe
d_compare:	yes		no		no		maybe
d_delete:	no		yes		no		no
d_release:	no		no		yes		no
S
Sage Weil 已提交
34
d_prune:        no              yes             no              no
35 36
d_iput:		no		no		yes		no
d_dname:	no		no		no		no
37
d_automount:	no		no		yes		no
38
d_manage:	no		no		yes (ref-walk)	maybe
L
Linus Torvalds 已提交
39 40 41

--------------------------- inode_operations --------------------------- 
prototypes:
A
Al Viro 已提交
42
	int (*create) (struct inode *,struct dentry *,umode_t, bool);
A
Al Viro 已提交
43
	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
L
Linus Torvalds 已提交
44 45 46
	int (*link) (struct dentry *,struct inode *,struct dentry *);
	int (*unlink) (struct inode *,struct dentry *);
	int (*symlink) (struct inode *,struct dentry *,const char *);
47
	int (*mkdir) (struct inode *,struct dentry *,umode_t);
L
Linus Torvalds 已提交
48
	int (*rmdir) (struct inode *,struct dentry *);
A
Al Viro 已提交
49
	int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
L
Linus Torvalds 已提交
50 51 52
	int (*rename) (struct inode *, struct dentry *,
			struct inode *, struct dentry *);
	int (*readlink) (struct dentry *, char __user *,int);
53 54
	void * (*follow_link) (struct dentry *, struct nameidata *);
	void (*put_link) (struct dentry *, struct nameidata *, void *);
L
Linus Torvalds 已提交
55
	void (*truncate) (struct inode *);
56
	int (*permission) (struct inode *, int, unsigned int);
57
	int (*get_acl)(struct inode *, int);
L
Linus Torvalds 已提交
58 59 60 61 62 63
	int (*setattr) (struct dentry *, struct iattr *);
	int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
	int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
	ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
	ssize_t (*listxattr) (struct dentry *, char *, size_t);
	int (*removexattr) (struct dentry *, const char *);
64
	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len);
65
	void (*update_time)(struct inode *, struct timespec *, int);
A
Al Viro 已提交
66
	int (*atomic_open)(struct inode *, struct dentry *,
A
Al Viro 已提交
67
				struct file *, unsigned open_flag,
68
				umode_t create_mode, int *opened);
L
Linus Torvalds 已提交
69 70

locking rules:
71
	all may block
A
Artem Bityutskiy 已提交
72
		i_mutex(inode)
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83
lookup:		yes
create:		yes
link:		yes (both)
mknod:		yes
symlink:	yes
mkdir:		yes
unlink:		yes (both)
rmdir:		yes (both)	(see below)
rename:		yes (all)	(see below)
readlink:	no
follow_link:	no
84
put_link:	no
L
Linus Torvalds 已提交
85
setattr:	yes
86
permission:	no (may not block if called in rcu-walk mode)
87
get_acl:	no
L
Linus Torvalds 已提交
88 89 90 91 92
getattr:	no
setxattr:	yes
getxattr:	no
listxattr:	no
removexattr:	yes
93
fiemap:		no
94
update_time:	no
M
Miklos Szeredi 已提交
95
atomic_open:	yes
96

A
Artem Bityutskiy 已提交
97
	Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
L
Linus Torvalds 已提交
98 99 100 101 102 103 104 105 106 107
victim.
	cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.

See Documentation/filesystems/directory-locking for more detailed discussion
of the locking scheme for directory operations.

--------------------------- super_operations ---------------------------
prototypes:
	struct inode *(*alloc_inode)(struct super_block *sb);
	void (*destroy_inode)(struct inode *);
108
	void (*dirty_inode) (struct inode *, int flags);
109
	int (*write_inode) (struct inode *, struct writeback_control *wbc);
110 111
	int (*drop_inode) (struct inode *);
	void (*evict_inode) (struct inode *);
L
Linus Torvalds 已提交
112 113
	void (*put_super) (struct super_block *);
	int (*sync_fs)(struct super_block *sb, int wait);
114 115
	int (*freeze_fs) (struct super_block *);
	int (*unfreeze_fs) (struct super_block *);
116
	int (*statfs) (struct dentry *, struct kstatfs *);
L
Linus Torvalds 已提交
117 118
	int (*remount_fs) (struct super_block *, int *, char *);
	void (*umount_begin) (struct super_block *);
119
	int (*show_options)(struct seq_file *, struct dentry *);
L
Linus Torvalds 已提交
120 121
	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
122
	int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
L
Linus Torvalds 已提交
123 124

locking rules:
125
	All may block [not true, see below]
126 127 128
			s_umount
alloc_inode:
destroy_inode:
129
dirty_inode:
130
write_inode:
131
drop_inode:				!!!inode->i_lock!!!
132
evict_inode:
133 134
put_super:		write
sync_fs:		read
135 136
freeze_fs:		write
unfreeze_fs:		write
137 138
statfs:			maybe(read)	(see below)
remount_fs:		write
139 140 141 142
umount_begin:		no
show_options:		no		(namespace_sem)
quota_read:		no		(see below)
quota_write:		no		(see below)
143
bdev_try_to_free_page:	no		(see below)
L
Linus Torvalds 已提交
144

145 146 147 148 149 150
->statfs() has s_umount (shared) when called by ustat(2) (native or
compat), but that's an accident of bad API; s_umount is used to pin
the superblock down when we only have dev_t given us by userland to
identify the superblock.  Everything else (statfs(), fstatfs(), etc.)
doesn't hold it when calling ->statfs() - superblock is pinned down
by resolving the pathname passed to syscall.
L
Linus Torvalds 已提交
151 152 153 154 155
->quota_read() and ->quota_write() functions are both guaranteed to
be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.
156 157
->bdev_try_to_free_page is called from the ->releasepage handler of
the block device inode.  See there for more details.
L
Linus Torvalds 已提交
158 159 160

--------------------------- file_system_type ---------------------------
prototypes:
161 162
	int (*get_sb) (struct file_system_type *, int,
		       const char *, void *, struct vfsmount *);
163 164
	struct dentry *(*mount) (struct file_system_type *, int,
		       const char *, void *);
L
Linus Torvalds 已提交
165 166
	void (*kill_sb) (struct super_block *);
locking rules:
167 168 169
		may block
mount		yes
kill_sb		yes
L
Linus Torvalds 已提交
170

A
Al Viro 已提交
171 172
->mount() returns ERR_PTR or the root dentry; its superblock should be locked
on return.
L
Linus Torvalds 已提交
173 174 175 176 177 178 179 180 181 182 183 184
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.

--------------------------- address_space_operations --------------------------
prototypes:
	int (*writepage)(struct page *page, struct writeback_control *wbc);
	int (*readpage)(struct file *, struct page *);
	int (*sync_page)(struct page *);
	int (*writepages)(struct address_space *, struct writeback_control *);
	int (*set_page_dirty)(struct page *page);
	int (*readpages)(struct file *filp, struct address_space *mapping,
			struct list_head *pages, unsigned nr_pages);
185 186 187 188 189 190
	int (*write_begin)(struct file *, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata);
	int (*write_end)(struct file *, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata);
L
Linus Torvalds 已提交
191 192 193
	sector_t (*bmap)(struct address_space *, sector_t);
	int (*invalidatepage) (struct page *, unsigned long);
	int (*releasepage) (struct page *, int);
194
	void (*freepage)(struct page *);
L
Linus Torvalds 已提交
195 196
	int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
			loff_t offset, unsigned long nr_segs);
197 198 199 200 201 202
	int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
				unsigned long *);
	int (*migratepage)(struct address_space *, struct page *, struct page *);
	int (*launder_page)(struct page *);
	int (*is_partially_uptodate)(struct page *, read_descriptor_t *, unsigned long);
	int (*error_remove_page)(struct address_space *, struct page *);
203 204
	int (*swap_activate)(struct file *);
	int (*swap_deactivate)(struct file *);
L
Linus Torvalds 已提交
205 206

locking rules:
207
	All except set_page_dirty and freepage may block
L
Linus Torvalds 已提交
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
			PageLocked(page)	i_mutex
writepage:		yes, unlocks (see below)
readpage:		yes, unlocks
sync_page:		maybe
writepages:
set_page_dirty		no
readpages:
write_begin:		locks the page		yes
write_end:		yes, unlocks		yes
bmap:
invalidatepage:		yes
releasepage:		yes
freepage:		yes
direct_IO:
get_xip_mem:					maybe
migratepage:		yes (both)
launder_page:		yes
is_partially_uptodate:	yes
error_remove_page:	yes
228 229
swap_activate:		no
swap_deactivate:	no
L
Linus Torvalds 已提交
230

231
	->write_begin(), ->write_end(), ->sync_page() and ->readpage()
L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
may be called from the request handler (/dev/loop).

	->readpage() unlocks the page, either synchronously or via I/O
completion.

	->readpages() populates the pagecache with the passed pages and starts
I/O against them.  They come unlocked upon I/O completion.

	->writepage() is used for two purposes: for "memory cleansing" and for
"sync".  These are quite different operations and the behaviour may differ
depending upon the mode.

If writepage is called for sync (wbc->sync_mode != WBC_SYNC_NONE) then
it *must* start I/O against the page, even if that would involve
blocking on in-progress I/O.

If writepage is called for memory cleansing (sync_mode ==
WBC_SYNC_NONE) then its role is to get as much writeout underway as
possible.  So writepage should try to avoid blocking against
currently-in-progress I/O.

If the filesystem is not called for "sync" and it determines that it
would need to block against in-progress I/O to be able to start new I/O
against the page the filesystem should redirty the page with
redirty_page_for_writepage(), then unlock the page and return zero.
This may also be done to avoid internal deadlocks, but rarely.

259
If the filesystem is called for sync then it must wait on any
L
Linus Torvalds 已提交
260 261
in-progress I/O and then start new I/O.

N
Nikita Danilov 已提交
262 263 264 265 266 267
The filesystem should unlock the page synchronously, before returning to the
caller, unless ->writepage() returns special WRITEPAGE_ACTIVATE
value. WRITEPAGE_ACTIVATE means that page cannot really be written out
currently, and VM should stop calling ->writepage() on this page for some
time. VM does this by moving page to the head of the active list, hence the
name.
L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

Unless the filesystem is going to redirty_page_for_writepage(), unlock the page
and return zero, writepage *must* run set_page_writeback() against the page,
followed by unlocking it.  Once set_page_writeback() has been run against the
page, write I/O can be submitted and the write I/O completion handler must run
end_page_writeback() once the I/O is complete.  If no I/O is submitted, the
filesystem must run end_page_writeback() against the page before returning from
writepage.

That is: after 2.5.12, pages which are under writeout are *not* locked.  Note,
if the filesystem needs the page to be locked during writeout, that is ok, too,
the page is allowed to be unlocked at any point in time between the calls to
set_page_writeback() and end_page_writeback().

Note, failure to run either redirty_page_for_writepage() or the combination of
set_page_writeback()/end_page_writeback() on a page submitted to writepage
will leave the page itself marked clean but it will be tagged as dirty in the
radix tree.  This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.

	->sync_page() locking rules are not well-defined - usually it is called
with lock on page, but that is not guaranteed. Considering the currently
existing instances of this method ->sync_page() itself doesn't look
well-defined...

	->writepages() is used for periodic writeback and for syscall-initiated
sync operations.  The address_space should start I/O against at least
*nr_to_write pages.  *nr_to_write must be decremented for each page which is
written.  The address_space implementation may write more (or less) pages
than *nr_to_write asks for, but it should try to be reasonably close.  If
nr_to_write is NULL, all dirty pages must be written.

writepages should _only_ write pages which are present on
mapping->io_pages.

	->set_page_dirty() is called from various places in the kernel
when the target page is marked as needing writeback.  It may be called
under spinlock (it cannot block) and is sometimes called with the page
not locked.

	->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
309 310
filesystems and by the swapper. The latter will eventually go away.  Please,
keep it that way and don't breed new callers.
L
Linus Torvalds 已提交
311 312 313 314 315 316 317 318 319 320 321

	->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated.  It
returns zero on success.  If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.

	->releasepage() is called when the kernel is about to try to drop the
buffers from the page in preparation for freeing it.  It returns zero to
indicate that the buffers are (or may be) freeable.  If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.

322 323 324
	->freepage() is called when the kernel is done dropping the page
from the page cache.

325 326 327 328 329 330
	->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.

331 332 333 334 335 336 337 338 339
	->swap_activate will be called with a non-zero argument on
files backing (non block device backed) swapfiles. A return value
of zero indicates success, in which case this file can be used for
backing swapspace. The swapspace operations will be proxied to the
address space operations.

	->swap_deactivate() will be called in the sys_swapoff()
path after ->swap_activate() returned success.

L
Linus Torvalds 已提交
340 341 342 343 344 345 346
----------------------- file_lock_operations ------------------------------
prototypes:
	void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
	void (*fl_release_private)(struct file_lock *);


locking rules:
347 348 349
			file_lock_lock	may block
fl_copy_lock:		yes		no
fl_release_private:	maybe		no
L
Linus Torvalds 已提交
350 351 352

----------------------- lock_manager_operations ---------------------------
prototypes:
J
J. Bruce Fields 已提交
353 354 355 356 357
	int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
	void (*lm_notify)(struct file_lock *);  /* unblock callback */
	int (*lm_grant)(struct file_lock *, struct file_lock *, int);
	void (*lm_break)(struct file_lock *); /* break_lease callback */
	int (*lm_change)(struct file_lock **, int);
L
Linus Torvalds 已提交
358 359

locking rules:
360
			file_lock_lock	may block
J
J. Bruce Fields 已提交
361 362 363 364 365
lm_compare_owner:	yes		no
lm_notify:		yes		no
lm_grant:		no		no
lm_break:		yes		no
lm_change		yes		no
366

L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374 375 376 377 378
--------------------------- buffer_head -----------------------------------
prototypes:
	void (*b_end_io)(struct buffer_head *bh, int uptodate);

locking rules:
	called from interrupts. In other words, extreme care is needed here.
bh is locked, but that's all warranties we have here. Currently only RAID1,
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
call this method upon the IO completion.

--------------------------- block_device_operations -----------------------
prototypes:
379 380 381 382 383
	int (*open) (struct block_device *, fmode_t);
	int (*release) (struct gendisk *, fmode_t);
	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
	int (*direct_access) (struct block_device *, sector_t, void **, unsigned long *);
L
Linus Torvalds 已提交
384
	int (*media_changed) (struct gendisk *);
385
	void (*unlock_native_capacity) (struct gendisk *);
L
Linus Torvalds 已提交
386
	int (*revalidate_disk) (struct gendisk *);
387 388
	int (*getgeo)(struct block_device *, struct hd_geometry *);
	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
L
Linus Torvalds 已提交
389 390

locking rules:
391 392 393 394 395 396 397 398 399 400 401
			bd_mutex
open:			yes
release:		yes
ioctl:			no
compat_ioctl:		no
direct_access:		no
media_changed:		no
unlock_native_capacity:	no
revalidate_disk:	no
getgeo:			no
swap_slot_free_notify:	no	(see below)
402 403 404 405 406 407

media_changed, unlock_native_capacity and revalidate_disk are called only from
check_disk_change().

swap_slot_free_notify is called with swap_lock and sometimes the page lock
held.
L
Linus Torvalds 已提交
408 409 410 411 412 413 414


--------------------------- file_operations -------------------------------
prototypes:
	loff_t (*llseek) (struct file *, loff_t, int);
	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
415 416
	ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
	ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424
	int (*readdir) (struct file *, void *, filldir_t);
	unsigned int (*poll) (struct file *, struct poll_table_struct *);
	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
	int (*mmap) (struct file *, struct vm_area_struct *);
	int (*open) (struct inode *, struct file *);
	int (*flush) (struct file *);
	int (*release) (struct inode *, struct file *);
425
	int (*fsync) (struct file *, loff_t start, loff_t end, int datasync);
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
	int (*aio_fsync) (struct kiocb *, int datasync);
	int (*fasync) (int, struct file *, int);
	int (*lock) (struct file *, int, struct file_lock *);
	ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
			loff_t *);
	ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
			loff_t *);
	ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t,
			void __user *);
	ssize_t (*sendpage) (struct file *, struct page *, int, size_t,
			loff_t *, int);
	unsigned long (*get_unmapped_area)(struct file *, unsigned long,
			unsigned long, unsigned long, unsigned long);
	int (*check_flags)(int);
440 441 442 443 444 445
	int (*flock) (struct file *, int, struct file_lock *);
	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,
			size_t, unsigned int);
	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
			size_t, unsigned int);
	int (*setlease)(struct file *, long, struct file_lock **);
446
	long (*fallocate)(struct file *, int, loff_t, loff_t);
L
Linus Torvalds 已提交
447 448 449
};

locking rules:
450
	All may block except for ->setlease.
451
	No VFS locks held on entry except for ->setlease.
452 453

->setlease has the file_list_lock held and must not sleep.
L
Linus Torvalds 已提交
454 455 456 457 458

->llseek() locking has moved from llseek to the individual llseek
implementations.  If your fs is not using generic_file_llseek, you
need to acquire and release the appropriate locks in your ->llseek().
For many filesystems, it is probably safe to acquire the inode
459 460 461
mutex or just to use i_size_read() instead.
Note: this does not protect the file->f_pos against concurrent modifications
since this is something the userspace has to take care about.
L
Linus Torvalds 已提交
462

463 464 465 466
->fasync() is responsible for maintaining the FASYNC bit in filp->f_flags.
Most instances call fasync_helper(), which does that maintenance, so it's
not normally something one needs to worry about.  Return values > 0 will be
mapped to zero in the VFS layer.
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

->readdir() and ->ioctl() on directories must be changed. Ideally we would
move ->readdir() to inode_operations and use a separate method for directory
->ioctl() or kill the latter completely. One of the problems is that for
anything that resembles union-mount we won't have a struct file for all
components. And there are other reasons why the current interface is a mess...

->read on directories probably must go away - we should just enforce -EISDIR
in sys_read() and friends.

--------------------------- dquot_operations -------------------------------
prototypes:
	int (*write_dquot) (struct dquot *);
	int (*acquire_dquot) (struct dquot *);
	int (*release_dquot) (struct dquot *);
	int (*mark_dirty) (struct dquot *);
	int (*write_info) (struct super_block *, int);

These operations are intended to be more or less wrapping functions that ensure
a proper locking wrt the filesystem and call the generic quota operations.

What filesystem should expect from the generic quota functions:

		FS recursion	Held locks when called
write_dquot:	yes		dqonoff_sem or dqptr_sem
acquire_dquot:	yes		dqonoff_sem or dqptr_sem
release_dquot:	yes		dqonoff_sem or dqptr_sem
mark_dirty:	no		-
write_info:	yes		dqonoff_sem

FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.

More details about quota locking can be found in fs/dquot.c.

--------------------------- vm_operations_struct -----------------------------
prototypes:
	void (*open)(struct vm_area_struct*);
	void (*close)(struct vm_area_struct*);
N
Nick Piggin 已提交
506
	int (*fault)(struct vm_area_struct*, struct vm_fault *);
507
	int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);
508
	int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
L
Linus Torvalds 已提交
509 510

locking rules:
511 512 513 514 515 516
		mmap_sem	PageLocked(page)
open:		yes
close:		yes
fault:		yes		can return with page locked
page_mkwrite:	yes		can return with page locked
access:		yes
M
Mark Fasheh 已提交
517

N
Nick Piggin 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531
	->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
with the passed in "pgoff" in the vm_fault structure. If it is possible that
the page may be truncated and/or invalidated, then the filesystem must lock
the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.

	->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
the page has been truncated, the filesystem should not look up a new page
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
L
Linus Torvalds 已提交
532

533 534 535 536 537
	->access() is called when get_user_pages() fails in
acces_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace.  This function is needed only for
VM_IO | VM_PFNMAP VMAs.

L
Linus Torvalds 已提交
538 539 540 541 542
================================================================================
			Dubious stuff

(if you break something or notice that it is broken and do not fix it yourself
- at least put it here)