Locking 21.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
	The text below describes the locking rules for VFS-related methods.
It is (believed to be) up-to-date. *Please*, if you change anything in
prototypes or locking protocols - update this file. And update the relevant
instances in the tree, don't leave that to maintainers of filesystems/devices/
etc. At the very least, put the list of dubious cases in the end of this file.
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
be able to use diff(1).
	Thing currently missing here: socket operations. Alexey?

--------------------------- dentry_operations --------------------------
prototypes:
	int (*d_revalidate)(struct dentry *, int);
	int (*d_hash) (struct dentry *, struct qstr *);
	int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);
	int (*d_delete)(struct dentry *);
	void (*d_release)(struct dentry *);
	void (*d_iput)(struct dentry *, struct inode *);
18
	char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28

locking rules:
	none have BKL
		dcache_lock	rename_lock	->d_lock	may block
d_revalidate:	no		no		no		yes
d_hash		no		no		no		yes
d_compare:	no		yes		no		no 
d_delete:	yes		no		yes		no
d_release:	no		no		no		yes
d_iput:		no		no		no		yes
29
d_dname:	no		no		no		no
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

--------------------------- inode_operations --------------------------- 
prototypes:
	int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
	struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameid
ata *);
	int (*link) (struct dentry *,struct inode *,struct dentry *);
	int (*unlink) (struct inode *,struct dentry *);
	int (*symlink) (struct inode *,struct dentry *,const char *);
	int (*mkdir) (struct inode *,struct dentry *,int);
	int (*rmdir) (struct inode *,struct dentry *);
	int (*mknod) (struct inode *,struct dentry *,int,dev_t);
	int (*rename) (struct inode *, struct dentry *,
			struct inode *, struct dentry *);
	int (*readlink) (struct dentry *, char __user *,int);
	int (*follow_link) (struct dentry *, struct nameidata *);
	void (*truncate) (struct inode *);
	int (*permission) (struct inode *, int, struct nameidata *);
	int (*setattr) (struct dentry *, struct iattr *);
	int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
	int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
	ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
	ssize_t (*listxattr) (struct dentry *, char *, size_t);
	int (*removexattr) (struct dentry *, const char *);

locking rules:
	all may block, none have BKL
A
Artem Bityutskiy 已提交
57
		i_mutex(inode)
L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
lookup:		yes
create:		yes
link:		yes (both)
mknod:		yes
symlink:	yes
mkdir:		yes
unlink:		yes (both)
rmdir:		yes (both)	(see below)
rename:		yes (all)	(see below)
readlink:	no
follow_link:	no
truncate:	yes		(see below)
setattr:	yes
permission:	no
getattr:	no
setxattr:	yes
getxattr:	no
listxattr:	no
removexattr:	yes
A
Artem Bityutskiy 已提交
77
	Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
victim.
	cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
	->truncate() is never called directly - it's a callback, not a
method. It's called by vmtruncate() - library function normally used by
->setattr(). Locking information above applies to that call (i.e. is
inherited from ->setattr() - vmtruncate() is used when ATTR_SIZE had been
passed).

See Documentation/filesystems/directory-locking for more detailed discussion
of the locking scheme for directory operations.

--------------------------- super_operations ---------------------------
prototypes:
	struct inode *(*alloc_inode)(struct super_block *sb);
	void (*destroy_inode)(struct inode *);
	void (*dirty_inode) (struct inode *);
	int (*write_inode) (struct inode *, int);
	void (*drop_inode) (struct inode *);
	void (*delete_inode) (struct inode *);
	void (*put_super) (struct super_block *);
	void (*write_super) (struct super_block *);
	int (*sync_fs)(struct super_block *sb, int wait);
100 101
	int (*freeze_fs) (struct super_block *);
	int (*unfreeze_fs) (struct super_block *);
102
	int (*statfs) (struct dentry *, struct kstatfs *);
L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	int (*remount_fs) (struct super_block *, int *, char *);
	void (*clear_inode) (struct inode *);
	void (*umount_begin) (struct super_block *);
	int (*show_options)(struct seq_file *, struct vfsmount *);
	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);

locking rules:
	All may block.
			BKL	s_lock	s_umount
alloc_inode:		no	no	no
destroy_inode:		no
dirty_inode:		no				(must not sleep)
write_inode:		no
drop_inode:		no				!!!inode_lock!!!
delete_inode:		no
put_super:		yes	yes	no
write_super:		no	yes	read
sync_fs:		no	no	read
122 123
freeze_fs:		?
unfreeze_fs:		?
L
Linus Torvalds 已提交
124
statfs:			no	no	no
125
remount_fs:		yes	yes	maybe		(see below)
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
clear_inode:		no
umount_begin:		yes	no	no
show_options:		no				(vfsmount->sem)
quota_read:		no	no	no		(see below)
quota_write:		no	no	no		(see below)

->remount_fs() will have the s_umount lock if it's already mounted.
When called from get_sb_single, it does NOT have the s_umount lock.
->quota_read() and ->quota_write() functions are both guaranteed to
be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.

--------------------------- file_system_type ---------------------------
prototypes:
142 143
	int (*get_sb) (struct file_system_type *, int,
		       const char *, void *, struct vfsmount *);
L
Linus Torvalds 已提交
144 145 146
	void (*kill_sb) (struct super_block *);
locking rules:
		may block	BKL
147 148
get_sb		yes		no
kill_sb		yes		no
L
Linus Torvalds 已提交
149

150 151
->get_sb() returns error or 0 with locked superblock attached to the vfsmount
(exclusive on ->s_umount).
L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159 160 161 162 163
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.

--------------------------- address_space_operations --------------------------
prototypes:
	int (*writepage)(struct page *page, struct writeback_control *wbc);
	int (*readpage)(struct file *, struct page *);
	int (*sync_page)(struct page *);
	int (*writepages)(struct address_space *, struct writeback_control *);
	int (*set_page_dirty)(struct page *page);
	int (*readpages)(struct file *filp, struct address_space *mapping,
			struct list_head *pages, unsigned nr_pages);
164 165 166 167 168 169
	int (*write_begin)(struct file *, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata);
	int (*write_end)(struct file *, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata);
L
Linus Torvalds 已提交
170 171 172 173 174
	sector_t (*bmap)(struct address_space *, sector_t);
	int (*invalidatepage) (struct page *, unsigned long);
	int (*releasepage) (struct page *, int);
	int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
			loff_t offset, unsigned long nr_segs);
175
	int (*launder_page) (struct page *);
L
Linus Torvalds 已提交
176 177 178 179

locking rules:
	All except set_page_dirty may block

180
			BKL	PageLocked(page)	i_sem
L
Linus Torvalds 已提交
181 182 183 184 185 186
writepage:		no	yes, unlocks (see below)
readpage:		no	yes, unlocks
sync_page:		no	maybe
writepages:		no
set_page_dirty		no	no
readpages:		no
187 188 189
write_begin:		no	locks the page		yes
write_end:		no	yes, unlocks		yes
perform_write:		no	n/a			yes
A
Al Viro 已提交
190
bmap:			no
L
Linus Torvalds 已提交
191 192 193
invalidatepage:		no	yes
releasepage:		no	yes
direct_IO:		no
194
launder_page:		no	yes
L
Linus Torvalds 已提交
195

196
	->write_begin(), ->write_end(), ->sync_page() and ->readpage()
L
Linus Torvalds 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
may be called from the request handler (/dev/loop).

	->readpage() unlocks the page, either synchronously or via I/O
completion.

	->readpages() populates the pagecache with the passed pages and starts
I/O against them.  They come unlocked upon I/O completion.

	->writepage() is used for two purposes: for "memory cleansing" and for
"sync".  These are quite different operations and the behaviour may differ
depending upon the mode.

If writepage is called for sync (wbc->sync_mode != WBC_SYNC_NONE) then
it *must* start I/O against the page, even if that would involve
blocking on in-progress I/O.

If writepage is called for memory cleansing (sync_mode ==
WBC_SYNC_NONE) then its role is to get as much writeout underway as
possible.  So writepage should try to avoid blocking against
currently-in-progress I/O.

If the filesystem is not called for "sync" and it determines that it
would need to block against in-progress I/O to be able to start new I/O
against the page the filesystem should redirty the page with
redirty_page_for_writepage(), then unlock the page and return zero.
This may also be done to avoid internal deadlocks, but rarely.

224
If the filesystem is called for sync then it must wait on any
L
Linus Torvalds 已提交
225 226
in-progress I/O and then start new I/O.

N
Nikita Danilov 已提交
227 228 229 230 231 232
The filesystem should unlock the page synchronously, before returning to the
caller, unless ->writepage() returns special WRITEPAGE_ACTIVATE
value. WRITEPAGE_ACTIVATE means that page cannot really be written out
currently, and VM should stop calling ->writepage() on this page for some
time. VM does this by moving page to the head of the active list, hence the
name.
L
Linus Torvalds 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

Unless the filesystem is going to redirty_page_for_writepage(), unlock the page
and return zero, writepage *must* run set_page_writeback() against the page,
followed by unlocking it.  Once set_page_writeback() has been run against the
page, write I/O can be submitted and the write I/O completion handler must run
end_page_writeback() once the I/O is complete.  If no I/O is submitted, the
filesystem must run end_page_writeback() against the page before returning from
writepage.

That is: after 2.5.12, pages which are under writeout are *not* locked.  Note,
if the filesystem needs the page to be locked during writeout, that is ok, too,
the page is allowed to be unlocked at any point in time between the calls to
set_page_writeback() and end_page_writeback().

Note, failure to run either redirty_page_for_writepage() or the combination of
set_page_writeback()/end_page_writeback() on a page submitted to writepage
will leave the page itself marked clean but it will be tagged as dirty in the
radix tree.  This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.

	->sync_page() locking rules are not well-defined - usually it is called
with lock on page, but that is not guaranteed. Considering the currently
existing instances of this method ->sync_page() itself doesn't look
well-defined...

	->writepages() is used for periodic writeback and for syscall-initiated
sync operations.  The address_space should start I/O against at least
*nr_to_write pages.  *nr_to_write must be decremented for each page which is
written.  The address_space implementation may write more (or less) pages
than *nr_to_write asks for, but it should try to be reasonably close.  If
nr_to_write is NULL, all dirty pages must be written.

writepages should _only_ write pages which are present on
mapping->io_pages.

	->set_page_dirty() is called from various places in the kernel
when the target page is marked as needing writeback.  It may be called
under spinlock (it cannot block) and is sometimes called with the page
not locked.

	->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
filesystems and by the swapper. The latter will eventually go away. All
instances do not actually need the BKL. Please, keep it that way and don't
breed new callers.

	->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated.  It
returns zero on success.  If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.

	->releasepage() is called when the kernel is about to try to drop the
buffers from the page in preparation for freeing it.  It returns zero to
indicate that the buffers are (or may be) freeable.  If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.

288 289 290 291 292 293
	->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.

L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	Note: currently almost all instances of address_space methods are
using BKL for internal serialization and that's one of the worst sources
of contention. Normally they are calling library functions (in fs/buffer.c)
and pass foo_get_block() as a callback (on local block-based filesystems,
indeed). BKL is not needed for library stuff and is usually taken by
foo_get_block(). It's an overkill, since block bitmaps can be protected by
internal fs locking and real critical areas are much smaller than the areas
filesystems protect now.

----------------------- file_lock_operations ------------------------------
prototypes:
	void (*fl_insert)(struct file_lock *);	/* lock insertion callback */
	void (*fl_remove)(struct file_lock *);	/* lock removal callback */
	void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
	void (*fl_release_private)(struct file_lock *);


locking rules:
			BKL	may block
fl_insert:		yes	no
fl_remove:		yes	no
fl_copy_lock:		yes	no
fl_release_private:	yes	yes

----------------------- lock_manager_operations ---------------------------
prototypes:
	int (*fl_compare_owner)(struct file_lock *, struct file_lock *);
	void (*fl_notify)(struct file_lock *);  /* unblock callback */
	void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
	void (*fl_release_private)(struct file_lock *);
	void (*fl_break)(struct file_lock *); /* break_lease callback */

locking rules:
			BKL	may block
fl_compare_owner:	yes	no
fl_notify:		yes	no
fl_copy_lock:		yes	no
fl_release_private:	yes	yes
fl_break:		yes	no

	Currently only NFSD and NLM provide instances of this class. None of the
them block. If you have out-of-tree instances - please, show up. Locking
in that area will change.
--------------------------- buffer_head -----------------------------------
prototypes:
	void (*b_end_io)(struct buffer_head *bh, int uptodate);

locking rules:
	called from interrupts. In other words, extreme care is needed here.
bh is locked, but that's all warranties we have here. Currently only RAID1,
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
call this method upon the IO completion.

--------------------------- block_device_operations -----------------------
prototypes:
	int (*open) (struct inode *, struct file *);
	int (*release) (struct inode *, struct file *);
	int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
	int (*media_changed) (struct gendisk *);
	int (*revalidate_disk) (struct gendisk *);

locking rules:
			BKL	bd_sem
open:			yes	yes
release:		yes	yes
ioctl:			yes	no
media_changed:		no	no
revalidate_disk:	no	no

The last two are called only from check_disk_change().

--------------------------- file_operations -------------------------------
prototypes:
	loff_t (*llseek) (struct file *, loff_t, int);
	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
370 371
	ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
	ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
L
Linus Torvalds 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	int (*readdir) (struct file *, void *, filldir_t);
	unsigned int (*poll) (struct file *, struct poll_table_struct *);
	int (*ioctl) (struct inode *, struct file *, unsigned int,
			unsigned long);
	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
	int (*mmap) (struct file *, struct vm_area_struct *);
	int (*open) (struct inode *, struct file *);
	int (*flush) (struct file *);
	int (*release) (struct inode *, struct file *);
	int (*fsync) (struct file *, struct dentry *, int datasync);
	int (*aio_fsync) (struct kiocb *, int datasync);
	int (*fasync) (int, struct file *, int);
	int (*lock) (struct file *, int, struct file_lock *);
	ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,
			loff_t *);
	ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,
			loff_t *);
	ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t,
			void __user *);
	ssize_t (*sendpage) (struct file *, struct page *, int, size_t,
			loff_t *, int);
	unsigned long (*get_unmapped_area)(struct file *, unsigned long,
			unsigned long, unsigned long, unsigned long);
	int (*check_flags)(int);
};

locking rules:
T
Tejun Heo 已提交
400
	All may block.
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411 412
			BKL
llseek:			no	(see below)
read:			no
aio_read:		no
write:			no
aio_write:		no
readdir: 		no
poll:			no
ioctl:			yes	(see below)
unlocked_ioctl:		no	(see below)
compat_ioctl:		no
mmap:			no
413
open:			no
L
Linus Torvalds 已提交
414 415 416 417
flush:			no
release:		no
fsync:			no	(see below)
aio_fsync:		no
418
fasync:			no
L
Linus Torvalds 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
lock:			yes
readv:			no
writev:			no
sendfile:		no
sendpage:		no
get_unmapped_area:	no
check_flags:		no

->llseek() locking has moved from llseek to the individual llseek
implementations.  If your fs is not using generic_file_llseek, you
need to acquire and release the appropriate locks in your ->llseek().
For many filesystems, it is probably safe to acquire the inode
semaphore.  Note some filesystems (i.e. remote ones) provide no
protection for i_size so you will need to use the BKL.

Note: ext2_release() was *the* source of contention on fs-intensive
loads and dropping BKL on ->release() helps to get rid of that (we still
grab BKL for cases when we close a file that had been opened r/w, but that
can and should be done using the internal locking with smaller critical areas).
Current worst offender is ext2_get_block()...

440 441 442 443 444
->fasync() is called without BKL protection, and is responsible for
maintaining the FASYNC bit in filp->f_flags.  Most instances call
fasync_helper(), which does that maintenance, so it's not normally
something one needs to worry about.  Return values > 0 will be mapped to
zero in the VFS layer.
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457

->readdir() and ->ioctl() on directories must be changed. Ideally we would
move ->readdir() to inode_operations and use a separate method for directory
->ioctl() or kill the latter completely. One of the problems is that for
anything that resembles union-mount we won't have a struct file for all
components. And there are other reasons why the current interface is a mess...

->ioctl() on regular files is superceded by the ->unlocked_ioctl() that
doesn't take the BKL.

->read on directories probably must go away - we should just enforce -EISDIR
in sys_read() and friends.

A
Artem Bityutskiy 已提交
458
->fsync() has i_mutex on inode.
L
Linus Torvalds 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

--------------------------- dquot_operations -------------------------------
prototypes:
	int (*initialize) (struct inode *, int);
	int (*drop) (struct inode *);
	int (*alloc_space) (struct inode *, qsize_t, int);
	int (*alloc_inode) (const struct inode *, unsigned long);
	int (*free_space) (struct inode *, qsize_t);
	int (*free_inode) (const struct inode *, unsigned long);
	int (*transfer) (struct inode *, struct iattr *);
	int (*write_dquot) (struct dquot *);
	int (*acquire_dquot) (struct dquot *);
	int (*release_dquot) (struct dquot *);
	int (*mark_dirty) (struct dquot *);
	int (*write_info) (struct super_block *, int);

These operations are intended to be more or less wrapping functions that ensure
a proper locking wrt the filesystem and call the generic quota operations.

What filesystem should expect from the generic quota functions:

		FS recursion	Held locks when called
initialize:	yes		maybe dqonoff_sem
drop:		yes		-
alloc_space:	->mark_dirty()	-
alloc_inode:	->mark_dirty()	-
free_space:	->mark_dirty()	-
free_inode:	->mark_dirty()	-
transfer:	yes		-
write_dquot:	yes		dqonoff_sem or dqptr_sem
acquire_dquot:	yes		dqonoff_sem or dqptr_sem
release_dquot:	yes		dqonoff_sem or dqptr_sem
mark_dirty:	no		-
write_info:	yes		dqonoff_sem

FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.

->alloc_space(), ->alloc_inode(), ->free_space(), ->free_inode() are called
only directly by the filesystem and do not call any fs functions only
the ->mark_dirty() operation.

More details about quota locking can be found in fs/dquot.c.

--------------------------- vm_operations_struct -----------------------------
prototypes:
	void (*open)(struct vm_area_struct*);
	void (*close)(struct vm_area_struct*);
N
Nick Piggin 已提交
507
	int (*fault)(struct vm_area_struct*, struct vm_fault *);
508
	int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);
509
	int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
L
Linus Torvalds 已提交
510 511

locking rules:
M
Mark Fasheh 已提交
512
		BKL	mmap_sem	PageLocked(page)
L
Linus Torvalds 已提交
513 514
open:		no	yes
close:		no	yes
N
Nick Piggin 已提交
515 516
fault:		no	yes		can return with page locked
page_mkwrite:	no	yes		can return with page locked
517
access:		no	yes
M
Mark Fasheh 已提交
518

N
Nick Piggin 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532
	->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
with the passed in "pgoff" in the vm_fault structure. If it is possible that
the page may be truncated and/or invalidated, then the filesystem must lock
the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.

	->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
the page has been truncated, the filesystem should not look up a new page
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
L
Linus Torvalds 已提交
533

534 535 536 537 538
	->access() is called when get_user_pages() fails in
acces_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace.  This function is needed only for
VM_IO | VM_PFNMAP VMAs.

L
Linus Torvalds 已提交
539 540 541 542 543 544 545 546
================================================================================
			Dubious stuff

(if you break something or notice that it is broken and do not fix it yourself
- at least put it here)

ipc/shm.c::shm_delete() - may need BKL.
->read() and ->write() in many drivers are (probably) missing BKL.