ep93xx_dma.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Driver for the Cirrus Logic EP93xx DMA Controller
 *
 * Copyright (C) 2011 Mika Westerberg
 *
 * DMA M2P implementation is based on the original
 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
 *
 *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
 *   Copyright (C) 2006 Applied Data Systems
 *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
 *
 * This driver is based on dw_dmac and amba-pl08x drivers.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
25
#include <linux/module.h>
26 27 28 29 30
#include <linux/platform_device.h>
#include <linux/slab.h>

#include <mach/dma.h>

31 32
#include "dmaengine.h"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* M2P registers */
#define M2P_CONTROL			0x0000
#define M2P_CONTROL_STALLINT		BIT(0)
#define M2P_CONTROL_NFBINT		BIT(1)
#define M2P_CONTROL_CH_ERROR_INT	BIT(3)
#define M2P_CONTROL_ENABLE		BIT(4)
#define M2P_CONTROL_ICE			BIT(6)

#define M2P_INTERRUPT			0x0004
#define M2P_INTERRUPT_STALL		BIT(0)
#define M2P_INTERRUPT_NFB		BIT(1)
#define M2P_INTERRUPT_ERROR		BIT(3)

#define M2P_PPALLOC			0x0008
#define M2P_STATUS			0x000c

#define M2P_MAXCNT0			0x0020
#define M2P_BASE0			0x0024
#define M2P_MAXCNT1			0x0030
#define M2P_BASE1			0x0034

#define M2P_STATE_IDLE			0
#define M2P_STATE_STALL			1
#define M2P_STATE_ON			2
#define M2P_STATE_NEXT			3

/* M2M registers */
#define M2M_CONTROL			0x0000
#define M2M_CONTROL_DONEINT		BIT(2)
#define M2M_CONTROL_ENABLE		BIT(3)
#define M2M_CONTROL_START		BIT(4)
#define M2M_CONTROL_DAH			BIT(11)
#define M2M_CONTROL_SAH			BIT(12)
#define M2M_CONTROL_PW_SHIFT		9
#define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
#define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
#define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
#define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
#define M2M_CONTROL_TM_SHIFT		13
#define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
#define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
74
#define M2M_CONTROL_NFBINT		BIT(21)
75 76 77 78 79 80 81 82
#define M2M_CONTROL_RSS_SHIFT		22
#define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
#define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
#define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
#define M2M_CONTROL_NO_HDSK		BIT(24)
#define M2M_CONTROL_PWSC_SHIFT		25

#define M2M_INTERRUPT			0x0004
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define M2M_INTERRUPT_MASK		6

#define M2M_STATUS			0x000c
#define M2M_STATUS_CTL_SHIFT		1
#define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
#define M2M_STATUS_BUF_SHIFT		4
#define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
#define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
#define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
#define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
#define M2M_STATUS_DONE			BIT(6)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

#define M2M_BCR0			0x0010
#define M2M_BCR1			0x0014
#define M2M_SAR_BASE0			0x0018
#define M2M_SAR_BASE1			0x001c
#define M2M_DAR_BASE0			0x002c
#define M2M_DAR_BASE1			0x0030

#define DMA_MAX_CHAN_BYTES		0xffff
#define DMA_MAX_CHAN_DESCRIPTORS	32

struct ep93xx_dma_engine;

/**
 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
 * @src_addr: source address of the transaction
 * @dst_addr: destination address of the transaction
 * @size: size of the transaction (in bytes)
 * @complete: this descriptor is completed
 * @txd: dmaengine API descriptor
 * @tx_list: list of linked descriptors
 * @node: link used for putting this into a channel queue
 */
struct ep93xx_dma_desc {
	u32				src_addr;
	u32				dst_addr;
	size_t				size;
	bool				complete;
	struct dma_async_tx_descriptor	txd;
	struct list_head		tx_list;
	struct list_head		node;
};

/**
 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
 * @chan: dmaengine API channel
 * @edma: pointer to to the engine device
 * @regs: memory mapped registers
 * @irq: interrupt number of the channel
 * @clk: clock used by this channel
 * @tasklet: channel specific tasklet used for callbacks
 * @lock: lock protecting the fields following
 * @flags: flags for the channel
 * @buffer: which buffer to use next (0/1)
 * @active: flattened chain of descriptors currently being processed
 * @queue: pending descriptors which are handled next
 * @free_list: list of free descriptors which can be used
 * @runtime_addr: physical address currently used as dest/src (M2M only). This
 *                is set via %DMA_SLAVE_CONFIG before slave operation is
 *                prepared
 * @runtime_ctrl: M2M runtime values for the control register.
 *
 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
 * will have slightly different scheme here: @active points to a head of
 * flattened DMA descriptor chain.
 *
 * @queue holds pending transactions. These are linked through the first
 * descriptor in the chain. When a descriptor is moved to the @active queue,
 * the first and chained descriptors are flattened into a single list.
 *
 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
 * necessary channel configuration information. For memcpy channels this must
 * be %NULL.
 */
struct ep93xx_dma_chan {
	struct dma_chan			chan;
	const struct ep93xx_dma_engine	*edma;
	void __iomem			*regs;
	int				irq;
	struct clk			*clk;
	struct tasklet_struct		tasklet;
	/* protects the fields following */
	spinlock_t			lock;
	unsigned long			flags;
/* Channel is configured for cyclic transfers */
#define EP93XX_DMA_IS_CYCLIC		0

	int				buffer;
	struct list_head		active;
	struct list_head		queue;
	struct list_head		free_list;
	u32				runtime_addr;
	u32				runtime_ctrl;
};

/**
 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
 * @dma_dev: holds the dmaengine device
 * @m2m: is this an M2M or M2P device
 * @hw_setup: method which sets the channel up for operation
 * @hw_shutdown: shuts the channel down and flushes whatever is left
 * @hw_submit: pushes active descriptor(s) to the hardware
 * @hw_interrupt: handle the interrupt
 * @num_channels: number of channels for this instance
 * @channels: array of channels
 *
 * There is one instance of this struct for the M2P channels and one for the
 * M2M channels. hw_xxx() methods are used to perform operations which are
 * different on M2M and M2P channels. These methods are called with channel
 * lock held and interrupts disabled so they cannot sleep.
 */
struct ep93xx_dma_engine {
	struct dma_device	dma_dev;
	bool			m2m;
	int			(*hw_setup)(struct ep93xx_dma_chan *);
	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
	void			(*hw_submit)(struct ep93xx_dma_chan *);
	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
#define INTERRUPT_UNKNOWN	0
#define INTERRUPT_DONE		1
#define INTERRUPT_NEXT_BUFFER	2

	size_t			num_channels;
	struct ep93xx_dma_chan	channels[];
};

static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
{
	return &edmac->chan.dev->device;
}

static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct ep93xx_dma_chan, chan);
}

/**
 * ep93xx_dma_set_active - set new active descriptor chain
 * @edmac: channel
 * @desc: head of the new active descriptor chain
 *
 * Sets @desc to be the head of the new active descriptor chain. This is the
 * chain which is processed next. The active list must be empty before calling
 * this function.
 *
 * Called with @edmac->lock held and interrupts disabled.
 */
static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
				  struct ep93xx_dma_desc *desc)
{
	BUG_ON(!list_empty(&edmac->active));

	list_add_tail(&desc->node, &edmac->active);

	/* Flatten the @desc->tx_list chain into @edmac->active list */
	while (!list_empty(&desc->tx_list)) {
		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
			struct ep93xx_dma_desc, node);

		/*
		 * We copy the callback parameters from the first descriptor
		 * to all the chained descriptors. This way we can call the
		 * callback without having to find out the first descriptor in
		 * the chain. Useful for cyclic transfers.
		 */
		d->txd.callback = desc->txd.callback;
		d->txd.callback_param = desc->txd.callback_param;

		list_move_tail(&d->node, &edmac->active);
	}
}

/* Called with @edmac->lock held and interrupts disabled */
static struct ep93xx_dma_desc *
ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
{
265 266 267
	if (list_empty(&edmac->active))
		return NULL;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
}

/**
 * ep93xx_dma_advance_active - advances to the next active descriptor
 * @edmac: channel
 *
 * Function advances active descriptor to the next in the @edmac->active and
 * returns %true if we still have descriptors in the chain to process.
 * Otherwise returns %false.
 *
 * When the channel is in cyclic mode always returns %true.
 *
 * Called with @edmac->lock held and interrupts disabled.
 */
static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
{
285 286
	struct ep93xx_dma_desc *desc;

287 288 289 290 291
	list_rotate_left(&edmac->active);

	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
		return true;

292 293 294 295
	desc = ep93xx_dma_get_active(edmac);
	if (!desc)
		return false;

296 297 298 299
	/*
	 * If txd.cookie is set it means that we are back in the first
	 * descriptor in the chain and hence done with it.
	 */
300
	return !desc->txd.cookie;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
}

/*
 * M2P DMA implementation
 */

static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
{
	writel(control, edmac->regs + M2P_CONTROL);
	/*
	 * EP93xx User's Guide states that we must perform a dummy read after
	 * write to the control register.
	 */
	readl(edmac->regs + M2P_CONTROL);
}

static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
{
	struct ep93xx_dma_data *data = edmac->chan.private;
	u32 control;

	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);

	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
		| M2P_CONTROL_ENABLE;
	m2p_set_control(edmac, control);

	return 0;
}

static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
{
	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
}

static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
{
	u32 control;

	control = readl(edmac->regs + M2P_CONTROL);
	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
	m2p_set_control(edmac, control);

	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
		cpu_relax();

	m2p_set_control(edmac, 0);

	while (m2p_channel_state(edmac) == M2P_STATE_STALL)
		cpu_relax();
}

static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
{
355
	struct ep93xx_dma_desc *desc;
356 357
	u32 bus_addr;

358 359 360 361 362 363
	desc = ep93xx_dma_get_active(edmac);
	if (!desc) {
		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
		return;
	}

364
	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		bus_addr = desc->src_addr;
	else
		bus_addr = desc->dst_addr;

	if (edmac->buffer == 0) {
		writel(desc->size, edmac->regs + M2P_MAXCNT0);
		writel(bus_addr, edmac->regs + M2P_BASE0);
	} else {
		writel(desc->size, edmac->regs + M2P_MAXCNT1);
		writel(bus_addr, edmac->regs + M2P_BASE1);
	}

	edmac->buffer ^= 1;
}

static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
{
	u32 control = readl(edmac->regs + M2P_CONTROL);

	m2p_fill_desc(edmac);
	control |= M2P_CONTROL_STALLINT;

	if (ep93xx_dma_advance_active(edmac)) {
		m2p_fill_desc(edmac);
		control |= M2P_CONTROL_NFBINT;
	}

	m2p_set_control(edmac, control);
}

static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
{
	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
	u32 control;

	if (irq_status & M2P_INTERRUPT_ERROR) {
		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);

		/* Clear the error interrupt */
		writel(1, edmac->regs + M2P_INTERRUPT);

		/*
		 * It seems that there is no easy way of reporting errors back
		 * to client so we just report the error here and continue as
		 * usual.
		 *
		 * Revisit this when there is a mechanism to report back the
		 * errors.
		 */
		dev_err(chan2dev(edmac),
			"DMA transfer failed! Details:\n"
			"\tcookie	: %d\n"
			"\tsrc_addr	: 0x%08x\n"
			"\tdst_addr	: 0x%08x\n"
			"\tsize		: %zu\n",
			desc->txd.cookie, desc->src_addr, desc->dst_addr,
			desc->size);
	}

	switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
	case M2P_INTERRUPT_STALL:
		/* Disable interrupts */
		control = readl(edmac->regs + M2P_CONTROL);
		control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
		m2p_set_control(edmac, control);

		return INTERRUPT_DONE;

	case M2P_INTERRUPT_NFB:
		if (ep93xx_dma_advance_active(edmac))
			m2p_fill_desc(edmac);

		return INTERRUPT_NEXT_BUFFER;
	}

	return INTERRUPT_UNKNOWN;
}

/*
 * M2M DMA implementation
 */

static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
{
	const struct ep93xx_dma_data *data = edmac->chan.private;
	u32 control = 0;

	if (!data) {
		/* This is memcpy channel, nothing to configure */
		writel(control, edmac->regs + M2M_CONTROL);
		return 0;
	}

	switch (data->port) {
	case EP93XX_DMA_SSP:
		/*
		 * This was found via experimenting - anything less than 5
		 * causes the channel to perform only a partial transfer which
		 * leads to problems since we don't get DONE interrupt then.
		 */
		control = (5 << M2M_CONTROL_PWSC_SHIFT);
		control |= M2M_CONTROL_NO_HDSK;

468
		if (data->direction == DMA_MEM_TO_DEV) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
			control |= M2M_CONTROL_DAH;
			control |= M2M_CONTROL_TM_TX;
			control |= M2M_CONTROL_RSS_SSPTX;
		} else {
			control |= M2M_CONTROL_SAH;
			control |= M2M_CONTROL_TM_RX;
			control |= M2M_CONTROL_RSS_SSPRX;
		}
		break;

	case EP93XX_DMA_IDE:
		/*
		 * This IDE part is totally untested. Values below are taken
		 * from the EP93xx Users's Guide and might not be correct.
		 */
484
		if (data->direction == DMA_MEM_TO_DEV) {
485 486 487 488 489 490 491 492 493
			/* Worst case from the UG */
			control = (3 << M2M_CONTROL_PWSC_SHIFT);
			control |= M2M_CONTROL_DAH;
			control |= M2M_CONTROL_TM_TX;
		} else {
			control = (2 << M2M_CONTROL_PWSC_SHIFT);
			control |= M2M_CONTROL_SAH;
			control |= M2M_CONTROL_TM_RX;
		}
494 495 496 497

		control |= M2M_CONTROL_NO_HDSK;
		control |= M2M_CONTROL_RSS_IDE;
		control |= M2M_CONTROL_PW_16;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		break;

	default:
		return -EINVAL;
	}

	writel(control, edmac->regs + M2M_CONTROL);
	return 0;
}

static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
{
	/* Just disable the channel */
	writel(0, edmac->regs + M2M_CONTROL);
}

static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
{
516 517 518 519 520 521 522
	struct ep93xx_dma_desc *desc;

	desc = ep93xx_dma_get_active(edmac);
	if (!desc) {
		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
		return;
	}
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

	if (edmac->buffer == 0) {
		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
		writel(desc->size, edmac->regs + M2M_BCR0);
	} else {
		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
		writel(desc->size, edmac->regs + M2M_BCR1);
	}

	edmac->buffer ^= 1;
}

static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
{
	struct ep93xx_dma_data *data = edmac->chan.private;
	u32 control = readl(edmac->regs + M2M_CONTROL);

	/*
	 * Since we allow clients to configure PW (peripheral width) we always
	 * clear PW bits here and then set them according what is given in
	 * the runtime configuration.
	 */
	control &= ~M2M_CONTROL_PW_MASK;
	control |= edmac->runtime_ctrl;

	m2m_fill_desc(edmac);
	control |= M2M_CONTROL_DONEINT;

553 554 555 556 557
	if (ep93xx_dma_advance_active(edmac)) {
		m2m_fill_desc(edmac);
		control |= M2M_CONTROL_NFBINT;
	}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	/*
	 * Now we can finally enable the channel. For M2M channel this must be
	 * done _after_ the BCRx registers are programmed.
	 */
	control |= M2M_CONTROL_ENABLE;
	writel(control, edmac->regs + M2M_CONTROL);

	if (!data) {
		/*
		 * For memcpy channels the software trigger must be asserted
		 * in order to start the memcpy operation.
		 */
		control |= M2M_CONTROL_START;
		writel(control, edmac->regs + M2M_CONTROL);
	}
}

575 576 577 578 579 580 581 582 583 584
/*
 * According to EP93xx User's Guide, we should receive DONE interrupt when all
 * M2M DMA controller transactions complete normally. This is not always the
 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
 * In effect, disabling the channel when only DONE bit is set could stop
 * currently running DMA transfer. To avoid this, we use Buffer FSM and
 * Control FSM to check current state of DMA channel.
 */
585 586
static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
{
587 588 589 590 591
	u32 status = readl(edmac->regs + M2M_STATUS);
	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
	bool done = status & M2M_STATUS_DONE;
	bool last_done;
592
	u32 control;
593
	struct ep93xx_dma_desc *desc;
594

595 596
	/* Accept only DONE and NFB interrupts */
	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
597 598
		return INTERRUPT_UNKNOWN;

599 600 601 602
	if (done) {
		/* Clear the DONE bit */
		writel(0, edmac->regs + M2M_INTERRUPT);
	}
603

604 605 606 607 608 609
	/*
	 * Check whether we are done with descriptors or not. This, together
	 * with DMA channel state, determines action to take in interrupt.
	 */
	desc = ep93xx_dma_get_active(edmac);
	last_done = !desc || desc->txd.cookie;
610 611

	/*
612 613 614
	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
	 * DMA channel. Using DONE and NFB bits from channel status register
	 * or bits from channel interrupt register is not reliable.
615
	 */
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	if (!last_done &&
	    (buf_fsm == M2M_STATUS_BUF_NO ||
	     buf_fsm == M2M_STATUS_BUF_ON)) {
		/*
		 * Two buffers are ready for update when Buffer FSM is in
		 * DMA_NO_BUF state. Only one buffer can be prepared without
		 * disabling the channel or polling the DONE bit.
		 * To simplify things, always prepare only one buffer.
		 */
		if (ep93xx_dma_advance_active(edmac)) {
			m2m_fill_desc(edmac);
			if (done && !edmac->chan.private) {
				/* Software trigger for memcpy channel */
				control = readl(edmac->regs + M2M_CONTROL);
				control |= M2M_CONTROL_START;
				writel(control, edmac->regs + M2M_CONTROL);
			}
			return INTERRUPT_NEXT_BUFFER;
		} else {
			last_done = true;
		}
637 638
	}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	/*
	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
	 * and Control FSM is in DMA_STALL state.
	 */
	if (last_done &&
	    buf_fsm == M2M_STATUS_BUF_NO &&
	    ctl_fsm == M2M_STATUS_CTL_STALL) {
		/* Disable interrupts and the channel */
		control = readl(edmac->regs + M2M_CONTROL);
		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
			    | M2M_CONTROL_ENABLE);
		writel(control, edmac->regs + M2M_CONTROL);
		return INTERRUPT_DONE;
	}

	/*
	 * Nothing to do this time.
	 */
	return INTERRUPT_NEXT_BUFFER;
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
}

/*
 * DMA engine API implementation
 */

static struct ep93xx_dma_desc *
ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
{
	struct ep93xx_dma_desc *desc, *_desc;
	struct ep93xx_dma_desc *ret = NULL;
	unsigned long flags;

	spin_lock_irqsave(&edmac->lock, flags);
	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
		if (async_tx_test_ack(&desc->txd)) {
			list_del_init(&desc->node);

			/* Re-initialize the descriptor */
			desc->src_addr = 0;
			desc->dst_addr = 0;
			desc->size = 0;
			desc->complete = false;
			desc->txd.cookie = 0;
			desc->txd.callback = NULL;
			desc->txd.callback_param = NULL;

			ret = desc;
			break;
		}
	}
	spin_unlock_irqrestore(&edmac->lock, flags);
	return ret;
}

static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
				struct ep93xx_dma_desc *desc)
{
	if (desc) {
		unsigned long flags;

		spin_lock_irqsave(&edmac->lock, flags);
		list_splice_init(&desc->tx_list, &edmac->free_list);
		list_add(&desc->node, &edmac->free_list);
		spin_unlock_irqrestore(&edmac->lock, flags);
	}
}

/**
 * ep93xx_dma_advance_work - start processing the next pending transaction
 * @edmac: channel
 *
 * If we have pending transactions queued and we are currently idling, this
 * function takes the next queued transaction from the @edmac->queue and
 * pushes it to the hardware for execution.
 */
static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
{
	struct ep93xx_dma_desc *new;
	unsigned long flags;

	spin_lock_irqsave(&edmac->lock, flags);
	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
		spin_unlock_irqrestore(&edmac->lock, flags);
		return;
	}

	/* Take the next descriptor from the pending queue */
	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
	list_del_init(&new->node);

	ep93xx_dma_set_active(edmac, new);

	/* Push it to the hardware */
	edmac->edma->hw_submit(edmac);
	spin_unlock_irqrestore(&edmac->lock, flags);
}

static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
{
	struct device *dev = desc->txd.chan->device->dev;

	if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, desc->src_addr, desc->size,
					 DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, desc->src_addr, desc->size,
				       DMA_TO_DEVICE);
	}
	if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, desc->dst_addr, desc->size,
					 DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, desc->dst_addr, desc->size,
				       DMA_FROM_DEVICE);
	}
}

static void ep93xx_dma_tasklet(unsigned long data)
{
	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
	struct ep93xx_dma_desc *desc, *d;
762 763
	dma_async_tx_callback callback = NULL;
	void *callback_param = NULL;
764 765 766
	LIST_HEAD(list);

	spin_lock_irq(&edmac->lock);
767 768 769 770 771
	/*
	 * If dma_terminate_all() was called before we get to run, the active
	 * list has become empty. If that happens we aren't supposed to do
	 * anything more than call ep93xx_dma_advance_work().
	 */
772
	desc = ep93xx_dma_get_active(edmac);
773 774
	if (desc) {
		if (desc->complete) {
V
Vinod Koul 已提交
775 776 777
			/* mark descriptor complete for non cyclic case only */
			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
				dma_cookie_complete(&desc->txd);
778 779 780 781
			list_splice_init(&edmac->active, &list);
		}
		callback = desc->txd.callback;
		callback_param = desc->txd.callback_param;
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	}
	spin_unlock_irq(&edmac->lock);

	/* Pick up the next descriptor from the queue */
	ep93xx_dma_advance_work(edmac);

	/* Now we can release all the chained descriptors */
	list_for_each_entry_safe(desc, d, &list, node) {
		/*
		 * For the memcpy channels the API requires us to unmap the
		 * buffers unless requested otherwise.
		 */
		if (!edmac->chan.private)
			ep93xx_dma_unmap_buffers(desc);

		ep93xx_dma_desc_put(edmac, desc);
	}

	if (callback)
		callback(callback_param);
}

static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
{
	struct ep93xx_dma_chan *edmac = dev_id;
807
	struct ep93xx_dma_desc *desc;
808 809 810 811
	irqreturn_t ret = IRQ_HANDLED;

	spin_lock(&edmac->lock);

812 813 814 815 816 817 818 819
	desc = ep93xx_dma_get_active(edmac);
	if (!desc) {
		dev_warn(chan2dev(edmac),
			 "got interrupt while active list is empty\n");
		spin_unlock(&edmac->lock);
		return IRQ_NONE;
	}

820 821
	switch (edmac->edma->hw_interrupt(edmac)) {
	case INTERRUPT_DONE:
822
		desc->complete = true;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
		tasklet_schedule(&edmac->tasklet);
		break;

	case INTERRUPT_NEXT_BUFFER:
		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
			tasklet_schedule(&edmac->tasklet);
		break;

	default:
		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
		ret = IRQ_NONE;
		break;
	}

	spin_unlock(&edmac->lock);
	return ret;
}

/**
 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
 * @tx: descriptor to be executed
 *
 * Function will execute given descriptor on the hardware or if the hardware
 * is busy, queue the descriptor to be executed later on. Returns cookie which
 * can be used to poll the status of the descriptor.
 */
static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
	struct ep93xx_dma_desc *desc;
	dma_cookie_t cookie;
	unsigned long flags;

	spin_lock_irqsave(&edmac->lock, flags);
857
	cookie = dma_cookie_assign(tx);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	desc = container_of(tx, struct ep93xx_dma_desc, txd);

	/*
	 * If nothing is currently prosessed, we push this descriptor
	 * directly to the hardware. Otherwise we put the descriptor
	 * to the pending queue.
	 */
	if (list_empty(&edmac->active)) {
		ep93xx_dma_set_active(edmac, desc);
		edmac->edma->hw_submit(edmac);
	} else {
		list_add_tail(&desc->node, &edmac->queue);
	}

	spin_unlock_irqrestore(&edmac->lock, flags);
	return cookie;
}

/**
 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
 * @chan: channel to allocate resources
 *
 * Function allocates necessary resources for the given DMA channel and
 * returns number of allocated descriptors for the channel. Negative errno
 * is returned in case of failure.
 */
static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct ep93xx_dma_data *data = chan->private;
	const char *name = dma_chan_name(chan);
	int ret, i;

	/* Sanity check the channel parameters */
	if (!edmac->edma->m2m) {
		if (!data)
			return -EINVAL;
		if (data->port < EP93XX_DMA_I2S1 ||
		    data->port > EP93XX_DMA_IRDA)
			return -EINVAL;
		if (data->direction != ep93xx_dma_chan_direction(chan))
			return -EINVAL;
	} else {
		if (data) {
			switch (data->port) {
			case EP93XX_DMA_SSP:
			case EP93XX_DMA_IDE:
906 907
				if (data->direction != DMA_MEM_TO_DEV &&
				    data->direction != DMA_DEV_TO_MEM)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
					return -EINVAL;
				break;
			default:
				return -EINVAL;
			}
		}
	}

	if (data && data->name)
		name = data->name;

	ret = clk_enable(edmac->clk);
	if (ret)
		return ret;

	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
	if (ret)
		goto fail_clk_disable;

	spin_lock_irq(&edmac->lock);
928
	dma_cookie_init(&edmac->chan);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	ret = edmac->edma->hw_setup(edmac);
	spin_unlock_irq(&edmac->lock);

	if (ret)
		goto fail_free_irq;

	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
		struct ep93xx_dma_desc *desc;

		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
		if (!desc) {
			dev_warn(chan2dev(edmac), "not enough descriptors\n");
			break;
		}

		INIT_LIST_HEAD(&desc->tx_list);

		dma_async_tx_descriptor_init(&desc->txd, chan);
		desc->txd.flags = DMA_CTRL_ACK;
		desc->txd.tx_submit = ep93xx_dma_tx_submit;

		ep93xx_dma_desc_put(edmac, desc);
	}

	return i;

fail_free_irq:
	free_irq(edmac->irq, edmac);
fail_clk_disable:
	clk_disable(edmac->clk);

	return ret;
}

/**
 * ep93xx_dma_free_chan_resources - release resources for the channel
 * @chan: channel
 *
 * Function releases all the resources allocated for the given channel.
 * The channel must be idle when this is called.
 */
static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct ep93xx_dma_desc *desc, *d;
	unsigned long flags;
	LIST_HEAD(list);

	BUG_ON(!list_empty(&edmac->active));
	BUG_ON(!list_empty(&edmac->queue));

	spin_lock_irqsave(&edmac->lock, flags);
	edmac->edma->hw_shutdown(edmac);
	edmac->runtime_addr = 0;
	edmac->runtime_ctrl = 0;
	edmac->buffer = 0;
	list_splice_init(&edmac->free_list, &list);
	spin_unlock_irqrestore(&edmac->lock, flags);

	list_for_each_entry_safe(desc, d, &list, node)
		kfree(desc);

	clk_disable(edmac->clk);
	free_irq(edmac->irq, edmac);
}

/**
 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
 * @chan: channel
 * @dest: destination bus address
 * @src: source bus address
 * @len: size of the transaction
 * @flags: flags for the descriptor
 *
 * Returns a valid DMA descriptor or %NULL in case of failure.
 */
1005
static struct dma_async_tx_descriptor *
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
			   dma_addr_t src, size_t len, unsigned long flags)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct ep93xx_dma_desc *desc, *first;
	size_t bytes, offset;

	first = NULL;
	for (offset = 0; offset < len; offset += bytes) {
		desc = ep93xx_dma_desc_get(edmac);
		if (!desc) {
			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
			goto fail;
		}

		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);

		desc->src_addr = src + offset;
		desc->dst_addr = dest + offset;
		desc->size = bytes;

		if (!first)
			first = desc;
		else
			list_add_tail(&desc->node, &first->tx_list);
	}

	first->txd.cookie = -EBUSY;
	first->txd.flags = flags;

	return &first->txd;
fail:
	ep93xx_dma_desc_put(edmac, first);
	return NULL;
}

/**
 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
 * @chan: channel
 * @sgl: list of buffers to transfer
 * @sg_len: number of entries in @sgl
 * @dir: direction of tha DMA transfer
 * @flags: flags for the descriptor
1049
 * @context: operation context (ignored)
1050 1051 1052 1053 1054
 *
 * Returns a valid DMA descriptor or %NULL in case of failure.
 */
static struct dma_async_tx_descriptor *
ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1055
			 unsigned int sg_len, enum dma_transfer_direction dir,
1056
			 unsigned long flags, void *context)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct ep93xx_dma_desc *desc, *first;
	struct scatterlist *sg;
	int i;

	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
		dev_warn(chan2dev(edmac),
			 "channel was configured with different direction\n");
		return NULL;
	}

	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
		dev_warn(chan2dev(edmac),
			 "channel is already used for cyclic transfers\n");
		return NULL;
	}

	first = NULL;
	for_each_sg(sgl, sg, sg_len, i) {
		size_t sg_len = sg_dma_len(sg);

		if (sg_len > DMA_MAX_CHAN_BYTES) {
			dev_warn(chan2dev(edmac), "too big transfer size %d\n",
				 sg_len);
			goto fail;
		}

		desc = ep93xx_dma_desc_get(edmac);
		if (!desc) {
			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
			goto fail;
		}

1091
		if (dir == DMA_MEM_TO_DEV) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
			desc->src_addr = sg_dma_address(sg);
			desc->dst_addr = edmac->runtime_addr;
		} else {
			desc->src_addr = edmac->runtime_addr;
			desc->dst_addr = sg_dma_address(sg);
		}
		desc->size = sg_len;

		if (!first)
			first = desc;
		else
			list_add_tail(&desc->node, &first->tx_list);
	}

	first->txd.cookie = -EBUSY;
	first->txd.flags = flags;

	return &first->txd;

fail:
	ep93xx_dma_desc_put(edmac, first);
	return NULL;
}

/**
 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
 * @chan: channel
 * @dma_addr: DMA mapped address of the buffer
 * @buf_len: length of the buffer (in bytes)
 * @period_len: lenght of a single period
 * @dir: direction of the operation
1123
 * @context: operation context (ignored)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 *
 * Prepares a descriptor for cyclic DMA operation. This means that once the
 * descriptor is submitted, we will be submitting in a @period_len sized
 * buffers and calling callback once the period has been elapsed. Transfer
 * terminates only when client calls dmaengine_terminate_all() for this
 * channel.
 *
 * Returns a valid DMA descriptor or %NULL in case of failure.
 */
static struct dma_async_tx_descriptor *
ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
			   size_t buf_len, size_t period_len,
1136
			   enum dma_transfer_direction dir, void *context)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct ep93xx_dma_desc *desc, *first;
	size_t offset = 0;

	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
		dev_warn(chan2dev(edmac),
			 "channel was configured with different direction\n");
		return NULL;
	}

	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
		dev_warn(chan2dev(edmac),
			 "channel is already used for cyclic transfers\n");
		return NULL;
	}

	if (period_len > DMA_MAX_CHAN_BYTES) {
		dev_warn(chan2dev(edmac), "too big period length %d\n",
			 period_len);
		return NULL;
	}

	/* Split the buffer into period size chunks */
	first = NULL;
	for (offset = 0; offset < buf_len; offset += period_len) {
		desc = ep93xx_dma_desc_get(edmac);
		if (!desc) {
			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
			goto fail;
		}

1169
		if (dir == DMA_MEM_TO_DEV) {
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
			desc->src_addr = dma_addr + offset;
			desc->dst_addr = edmac->runtime_addr;
		} else {
			desc->src_addr = edmac->runtime_addr;
			desc->dst_addr = dma_addr + offset;
		}

		desc->size = period_len;

		if (!first)
			first = desc;
		else
			list_add_tail(&desc->node, &first->tx_list);
	}

	first->txd.cookie = -EBUSY;

	return &first->txd;

fail:
	ep93xx_dma_desc_put(edmac, first);
	return NULL;
}

/**
 * ep93xx_dma_terminate_all - terminate all transactions
 * @edmac: channel
 *
 * Stops all DMA transactions. All descriptors are put back to the
 * @edmac->free_list and callbacks are _not_ called.
 */
static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
{
	struct ep93xx_dma_desc *desc, *_d;
	unsigned long flags;
	LIST_HEAD(list);

	spin_lock_irqsave(&edmac->lock, flags);
	/* First we disable and flush the DMA channel */
	edmac->edma->hw_shutdown(edmac);
	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
	list_splice_init(&edmac->active, &list);
	list_splice_init(&edmac->queue, &list);
	/*
	 * We then re-enable the channel. This way we can continue submitting
	 * the descriptors by just calling ->hw_submit() again.
	 */
	edmac->edma->hw_setup(edmac);
	spin_unlock_irqrestore(&edmac->lock, flags);

	list_for_each_entry_safe(desc, _d, &list, node)
		ep93xx_dma_desc_put(edmac, desc);

	return 0;
}

static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
				   struct dma_slave_config *config)
{
	enum dma_slave_buswidth width;
	unsigned long flags;
	u32 addr, ctrl;

	if (!edmac->edma->m2m)
		return -EINVAL;

	switch (config->direction) {
1237
	case DMA_DEV_TO_MEM:
1238 1239 1240 1241
		width = config->src_addr_width;
		addr = config->src_addr;
		break;

1242
	case DMA_MEM_TO_DEV:
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		width = config->dst_addr_width;
		addr = config->dst_addr;
		break;

	default:
		return -EINVAL;
	}

	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		ctrl = 0;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		ctrl = M2M_CONTROL_PW_16;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		ctrl = M2M_CONTROL_PW_32;
		break;
	default:
		return -EINVAL;
	}

	spin_lock_irqsave(&edmac->lock, flags);
	edmac->runtime_addr = addr;
	edmac->runtime_ctrl = ctrl;
	spin_unlock_irqrestore(&edmac->lock, flags);

	return 0;
}

/**
 * ep93xx_dma_control - manipulate all pending operations on a channel
 * @chan: channel
 * @cmd: control command to perform
 * @arg: optional argument
 *
 * Controls the channel. Function returns %0 in case of success or negative
 * error in case of failure.
 */
static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			      unsigned long arg)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	struct dma_slave_config *config;

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		return ep93xx_dma_terminate_all(edmac);

	case DMA_SLAVE_CONFIG:
		config = (struct dma_slave_config *)arg;
		return ep93xx_dma_slave_config(edmac, config);

	default:
		break;
	}

	return -ENOSYS;
}

/**
 * ep93xx_dma_tx_status - check if a transaction is completed
 * @chan: channel
 * @cookie: transaction specific cookie
 * @state: state of the transaction is stored here if given
 *
 * This function can be used to query state of a given transaction.
 */
static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
					    dma_cookie_t cookie,
					    struct dma_tx_state *state)
{
	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
	enum dma_status ret;
	unsigned long flags;

	spin_lock_irqsave(&edmac->lock, flags);
1320
	ret = dma_cookie_status(chan, cookie, state);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	spin_unlock_irqrestore(&edmac->lock, flags);

	return ret;
}

/**
 * ep93xx_dma_issue_pending - push pending transactions to the hardware
 * @chan: channel
 *
 * When this function is called, all pending transactions are pushed to the
 * hardware and executed.
 */
static void ep93xx_dma_issue_pending(struct dma_chan *chan)
{
	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
}

static int __init ep93xx_dma_probe(struct platform_device *pdev)
{
	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
	struct ep93xx_dma_engine *edma;
	struct dma_device *dma_dev;
	size_t edma_size;
	int ret, i;

	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
	if (!edma)
		return -ENOMEM;

	dma_dev = &edma->dma_dev;
	edma->m2m = platform_get_device_id(pdev)->driver_data;
	edma->num_channels = pdata->num_channels;

	INIT_LIST_HEAD(&dma_dev->channels);
	for (i = 0; i < pdata->num_channels; i++) {
		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
		struct ep93xx_dma_chan *edmac = &edma->channels[i];

		edmac->chan.device = dma_dev;
		edmac->regs = cdata->base;
		edmac->irq = cdata->irq;
		edmac->edma = edma;

		edmac->clk = clk_get(NULL, cdata->name);
		if (IS_ERR(edmac->clk)) {
			dev_warn(&pdev->dev, "failed to get clock for %s\n",
				 cdata->name);
			continue;
		}

		spin_lock_init(&edmac->lock);
		INIT_LIST_HEAD(&edmac->active);
		INIT_LIST_HEAD(&edmac->queue);
		INIT_LIST_HEAD(&edmac->free_list);
		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
			     (unsigned long)edmac);

		list_add_tail(&edmac->chan.device_node,
			      &dma_dev->channels);
	}

	dma_cap_zero(dma_dev->cap_mask);
	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);

	dma_dev->dev = &pdev->dev;
	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
	dma_dev->device_control = ep93xx_dma_control;
	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
	dma_dev->device_tx_status = ep93xx_dma_tx_status;

	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);

	if (edma->m2m) {
		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;

		edma->hw_setup = m2m_hw_setup;
		edma->hw_shutdown = m2m_hw_shutdown;
		edma->hw_submit = m2m_hw_submit;
		edma->hw_interrupt = m2m_hw_interrupt;
	} else {
		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);

		edma->hw_setup = m2p_hw_setup;
		edma->hw_shutdown = m2p_hw_shutdown;
		edma->hw_submit = m2p_hw_submit;
		edma->hw_interrupt = m2p_hw_interrupt;
	}

	ret = dma_async_device_register(dma_dev);
	if (unlikely(ret)) {
		for (i = 0; i < edma->num_channels; i++) {
			struct ep93xx_dma_chan *edmac = &edma->channels[i];
			if (!IS_ERR_OR_NULL(edmac->clk))
				clk_put(edmac->clk);
		}
		kfree(edma);
	} else {
		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
			 edma->m2m ? "M" : "P");
	}

	return ret;
}

static struct platform_device_id ep93xx_dma_driver_ids[] = {
	{ "ep93xx-dma-m2p", 0 },
	{ "ep93xx-dma-m2m", 1 },
	{ },
};

static struct platform_driver ep93xx_dma_driver = {
	.driver		= {
		.name	= "ep93xx-dma",
	},
	.id_table	= ep93xx_dma_driver_ids,
};

static int __init ep93xx_dma_module_init(void)
{
	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
}
subsys_initcall(ep93xx_dma_module_init);

MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
MODULE_DESCRIPTION("EP93xx DMA driver");
MODULE_LICENSE("GPL");