numa.c 43.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26 27 28
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
29
#include <linux/slab.h>
30
#include <asm/cputhreads.h>
31
#include <asm/sparsemem.h>
32
#include <asm/prom.h>
P
Paul Mackerras 已提交
33
#include <asm/smp.h>
34 35
#include <asm/cputhreads.h>
#include <asm/topology.h>
36 37
#include <asm/firmware.h>
#include <asm/paca.h>
38
#include <asm/hvcall.h>
39
#include <asm/setup.h>
40
#include <asm/vdso.h>
L
Linus Torvalds 已提交
41 42 43

static int numa_enabled = 1;

44 45
static char *cmdline __initdata;

L
Linus Torvalds 已提交
46 47 48
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

49
int numa_cpu_lookup_table[NR_CPUS];
50
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
51
struct pglist_data *node_data[MAX_NUMNODES];
52 53

EXPORT_SYMBOL(numa_cpu_lookup_table);
54
EXPORT_SYMBOL(node_to_cpumask_map);
55 56
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
57
static int min_common_depth;
58
static int n_mem_addr_cells, n_mem_size_cells;
59 60 61 62
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
63
static const __be32 *distance_ref_points;
64
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
65

66 67 68 69
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
70
 * Note: cpumask_of_node() is not valid until after this is done.
71 72 73
 */
static void __init setup_node_to_cpumask_map(void)
{
74
	unsigned int node;
75 76

	/* setup nr_node_ids if not done yet */
77 78
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
79 80 81 82 83 84 85 86 87

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

88
static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

135
/*
136
 * get_node_active_region - Return active region containing pfn
137
 * Active range returned is empty if none found.
138 139
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
140
 */
141 142
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
143
{
144 145 146 147 148 149 150 151 152 153 154
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
155 156
}

157 158 159 160 161 162 163 164 165
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
166 167
{
	numa_cpu_lookup_table[cpu] = node;
168 169 170 171 172
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
173

174 175
	dbg("adding cpu %d to node %d\n", cpu, node);

176 177
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
178 179
}

180
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
181 182 183 184 185 186
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

187
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
189 190 191 192 193
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
194
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
195 196

/* must hold reference to node during call */
197
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
198
{
199
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
200 201
}

202 203 204 205 206
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
207
static const __be32 *of_get_usable_memory(struct device_node *memory)
208
{
209
	const __be32 *prop;
210 211 212
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
213
		return NULL;
214 215 216
	return prop;
}

217 218 219 220 221 222
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
223
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224 225 226 227 228 229 230 231 232 233 234

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
235
EXPORT_SYMBOL(__node_distance);
236 237

static void initialize_distance_lookup_table(int nid,
238
		const __be32 *associativity)
239 240 241 242 243 244 245
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
246 247 248 249
		const __be32 *entry;

		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
250 251 252
	}
}

253 254 255
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
256
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
257
{
258
	int nid = -1;
L
Linus Torvalds 已提交
259 260

	if (min_common_depth == -1)
261
		goto out;
L
Linus Torvalds 已提交
262

263 264
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
265 266

	/* POWER4 LPAR uses 0xffff as invalid node */
267 268
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
269

270 271
	if (nid > 0 &&
	    of_read_number(associativity, 1) >= distance_ref_points_depth)
272
		initialize_distance_lookup_table(nid, associativity);
273

274
out:
275
	return nid;
L
Linus Torvalds 已提交
276 277
}

278 279 280 281 282 283
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
284
	const __be32 *tmp;
285 286 287 288 289 290 291

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
314 315
static int __init find_min_common_depth(void)
{
316
	int depth;
317
	struct device_node *root;
L
Linus Torvalds 已提交
318

319 320 321 322
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
323 324
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
325 326

	/*
327 328 329 330 331 332 333 334 335 336
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
337
	 */
338
	distance_ref_points = of_get_property(root,
339 340 341 342 343 344 345 346 347
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
348

349 350 351
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
352
		form1_affinity = 1;
353 354
	}

355
	if (form1_affinity) {
356
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
357
	} else {
358 359 360 361 362 363
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

364
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
365 366
	}

367 368 369 370 371 372 373 374 375 376
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

377
	of_node_put(root);
L
Linus Torvalds 已提交
378
	return depth;
379 380

err:
381
	of_node_put(root);
382
	return -1;
L
Linus Torvalds 已提交
383 384
}

385
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
386 387 388 389
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
390
	if (!memory)
391
		panic("numa.c: No memory nodes found!");
392

393
	*n_addr_cells = of_n_addr_cells(memory);
394
	*n_size_cells = of_n_size_cells(memory);
395
	of_node_put(memory);
L
Linus Torvalds 已提交
396 397
}

398
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
399 400 401 402
{
	unsigned long result = 0;

	while (n--) {
403
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
404 405 406 407 408
		(*buf)++;
	}
	return result;
}

409
/*
Y
Yinghai Lu 已提交
410
 * Read the next memblock list entry from the ibm,dynamic-memory property
411 412
 * and return the information in the provided of_drconf_cell structure.
 */
413
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
414
{
415
	const __be32 *cp;
416 417 418 419

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
420 421 422 423
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
424 425 426 427 428

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
429
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
430
 *
Y
Yinghai Lu 已提交
431 432
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
433
 * contains information as laid out in the of_drconf_cell struct above.
434
 */
435
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
436
{
437
	const __be32 *prop;
438 439 440 441 442 443
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

444
	entries = of_read_number(prop++, 1);
445 446 447 448 449 450 451 452 453 454 455 456

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
457
 * Retrieve and validate the ibm,lmb-size property for drconf memory
458 459
 * from the device tree.
 */
460
static u64 of_get_lmb_size(struct device_node *memory)
461
{
462
	const __be32 *prop;
463 464
	u32 len;

465
	prop = of_get_property(memory, "ibm,lmb-size", &len);
466 467 468 469 470 471 472 473 474
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
475
	const __be32 *arrays;
476 477 478
};

/*
L
Lucas De Marchi 已提交
479
 * Retrieve and validate the list of associativity arrays for drconf
480 481 482 483 484 485 486 487 488 489 490
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
491
	const __be32 *prop;
492 493 494 495 496 497
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

498 499
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
500

501
	/* Now that we know the number of arrays and size of each array,
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
526
		nid = of_read_number(&aa->arrays[index], 1);
527 528 529 530 531 532 533 534

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
535 536 537 538
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
539
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
540
{
541
	int nid = -1;
542 543 544 545 546 547 548 549 550 551 552 553 554
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
555 556 557

	if (!cpu) {
		WARN_ON(1);
558 559 560 561
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
562 563
	}

564
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
565

566
out_present:
567
	if (nid < 0 || !node_online(nid))
568
		nid = first_online_node;
L
Linus Torvalds 已提交
569

570
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
571
	of_node_put(cpu);
572
out:
573
	return nid;
L
Linus Torvalds 已提交
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

597
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
598 599 600
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
601
	int ret = NOTIFY_DONE, nid;
L
Linus Torvalds 已提交
602 603 604

	switch (action) {
	case CPU_UP_PREPARE:
605
	case CPU_UP_PREPARE_FROZEN:
606 607
		nid = numa_setup_cpu(lcpu);
		verify_cpu_node_mapping((int)lcpu, nid);
L
Linus Torvalds 已提交
608 609 610 611
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
612
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
613
	case CPU_UP_CANCELED:
614
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
615 616
		unmap_cpu_from_node(lcpu);
		ret = NOTIFY_OK;
617
		break;
L
Linus Torvalds 已提交
618 619 620 621 622 623 624 625 626 627 628
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
629
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
630
 */
631 632
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
633 634
{
	/*
Y
Yinghai Lu 已提交
635
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
636
	 * we've already adjusted it for the limit and it takes care of
637 638
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
639 640
	 */

Y
Yinghai Lu 已提交
641
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
642 643
		return size;

Y
Yinghai Lu 已提交
644
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
645 646
		return 0;

Y
Yinghai Lu 已提交
647
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
648 649
}

650 651 652 653
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
654
static inline int __init read_usm_ranges(const __be32 **usm)
655 656
{
	/*
657
	 * For each lmb in ibm,dynamic-memory a corresponding
658 659 660 661 662 663 664
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

665 666 667 668 669 670
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
671
	const __be32 *uninitialized_var(dm), *usm;
672
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
673
	unsigned long lmb_size, base, size, sz;
674
	int nid;
675
	struct assoc_arrays aa = { .arrays = NULL };
676 677 678

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
679 680
		return;

681 682
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
683 684 685 686
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
687 688
		return;

689 690 691 692 693
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

694
	for (; n != 0; --n) {
695 696 697 698 699 700 701 702
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
703
			continue;
704

705
		base = drmem.base_addr;
706
		size = lmb_size;
707
		ranges = 1;
708

709 710 711 712 713 714 715 716 717 718 719 720 721
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
722
					   &nid);
723 724 725
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
726 727
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
728
		} while (--ranges);
729 730 731
	}
}

L
Linus Torvalds 已提交
732 733
static int __init parse_numa_properties(void)
{
734
	struct device_node *memory;
735
	int default_nid = 0;
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745 746 747
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

748 749
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
750
	/*
751 752 753
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
754
	 */
755
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
756
		struct device_node *cpu;
757
		int nid;
L
Linus Torvalds 已提交
758

759
		cpu = of_get_cpu_node(i, NULL);
760
		BUG_ON(!cpu);
761
		nid = of_node_to_nid_single(cpu);
762
		of_node_put(cpu);
L
Linus Torvalds 已提交
763

764 765 766 767 768 769 770 771
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
772 773
	}

774
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
775 776

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
777 778
		unsigned long start;
		unsigned long size;
779
		int nid;
L
Linus Torvalds 已提交
780
		int ranges;
781
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
782 783
		unsigned int len;

784
		memcell_buf = of_get_property(memory,
785 786
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
787
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
788 789 790
		if (!memcell_buf || len <= 0)
			continue;

791 792
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
793 794
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
795 796
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
797

798 799 800 801 802
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
803
		nid = of_node_to_nid_single(memory);
804 805
		if (nid < 0)
			nid = default_nid;
806 807

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
808
		node_set_online(nid);
L
Linus Torvalds 已提交
809

810
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
811 812 813 814 815 816
			if (--ranges)
				goto new_range;
			else
				continue;
		}

817
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
818 819 820 821 822

		if (--ranges)
			goto new_range;
	}

823
	/*
A
Anton Blanchard 已提交
824 825 826
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
827 828 829 830 831
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
832 833 834 835 836
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
837 838
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
839
	unsigned long start_pfn, end_pfn;
840 841
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
842

843
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
844
	       top_of_ram, total_ram);
845
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
846 847
	       (top_of_ram - total_ram) >> 20);

848
	for_each_memblock(memory, reg) {
849 850
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
851 852

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
853
		memblock_set_node(PFN_PHYS(start_pfn),
854 855
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
856
		node_set_online(nid);
857
	}
L
Linus Torvalds 已提交
858 859
}

860 861 862 863 864 865 866 867 868
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
869
		printk(KERN_DEBUG "Node %d CPUs:", node);
870 871 872 873 874 875

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
876 877 878
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
879 880 881 882 883 884 885 886 887 888 889
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
890
			printk("-%u", nr_cpu_ids - 1);
891 892 893 894 895
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
896 897 898 899 900 901 902 903 904 905
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

906
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
907 908 909

		count = 0;

Y
Yinghai Lu 已提交
910
		for (i = 0; i < memblock_end_of_DRAM();
911 912
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
930
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
931 932 933
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
934
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
935
 */
936
static void __init *careful_zallocation(int nid, unsigned long size,
937 938
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
939
{
940
	void *ret;
941
	int new_nid;
942 943
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
944
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
945 946

	/* retry over all memory */
947
	if (!ret_paddr)
Y
Yinghai Lu 已提交
948
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
949

950
	if (!ret_paddr)
951
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
952 953
		      size, nid);

954 955
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
956
	/*
957
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
958
	 * and hand over control from the MEMBLOCK allocator to the
959 960
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
961
	 * bootmem allocator instead of the MEMBLOCK allocator.
962 963 964
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
965
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
966
	 * since it would be useless.
L
Linus Torvalds 已提交
967
	 */
968
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
969
	if (new_nid < nid) {
970
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
971 972
				size, align, 0);

973
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
974 975
	}

976
	memset(ret, 0, size);
977
	return ret;
L
Linus Torvalds 已提交
978 979
}

980
static struct notifier_block ppc64_numa_nb = {
981 982 983 984
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

985
static void __init mark_reserved_regions_for_nid(int nid)
986 987
{
	struct pglist_data *node = NODE_DATA(nid);
988
	struct memblock_region *reg;
989

990 991 992
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
993
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
994
		unsigned long end_pfn = PFN_UP(physbase + size);
995
		struct node_active_region node_ar;
996
		unsigned long node_end_pfn = pgdat_end_pfn(node);
997 998

		/*
Y
Yinghai Lu 已提交
999
		 * Check to make sure that this memblock.reserved area is
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1019
					- physbase;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1052 1053
void __init do_init_bootmem(void)
{
1054
	int nid, cpu;
L
Linus Torvalds 已提交
1055 1056

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1057
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1058 1059 1060 1061 1062
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1063
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1064 1065

	for_each_online_node(nid) {
1066
		unsigned long start_pfn, end_pfn;
1067
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1068 1069
		unsigned long bootmap_pages;

1070
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1071

1072 1073 1074 1075 1076 1077 1078
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1079
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1080
					sizeof(struct pglist_data),
1081
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1082 1083 1084 1085

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1086
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1087 1088
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1089 1090 1091 1092

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1093 1094
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1095

1096
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1097
		bootmem_vaddr = careful_zallocation(nid,
1098 1099
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1100

1101
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1102

1103 1104
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1105
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1106

1107
		free_bootmem_with_active_regions(nid, end_pfn);
1108 1109
		/*
		 * Be very careful about moving this around.  Future
1110
		 * calls to careful_zallocation() depend on this getting
1111 1112 1113
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1114
		sparse_memory_present_with_active_regions(nid);
1115
	}
1116 1117

	init_bootmem_done = 1;
1118 1119 1120 1121 1122 1123 1124

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

1125
	reset_numa_cpu_lookup_table();
1126
	register_cpu_notifier(&ppc64_numa_nb);
1127 1128 1129 1130 1131
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
	 */
1132
	for_each_present_cpu(cpu) {
1133
		numa_setup_cpu((unsigned long)cpu);
1134
	}
L
Linus Torvalds 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1148 1149 1150 1151
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1152 1153 1154
	return 0;
}
early_param("numa", early_numa);
1155 1156

#ifdef CONFIG_MEMORY_HOTPLUG
1157
/*
1158 1159 1160
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1161 1162 1163 1164
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
1165
	const __be32 *dm;
1166
	unsigned int drconf_cell_cnt, rc;
1167
	unsigned long lmb_size;
1168
	struct assoc_arrays aa;
1169
	int nid = -1;
1170

1171 1172 1173
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1174

1175 1176
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1177
		return -1;
1178 1179 1180

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1181
		return -1;
1182

1183
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1194
		if ((scn_addr < drmem.base_addr)
1195
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1196 1197
			continue;

1198
		nid = of_drconf_to_nid_single(&drmem, &aa);
1199 1200 1201 1202 1203 1204 1205 1206 1207
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1208
 * each memblock.
1209
 */
1210
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1211
{
1212
	struct device_node *memory;
1213 1214
	int nid = -1;

1215
	for_each_node_by_type(memory, "memory") {
1216 1217
		unsigned long start, size;
		int ranges;
1218
		const __be32 *memcell_buf;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1238

1239 1240
		if (nid >= 0)
			break;
1241 1242
	}

1243 1244
	of_node_put(memory);

1245
	return nid;
1246 1247
}

1248 1249
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1250 1251
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1252 1253 1254 1255
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1256
	int nid, found = 0;
1257 1258

	if (!numa_enabled || (min_common_depth < 0))
1259
		return first_online_node;
1260 1261 1262 1263 1264

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1265 1266
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1267
	}
1268

1269
	if (nid < 0 || !node_online(nid))
1270
		nid = first_online_node;
1271

1272 1273
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1274

1275 1276 1277 1278
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1279 1280
		}
	}
1281 1282 1283

	BUG_ON(!found);
	return nid;
1284
}
1285

1286 1287 1288 1289 1290
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
1291
	const __be32 *dm = NULL;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1312
#endif /* CONFIG_MEMORY_HOTPLUG */
1313

1314
/* Virtual Processor Home Node (VPHN) support */
1315
#ifdef CONFIG_PPC_SPLPAR
1316 1317 1318 1319 1320 1321 1322
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1323
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1324 1325
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1326 1327
static int prrn_enabled;
static void reset_topology_timer(void);
1328 1329 1330 1331 1332 1333 1334

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1335
	int cpu;
1336

1337 1338 1339
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1340
	for_each_possible_cpu(cpu) {
1341
		int i;
1342 1343 1344
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1345
		for (i = 0; i < distance_ref_points_depth; i++)
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1363
	int cpu;
1364 1365 1366 1367 1368 1369 1370
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1371
		for (i = 0; i < distance_ref_points_depth; i++) {
1372
			if (hypervisor_counts[i] != counts[i]) {
1373 1374 1375 1376 1377
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1378 1379
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1380 1381 1382
		}
	}

1383
	return cpumask_weight(changes);
1384 1385
}

1386 1387 1388 1389 1390
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1391 1392 1393 1394 1395

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
1396
static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1397
{
1398
	int i, nr_assoc_doms = 0;
1399
	const __be16 *field = (const __be16 *) packed;
1400 1401 1402 1403 1404

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1405
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1406
		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1407 1408 1409 1410
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
1411
			unpacked[i] = *((__be32 *)field);
1412
			field += 2;
1413
		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1414
			/* Data is in the lower 15 bits of this field */
1415 1416
			unpacked[i] = cpu_to_be32(
				be16_to_cpup(field) & VPHN_FIELD_MASK);
1417 1418
			field++;
			nr_assoc_doms++;
1419
		} else {
1420 1421 1422
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
1423
			unpacked[i] = *((__be32 *)field);
1424 1425 1426 1427 1428
			field += 2;
			nr_assoc_doms++;
		}
	}

1429
	/* The first cell contains the length of the property */
1430
	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1431

1432 1433 1434 1435 1436 1437 1438
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1439
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1440
{
1441
	long rc;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1453
					__be32 *associativity)
1454
{
1455
	long rc;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1488
	cpu = smp_processor_id();
1489 1490 1491 1492 1493 1494 1495

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1496
		vdso_getcpu_init();
1497 1498 1499 1500 1501
	}

	return 0;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1529 1530
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1531
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1532 1533 1534
 */
int arch_update_cpu_topology(void)
{
1535
	unsigned int cpu, sibling, changed = 0;
1536
	struct topology_update_data *updates, *ud;
1537
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1538
	cpumask_t updated_cpus;
1539
	struct device *dev;
1540
	int weight, new_nid, i = 0;
1541

1542 1543 1544 1545 1546 1547 1548
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1549

1550 1551
	cpumask_clear(&updated_cpus);

1552
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1582

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1593 1594
	}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1609
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1610

1611 1612 1613 1614 1615 1616 1617 1618
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1619
	for (ud = &updates[0]; ud; ud = ud->next) {
1620 1621 1622
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1623
		dev = get_cpu_device(ud->cpu);
1624 1625
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1626
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1627
		changed = 1;
1628 1629
	}

1630
out:
1631
	kfree(updates);
1632
	return changed;
1633 1634 1635 1636 1637 1638 1639 1640
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1641
static void topology_schedule_update(void)
1642 1643 1644 1645 1646 1647
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1648
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1649
		topology_schedule_update();
1650 1651 1652 1653 1654
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1655 1656 1657 1658
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1659
static void reset_topology_timer(void)
1660 1661 1662
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1663
	mod_timer(&topology_timer, topology_timer.expires);
1664 1665
}

1666 1667
#ifdef CONFIG_SMP

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1684 1685
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1686 1687 1688 1689 1690 1691 1692 1693 1694
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1695 1696
}

1697 1698 1699 1700
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1701 1702
#endif

1703
/*
1704
 * Start polling for associativity changes.
1705 1706 1707 1708 1709
 */
int start_topology_update(void)
{
	int rc = 0;

1710 1711 1712 1713
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1714
#ifdef CONFIG_SMP
1715
			rc = of_reconfig_notifier_register(&dt_update_nb);
1716
#endif
1717
		}
1718
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1719
		   lppaca_shared_proc(get_lppaca())) {
1720 1721 1722 1723 1724 1725 1726
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1737 1738 1739 1740
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1741
#ifdef CONFIG_SMP
1742
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1743
#endif
1744 1745 1746 1747 1748 1749
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1750
}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
	start_topology_update();
1804 1805
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1806 1807

	return 0;
1808
}
1809
device_initcall(topology_update_init);
1810
#endif /* CONFIG_PPC_SPLPAR */