numa.c 36.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <asm/sparsemem.h>
26
#include <asm/prom.h>
P
Paul Mackerras 已提交
27
#include <asm/smp.h>
28 29
#include <asm/firmware.h>
#include <asm/paca.h>
30
#include <asm/hvcall.h>
31
#include <asm/setup.h>
L
Linus Torvalds 已提交
32 33 34

static int numa_enabled = 1;

35 36
static char *cmdline __initdata;

L
Linus Torvalds 已提交
37 38 39
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

40
int numa_cpu_lookup_table[NR_CPUS];
41
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
42
struct pglist_data *node_data[MAX_NUMNODES];
43 44

EXPORT_SYMBOL(numa_cpu_lookup_table);
45
EXPORT_SYMBOL(node_to_cpumask_map);
46 47
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
48
static int min_common_depth;
49
static int n_mem_addr_cells, n_mem_size_cells;
50 51 52 53 54 55
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
static const unsigned int *distance_ref_points;
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
56

57 58 59 60
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
61
 * Note: cpumask_of_node() is not valid until after this is done.
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 */
static void __init setup_node_to_cpumask_map(void)
{
	unsigned int node, num = 0;

	/* setup nr_node_ids if not done yet */
	if (nr_node_ids == MAX_NUMNODES) {
		for_each_node_mask(node, node_possible_map)
			num = node;
		nr_node_ids = num + 1;
	}

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

129
/*
130
 * get_node_active_region - Return active region containing pfn
131
 * Active range returned is empty if none found.
132 133
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
134
 */
135 136
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
137
{
138 139 140 141 142 143 144 145 146 147 148
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
149 150
}

151
static void map_cpu_to_node(int cpu, int node)
L
Linus Torvalds 已提交
152 153
{
	numa_cpu_lookup_table[cpu] = node;
154

155 156
	dbg("adding cpu %d to node %d\n", cpu, node);

157 158
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
159 160
}

161
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
162 163 164 165 166 167
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

168
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
170 171 172 173 174
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
175
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
176 177

/* must hold reference to node during call */
178
static const int *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
179
{
180
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
181 182
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
static const u32 *of_get_usable_memory(struct device_node *memory)
{
	const u32 *prop;
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;
	return prop;
}

198 199 200 201 202 203
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
204
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
		const unsigned int *associativity)
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
		distance_lookup_table[nid][i] =
			associativity[distance_ref_points[i]];
	}
}

231 232 233
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
234
static int associativity_to_nid(const unsigned int *associativity)
L
Linus Torvalds 已提交
235
{
236
	int nid = -1;
L
Linus Torvalds 已提交
237 238

	if (min_common_depth == -1)
239
		goto out;
L
Linus Torvalds 已提交
240

241 242
	if (associativity[0] >= min_common_depth)
		nid = associativity[min_common_depth];
243 244

	/* POWER4 LPAR uses 0xffff as invalid node */
245 246
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
247

248 249
	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
		initialize_distance_lookup_table(nid, associativity);
250

251
out:
252
	return nid;
L
Linus Torvalds 已提交
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
	const unsigned int *tmp;

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
291 292
static int __init find_min_common_depth(void)
{
293
	int depth;
294
	struct device_node *chosen;
295
	struct device_node *root;
296
	const char *vec5;
L
Linus Torvalds 已提交
297

298 299 300 301
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
302 303
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
304 305

	/*
306 307 308 309 310 311 312 313 314 315
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
316
	 */
317
	distance_ref_points = of_get_property(root,
318 319 320 321 322 323 324 325 326
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
327

328 329
#define VEC5_AFFINITY_BYTE	5
#define VEC5_AFFINITY		0x80
330 331 332 333 334 335 336 337 338 339 340 341 342

	if (firmware_has_feature(FW_FEATURE_OPAL))
		form1_affinity = 1;
	else {
		chosen = of_find_node_by_path("/chosen");
		if (chosen) {
			vec5 = of_get_property(chosen,
					       "ibm,architecture-vec-5", NULL);
			if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
							VEC5_AFFINITY)) {
				dbg("Using form 1 affinity\n");
				form1_affinity = 1;
			}
343 344

			of_node_put(chosen);
345
		}
346 347
	}

348 349
	if (form1_affinity) {
		depth = distance_ref_points[0];
L
Linus Torvalds 已提交
350
	} else {
351 352 353 354 355 356 357
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

		depth = distance_ref_points[1];
L
Linus Torvalds 已提交
358 359
	}

360 361 362 363 364 365 366 367 368 369
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

370
	of_node_put(root);
L
Linus Torvalds 已提交
371
	return depth;
372 373

err:
374
	of_node_put(root);
375
	return -1;
L
Linus Torvalds 已提交
376 377
}

378
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
379 380 381 382
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
383
	if (!memory)
384
		panic("numa.c: No memory nodes found!");
385

386
	*n_addr_cells = of_n_addr_cells(memory);
387
	*n_size_cells = of_n_size_cells(memory);
388
	of_node_put(memory);
L
Linus Torvalds 已提交
389 390
}

391
static unsigned long read_n_cells(int n, const unsigned int **buf)
L
Linus Torvalds 已提交
392 393 394 395 396 397 398 399 400 401
{
	unsigned long result = 0;

	while (n--) {
		result = (result << 32) | **buf;
		(*buf)++;
	}
	return result;
}

402
/*
Y
Yinghai Lu 已提交
403
 * Read the next memblock list entry from the ibm,dynamic-memory property
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 * and return the information in the provided of_drconf_cell structure.
 */
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
{
	const u32 *cp;

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
	drmem->drc_index = cp[0];
	drmem->reserved = cp[1];
	drmem->aa_index = cp[2];
	drmem->flags = cp[3];

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
422
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
423
 *
Y
Yinghai Lu 已提交
424 425
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
426
 * contains information as laid out in the of_drconf_cell struct above.
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
 */
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
{
	const u32 *prop;
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

	entries = *prop++;

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
450
 * Retrieve and validate the ibm,lmb-size property for drconf memory
451 452
 * from the device tree.
 */
453
static u64 of_get_lmb_size(struct device_node *memory)
454 455 456 457
{
	const u32 *prop;
	u32 len;

458
	prop = of_get_property(memory, "ibm,lmb-size", &len);
459 460 461 462 463 464 465 466 467 468 469 470 471
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
	const u32 *arrays;
};

/*
L
Lucas De Marchi 已提交
472
 * Retrieve and validate the list of associativity arrays for drconf
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
	const u32 *prop;
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

	aa->n_arrays = *prop++;
	aa->array_sz = *prop++;

494
	/* Now that we know the number of arrays and size of each array,
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
		nid = aa->arrays[index];

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
528 529 530 531
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
532
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
533
{
534
	int nid = 0;
535
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
536 537 538 539 540 541

	if (!cpu) {
		WARN_ON(1);
		goto out;
	}

542
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
543

544
	if (nid < 0 || !node_online(nid))
545
		nid = first_online_node;
L
Linus Torvalds 已提交
546
out:
547
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
548 549 550

	of_node_put(cpu);

551
	return nid;
L
Linus Torvalds 已提交
552 553
}

554
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562
			     unsigned long action,
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
	int ret = NOTIFY_DONE;

	switch (action) {
	case CPU_UP_PREPARE:
563
	case CPU_UP_PREPARE_FROZEN:
564
		numa_setup_cpu(lcpu);
L
Linus Torvalds 已提交
565 566 567 568
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
569
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
570
	case CPU_UP_CANCELED:
571
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
586
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
587
 */
588 589
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
590 591
{
	/*
Y
Yinghai Lu 已提交
592
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
593
	 * we've already adjusted it for the limit and it takes care of
594 595
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
596 597
	 */

Y
Yinghai Lu 已提交
598
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
599 600
		return size;

Y
Yinghai Lu 已提交
601
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
602 603
		return 0;

Y
Yinghai Lu 已提交
604
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
605 606
}

607 608 609 610 611 612 613
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
static inline int __init read_usm_ranges(const u32 **usm)
{
	/*
614
	 * For each lmb in ibm,dynamic-memory a corresponding
615 616 617 618 619 620 621
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

622 623 624 625 626 627
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
628
	const u32 *uninitialized_var(dm), *usm;
629
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
630
	unsigned long lmb_size, base, size, sz;
631
	int nid;
632
	struct assoc_arrays aa = { .arrays = NULL };
633 634 635

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
636 637
		return;

638 639
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
640 641 642 643
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
644 645
		return;

646 647 648 649 650
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

651
	for (; n != 0; --n) {
652 653 654 655 656 657 658 659
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
660
			continue;
661

662
		base = drmem.base_addr;
663
		size = lmb_size;
664
		ranges = 1;
665

666 667 668 669 670 671 672 673 674 675 676 677 678
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
679
					   &nid);
680 681 682
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
T
Tejun Heo 已提交
683
				memblock_set_node(base, sz, nid);
684
		} while (--ranges);
685 686 687
	}
}

L
Linus Torvalds 已提交
688 689
static int __init parse_numa_properties(void)
{
690
	struct device_node *memory;
691
	int default_nid = 0;
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700 701 702 703
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

704 705
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
706
	/*
707 708 709
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
710
	 */
711
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
712
		struct device_node *cpu;
713
		int nid;
L
Linus Torvalds 已提交
714

715
		cpu = of_get_cpu_node(i, NULL);
716
		BUG_ON(!cpu);
717
		nid = of_node_to_nid_single(cpu);
718
		of_node_put(cpu);
L
Linus Torvalds 已提交
719

720 721 722 723 724 725 726 727
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
728 729
	}

730
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
731 732

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
733 734
		unsigned long start;
		unsigned long size;
735
		int nid;
L
Linus Torvalds 已提交
736
		int ranges;
737
		const unsigned int *memcell_buf;
L
Linus Torvalds 已提交
738 739
		unsigned int len;

740
		memcell_buf = of_get_property(memory,
741 742
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
743
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
744 745 746
		if (!memcell_buf || len <= 0)
			continue;

747 748
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
749 750
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
751 752
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
753

754 755 756 757 758
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
759
		nid = of_node_to_nid_single(memory);
760 761
		if (nid < 0)
			nid = default_nid;
762 763

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
764
		node_set_online(nid);
L
Linus Torvalds 已提交
765

766
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
767 768 769 770 771 772
			if (--ranges)
				goto new_range;
			else
				continue;
		}

T
Tejun Heo 已提交
773
		memblock_set_node(start, size, nid);
L
Linus Torvalds 已提交
774 775 776 777 778

		if (--ranges)
			goto new_range;
	}

779
	/*
A
Anton Blanchard 已提交
780 781 782
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
783 784 785 786 787
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
788 789 790 791 792
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
793 794
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
795
	unsigned long start_pfn, end_pfn;
796 797
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
798

799
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
800
	       top_of_ram, total_ram);
801
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
802 803
	       (top_of_ram - total_ram) >> 20);

804
	for_each_memblock(memory, reg) {
805 806
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
807 808

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
809 810
		memblock_set_node(PFN_PHYS(start_pfn),
				  PFN_PHYS(end_pfn - start_pfn), nid);
811
		node_set_online(nid);
812
	}
L
Linus Torvalds 已提交
813 814
}

815 816 817 818 819 820 821 822 823
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
824
		printk(KERN_DEBUG "Node %d CPUs:", node);
825 826 827 828 829 830

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
831 832 833
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
834 835 836 837 838 839 840 841 842 843 844
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
845
			printk("-%u", nr_cpu_ids - 1);
846 847 848 849 850
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

861
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
862 863 864

		count = 0;

Y
Yinghai Lu 已提交
865
		for (i = 0; i < memblock_end_of_DRAM();
866 867
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
885
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
886 887 888
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
889
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
890
 */
891
static void __init *careful_zallocation(int nid, unsigned long size,
892 893
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
894
{
895
	void *ret;
896
	int new_nid;
897 898
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
899
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
900 901

	/* retry over all memory */
902
	if (!ret_paddr)
Y
Yinghai Lu 已提交
903
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
904

905
	if (!ret_paddr)
906
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
907 908
		      size, nid);

909 910
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
911
	/*
912
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
913
	 * and hand over control from the MEMBLOCK allocator to the
914 915
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
916
	 * bootmem allocator instead of the MEMBLOCK allocator.
917 918 919
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
920
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
921
	 * since it would be useless.
L
Linus Torvalds 已提交
922
	 */
923
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
924
	if (new_nid < nid) {
925
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
926 927
				size, align, 0);

928
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
929 930
	}

931
	memset(ret, 0, size);
932
	return ret;
L
Linus Torvalds 已提交
933 934
}

935 936 937 938 939
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

940
static void __init mark_reserved_regions_for_nid(int nid)
941 942
{
	struct pglist_data *node = NODE_DATA(nid);
943
	struct memblock_region *reg;
944

945 946 947
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
948
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
949
		unsigned long end_pfn = PFN_UP(physbase + size);
950 951 952 953 954
		struct node_active_region node_ar;
		unsigned long node_end_pfn = node->node_start_pfn +
					     node->node_spanned_pages;

		/*
Y
Yinghai Lu 已提交
955
		 * Check to make sure that this memblock.reserved area is
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
975
					- physbase;
976 977 978 979 980 981 982 983 984 985 986
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1008 1009 1010 1011 1012
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1013
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1019
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1020 1021

	for_each_online_node(nid) {
1022
		unsigned long start_pfn, end_pfn;
1023
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1024 1025
		unsigned long bootmap_pages;

1026
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1027

1028 1029 1030 1031 1032 1033 1034
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1035
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1036
					sizeof(struct pglist_data),
1037
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1038 1039 1040 1041

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1042
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1043 1044
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1045 1046 1047 1048

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1049 1050
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1051

1052
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1053
		bootmem_vaddr = careful_zallocation(nid,
1054 1055
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1056

1057
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1058

1059 1060
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1061
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1062

1063
		free_bootmem_with_active_regions(nid, end_pfn);
1064 1065
		/*
		 * Be very careful about moving this around.  Future
1066
		 * calls to careful_zallocation() depend on this getting
1067 1068 1069
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1070
		sparse_memory_present_with_active_regions(nid);
1071
	}
1072 1073

	init_bootmem_done = 1;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1084 1085 1086 1087
}

void __init paging_init(void)
{
1088 1089
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1090
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1091
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1105 1106 1107 1108
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1109 1110 1111
	return 0;
}
early_param("numa", early_numa);
1112 1113

#ifdef CONFIG_MEMORY_HOTPLUG
1114
/*
1115 1116 1117
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1118 1119 1120 1121 1122
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
	const u32 *dm;
1123
	unsigned int drconf_cell_cnt, rc;
1124
	unsigned long lmb_size;
1125
	struct assoc_arrays aa;
1126
	int nid = -1;
1127

1128 1129 1130
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1131

1132 1133
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1134
		return -1;
1135 1136 1137

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1138
		return -1;
1139

1140
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1151
		if ((scn_addr < drmem.base_addr)
1152
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1153 1154
			continue;

1155
		nid = of_drconf_to_nid_single(&drmem, &aa);
1156 1157 1158 1159 1160 1161 1162 1163 1164
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1165
 * each memblock.
1166 1167 1168
 */
int hot_add_node_scn_to_nid(unsigned long scn_addr)
{
1169
	struct device_node *memory;
1170 1171
	int nid = -1;

1172
	for_each_node_by_type(memory, "memory") {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		unsigned long start, size;
		int ranges;
		const unsigned int *memcell_buf;
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1195

1196 1197
		if (nid >= 0)
			break;
1198 1199
	}

1200 1201
	of_node_put(memory);

1202
	return nid;
1203 1204
}

1205 1206
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1207 1208
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1209 1210 1211 1212
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1213
	int nid, found = 0;
1214 1215

	if (!numa_enabled || (min_common_depth < 0))
1216
		return first_online_node;
1217 1218 1219 1220 1221

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1222 1223
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1224
	}
1225

1226
	if (nid < 0 || !node_online(nid))
1227
		nid = first_online_node;
1228

1229 1230
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1231

1232 1233 1234 1235
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1236 1237
		}
	}
1238 1239 1240

	BUG_ON(!found);
	return nid;
1241
}
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
        const u32 *dm = 0;

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1269
#endif /* CONFIG_MEMORY_HOTPLUG */
1270

1271
/* Virtual Processor Home Node (VPHN) support */
1272
#ifdef CONFIG_PPC_SPLPAR
1273
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
static void set_topology_timer(void);

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1284
	int cpu;
1285

1286 1287 1288
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1289
	for_each_possible_cpu(cpu) {
1290
		int i;
1291 1292 1293
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1294
		for (i = 0; i < distance_ref_points_depth; i++)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1312
	int cpu, nr_cpus = 0;
1313 1314 1315 1316 1317 1318 1319 1320 1321
	cpumask_t *changes = &cpu_associativity_changes_mask;

	cpumask_clear(changes);

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1322
		for (i = 0; i < distance_ref_points_depth; i++) {
1323
			if (hypervisor_counts[i] != counts[i]) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
			cpumask_set_cpu(cpu, changes);
			nr_cpus++;
		}
	}

	return nr_cpus;
}

1337 1338 1339 1340 1341
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1342 1343 1344 1345 1346 1347 1348

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
{
1349
	int i, nr_assoc_doms = 0;
1350 1351 1352 1353 1354 1355
	const u16 *field = (const u16*) packed;

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1356
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1357 1358 1359 1360 1361 1362 1363
		if (*field == VPHN_FIELD_UNUSED) {
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
1364
		} else if (*field & VPHN_FIELD_MSB) {
1365 1366 1367 1368
			/* Data is in the lower 15 bits of this field */
			unpacked[i] = *field & VPHN_FIELD_MASK;
			field++;
			nr_assoc_doms++;
1369
		} else {
1370 1371 1372 1373 1374 1375 1376 1377 1378
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
			unpacked[i] = *((u32*)field);
			field += 2;
			nr_assoc_doms++;
		}
	}

1379 1380 1381
	/* The first cell contains the length of the property */
	unpacked[0] = nr_assoc_doms;

1382 1383 1384 1385 1386 1387 1388 1389 1390
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
{
1391
	long rc;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
					unsigned int *associativity)
{
1405
	long rc;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

/*
 * Update the node maps and sysfs entries for each cpu whose home node
1427
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1428 1429 1430
 */
int arch_update_cpu_topology(void)
{
1431
	int cpu, nid, old_nid, changed = 0;
1432
	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1433
	struct device *dev;
1434

1435
	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		vphn_get_associativity(cpu, associativity);
		nid = associativity_to_nid(associativity);

		if (nid < 0 || !node_online(nid))
			nid = first_online_node;

		old_nid = numa_cpu_lookup_table[cpu];

		/* Disable hotplug while we update the cpu
		 * masks and sysfs.
		 */
		get_online_cpus();
		unregister_cpu_under_node(cpu, old_nid);
		unmap_cpu_from_node(cpu);
		map_cpu_to_node(cpu, nid);
		register_cpu_under_node(cpu, nid);
		put_online_cpus();

1454 1455 1456
		dev = get_cpu_device(cpu);
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1457
		changed = 1;
1458 1459
	}

1460
	return changed;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

void topology_schedule_update(void)
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
	if (!vphn_enabled)
		return;
	if (update_cpu_associativity_changes_mask() > 0)
		topology_schedule_update();
	set_topology_timer();
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

static void set_topology_timer(void)
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
	add_timer(&topology_timer);
}

/*
 * Start polling for VPHN associativity changes.
 */
int start_topology_update(void)
{
	int rc = 0;

1499 1500
	/* Disabled until races with load balancing are fixed */
	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1501
	    get_lppaca()->shared_proc) {
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		vphn_enabled = 1;
		setup_cpu_associativity_change_counters();
		init_timer_deferrable(&topology_timer);
		set_topology_timer();
		rc = 1;
	}

	return rc;
}
__initcall(start_topology_update);

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
	vphn_enabled = 0;
	return del_timer_sync(&topology_timer);
}
1521
#endif /* CONFIG_PPC_SPLPAR */