blk-mq-sched.c 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
57
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 59 60 61
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

62
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63
}
64
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
65

66
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
67 68
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 70
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71

72
	blk_mq_run_hw_queue(hctx, true);
73 74
}

75 76 77 78 79 80
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
81 82 83 84 85 86
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
87
		struct request *rq;
88

89 90
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
91
			break;
92

93
		if (!blk_mq_get_dispatch_budget(hctx))
94
			break;
95 96 97 98 99 100 101 102 103 104 105 106

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
107
		list_add(&rq->queuelist, &rq_list);
108
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
109 110
}

111 112 113 114 115 116 117 118 119 120 121
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

122 123 124 125 126 127
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
128 129 130 131 132 133 134 135 136 137 138
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

139
		if (!blk_mq_get_dispatch_budget(hctx))
140
			break;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

163
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
164
{
165 166
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
167
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
168 169
	LIST_HEAD(rq_list);

170 171
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
172
		return;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
195 196 197 198
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
199
	 */
200
	if (!list_empty(&rq_list)) {
201
		blk_mq_sched_mark_restart_hctx(hctx);
202 203
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
204
				blk_mq_do_dispatch_sched(hctx);
205
			else
206
				blk_mq_do_dispatch_ctx(hctx);
207
		}
208
	} else if (has_sched_dispatch) {
209
		blk_mq_do_dispatch_sched(hctx);
210 211
	} else if (hctx->dispatch_busy) {
		/* dequeue request one by one from sw queue if queue is busy */
212
		blk_mq_do_dispatch_ctx(hctx);
213
	} else {
214
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
215
		blk_mq_dispatch_rq_list(q, &rq_list, false);
216
	}
217 218
}

219 220
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
221 222 223
{
	struct request *rq;

224 225
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
226 227
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
228 229 230 231 232 233 234
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
235 236
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
237 238 239 240 241 242
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
243 244
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
245 246
	default:
		return false;
247 248 249 250
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

251
/*
252 253
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
254
 */
255 256
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
257 258 259 260
{
	struct request *rq;
	int checked = 8;

261
	list_for_each_entry_reverse(rq, list, queuelist) {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	lockdep_assert_held(&ctx->lock);

	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
		ctx->rq_merged++;
		return true;
	}

	return false;
}
310

311 312 313
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
314 315 316
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
317

318
	if (e && e->type->ops.mq.bio_merge) {
319 320 321 322
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

323 324
	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
			!list_empty_careful(&ctx->rq_list)) {
325 326 327 328 329 330 331 332
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
333 334 335 336 337 338 339 340 341 342 343 344 345 346
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

347
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
348
				       bool has_sched,
349
				       struct request *rq)
350
{
351 352 353 354 355 356 357 358
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

359
	if (has_sched)
360 361
		rq->rq_flags |= RQF_SORTED;

362
	return false;
363 364
}

365
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
366
				 bool run_queue, bool async)
367 368 369 370 371 372
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

373 374
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
375 376
		blk_insert_flush(rq);
		goto run;
377 378
	}

379 380
	WARN_ON(e && (rq->tag != -1));

381
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
382 383
		goto run;

384 385 386 387 388 389 390 391 392 393 394
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

395
run:
396 397 398 399 400 401 402 403 404 405 406 407 408
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
409 410 411 412 413 414 415 416 417 418 419
	else {
		/*
		 * try to issue requests directly if the hw queue isn't
		 * busy in case of 'none' scheduler, and this way may save
		 * us one extra enqueue & dequeue to sw queue.
		 */
		if (!hctx->dispatch_busy && !e && !run_queue_async) {
			blk_mq_try_issue_list_directly(hctx, list);
			if (list_empty(list))
				return;
		}
420
		blk_mq_insert_requests(hctx, ctx, list);
421
	}
422 423 424 425

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

426 427 428 429 430 431 432 433 434 435 436
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

456
static void blk_mq_sched_tags_teardown(struct request_queue *q)
457 458 459
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
460 461 462 463 464 465 466 467 468
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
469
	struct elevator_queue *eq;
470 471 472 473 474
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
475
		q->nr_requests = q->tag_set->queue_depth;
476 477
		return 0;
	}
478 479

	/*
480 481 482
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
483
	 */
484 485
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
486 487

	queue_for_each_hw_ctx(q, hctx, i) {
488
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
489
		if (ret)
490
			goto err;
491 492
	}

493 494 495
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
496

497 498 499 500
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
501 502 503 504 505 506 507 508
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
509
		blk_mq_debugfs_register_sched_hctx(q, hctx);
510 511
	}

512 513
	return 0;

514
err:
515 516
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
517
	return ret;
518
}
519

520 521
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
522 523 524
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

525 526 527 528 529
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
530 531
		}
	}
532
	blk_mq_debugfs_unregister_sched(q);
533 534 535 536 537
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}