blk-mq-sched.c 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

62
	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 64
}

65
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 67
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 69
		return;
	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70

71
	blk_mq_run_hw_queue(hctx, true);
72 73
}

74 75 76 77 78 79
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 81 82 83 84 85
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
86
		struct request *rq;
87

88 89
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
90
			break;
91

92
		if (!blk_mq_get_dispatch_budget(hctx))
93
			break;
94 95 96 97 98 99 100 101 102 103 104 105

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
106
		list_add(&rq->queuelist, &rq_list);
107
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
108 109
}

110 111 112 113 114 115 116 117 118 119 120
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

121 122 123 124 125 126
/*
 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 * its queue by itself in its completion handler, so we don't need to
 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 */
static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
127 128 129 130 131 132 133 134 135 136 137
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

138
		if (!blk_mq_get_dispatch_budget(hctx))
139
			break;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);
}

162
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
163
{
164 165
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
166
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
167 168
	LIST_HEAD(rq_list);

169 170
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
171
		return;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
194 195 196 197
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
198
	 */
199
	if (!list_empty(&rq_list)) {
200
		blk_mq_sched_mark_restart_hctx(hctx);
201 202
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
203
				blk_mq_do_dispatch_sched(hctx);
204
			else
205
				blk_mq_do_dispatch_ctx(hctx);
206
		}
207
	} else if (has_sched_dispatch) {
208
		blk_mq_do_dispatch_sched(hctx);
209 210 211 212 213 214 215 216 217
	} else if (q->mq_ops->get_budget) {
		/*
		 * If we need to get budget before queuing request, we
		 * dequeue request one by one from sw queue for avoiding
		 * to mess up I/O merge when dispatch runs out of resource.
		 *
		 * TODO: get more budgets, and dequeue more requests in
		 * one time.
		 */
218
		blk_mq_do_dispatch_ctx(hctx);
219
	} else {
220
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
221
		blk_mq_dispatch_rq_list(q, &rq_list, false);
222
	}
223 224
}

225 226
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
227 228 229
{
	struct request *rq;

230 231
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
232 233
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
234 235 236 237 238 239 240
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
241 242
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
243 244 245 246 247 248
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
249 250
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
251 252
	default:
		return false;
253 254 255 256
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

257
/*
258 259
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
260
 */
261 262
bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
			   struct bio *bio)
263 264 265 266
{
	struct request *rq;
	int checked = 8;

267
	list_for_each_entry_reverse(rq, list, queuelist) {
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		return merged;
	}

	return false;
}
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	lockdep_assert_held(&ctx->lock);

	if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
		ctx->rq_merged++;
		return true;
	}

	return false;
}
316

317 318 319
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
320 321 322
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
323

324
	if (e && e->type->ops.mq.bio_merge) {
325 326 327 328
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

329 330 331 332 333 334 335 336 337
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
338 339 340 341 342 343 344 345 346 347 348 349 350 351
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

352
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
353
				       bool has_sched,
354
				       struct request *rq)
355
{
356 357 358 359 360 361 362 363
	/* dispatch flush rq directly */
	if (rq->rq_flags & RQF_FLUSH_SEQ) {
		spin_lock(&hctx->lock);
		list_add(&rq->queuelist, &hctx->dispatch);
		spin_unlock(&hctx->lock);
		return true;
	}

364
	if (has_sched)
365 366
		rq->rq_flags |= RQF_SORTED;

367
	return false;
368 369
}

370
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
371
				 bool run_queue, bool async)
372 373 374 375 376 377
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

378 379
	/* flush rq in flush machinery need to be dispatched directly */
	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
380 381
		blk_insert_flush(rq);
		goto run;
382 383
	}

384 385
	WARN_ON(e && (rq->tag != -1));

386
	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
387 388
		goto run;

389 390 391 392 393 394 395 396 397 398 399
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

400
run:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

420 421 422 423 424 425 426 427 428 429 430
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

450
static void blk_mq_sched_tags_teardown(struct request_queue *q)
451 452 453
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
454 455 456 457 458 459
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

460 461 462 463
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
464
	int ret;
465 466 467 468

	if (!e)
		return 0;

469 470 471 472 473 474 475 476 477 478 479 480
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

481 482
	blk_mq_debugfs_register_sched_hctx(q, hctx);

483
	return 0;
484 485 486 487 488 489 490 491 492 493
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

494 495
	blk_mq_debugfs_unregister_sched_hctx(hctx);

496 497 498 499 500
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

501 502 503
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

504 505 506
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
507
	struct elevator_queue *eq;
508 509 510 511 512
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
513
		q->nr_requests = q->tag_set->queue_depth;
514 515
		return 0;
	}
516 517

	/*
518 519 520
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
521
	 */
522 523
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
524 525

	queue_for_each_hw_ctx(q, hctx, i) {
526
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
527
		if (ret)
528
			goto err;
529 530
	}

531 532 533
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
534

535 536 537 538
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
539 540 541 542 543 544 545 546
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
547
		blk_mq_debugfs_register_sched_hctx(q, hctx);
548 549
	}

550 551
	return 0;

552
err:
553 554
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
555
	return ret;
556
}
557

558 559
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
560 561 562
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

563 564 565 566 567
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
568 569
		}
	}
570
	blk_mq_debugfs_unregister_sched(q);
571 572 573 574 575
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}