core-transaction.c 34.0 KB
Newer Older
1 2
/*
 * Core IEEE1394 transaction logic
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

S
Stefan Richter 已提交
21
#include <linux/bug.h>
22
#include <linux/completion.h>
S
Stefan Richter 已提交
23 24
#include <linux/device.h>
#include <linux/errno.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26 27 28
#include <linux/firewire-constants.h>
#include <linux/fs.h>
#include <linux/init.h>
29
#include <linux/idr.h>
S
Stefan Richter 已提交
30
#include <linux/jiffies.h>
31 32
#include <linux/kernel.h>
#include <linux/list.h>
S
Stefan Richter 已提交
33 34 35 36 37 38 39 40
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>

#include <asm/byteorder.h>
41

42
#include "core.h"
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define HEADER_PRI(pri)			((pri) << 0)
#define HEADER_TCODE(tcode)		((tcode) << 4)
#define HEADER_RETRY(retry)		((retry) << 8)
#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
#define HEADER_DESTINATION(destination)	((destination) << 16)
#define HEADER_SOURCE(source)		((source) << 16)
#define HEADER_RCODE(rcode)		((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
#define HEADER_DATA_LENGTH(length)	((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)

#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)

64 65 66
#define HEADER_DESTINATION_IS_BROADCAST(q) \
	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))

67 68 69 70
#define PHY_PACKET_CONFIG	0x0
#define PHY_PACKET_LINK_ON	0x1
#define PHY_PACKET_SELF_ID	0x2

71 72 73
#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id)		((id) << 30)
74

75
static int close_transaction(struct fw_transaction *transaction,
76
			     struct fw_card *card, int rcode)
77
{
78
	struct fw_transaction *t;
79 80 81
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
82 83
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t == transaction) {
84
			list_del_init(&t->link);
85
			card->tlabel_mask &= ~(1ULL << t->tlabel);
86 87 88
			break;
		}
	}
89 90
	spin_unlock_irqrestore(&card->lock, flags);

91
	if (&t->link != &card->transaction_list) {
92
		del_timer_sync(&t->split_timeout_timer);
93
		t->callback(card, rcode, NULL, 0, t->callback_data);
94 95 96 97
		return 0;
	}

	return -ENOENT;
98 99
}

100 101 102 103
/*
 * Only valid for transactions that are potentially pending (ie have
 * been sent).
 */
104 105
int fw_cancel_transaction(struct fw_card *card,
			  struct fw_transaction *transaction)
106
{
107 108
	/*
	 * Cancel the packet transmission if it's still queued.  That
109
	 * will call the packet transmission callback which cancels
110 111
	 * the transaction.
	 */
112 113 114 115

	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
		return 0;

116 117 118 119
	/*
	 * If the request packet has already been sent, we need to see
	 * if the transaction is still pending and remove it in that case.
	 */
120

121
	return close_transaction(transaction, card, RCODE_CANCELLED);
122 123 124
}
EXPORT_SYMBOL(fw_cancel_transaction);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static void split_transaction_timeout_callback(unsigned long data)
{
	struct fw_transaction *t = (struct fw_transaction *)data;
	struct fw_card *card = t->card;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (list_empty(&t->link)) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}
	list_del(&t->link);
	card->tlabel_mask &= ~(1ULL << t->tlabel);
	spin_unlock_irqrestore(&card->lock, flags);

	card->driver->cancel_packet(card, &t->packet);

	/*
	 * At this point cancel_packet will never call the transaction
	 * callback, since we just took the transaction out of the list.
	 * So do it here.
	 */
	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}

150 151
static void transmit_complete_callback(struct fw_packet *packet,
				       struct fw_card *card, int status)
152 153 154 155 156 157
{
	struct fw_transaction *t =
	    container_of(packet, struct fw_transaction, packet);

	switch (status) {
	case ACK_COMPLETE:
158
		close_transaction(t, card, RCODE_COMPLETE);
159 160 161 162 163 164 165
		break;
	case ACK_PENDING:
		t->timestamp = packet->timestamp;
		break;
	case ACK_BUSY_X:
	case ACK_BUSY_A:
	case ACK_BUSY_B:
166
		close_transaction(t, card, RCODE_BUSY);
167 168
		break;
	case ACK_DATA_ERROR:
169
		close_transaction(t, card, RCODE_DATA_ERROR);
170
		break;
171
	case ACK_TYPE_ERROR:
172
		close_transaction(t, card, RCODE_TYPE_ERROR);
173 174
		break;
	default:
175 176 177 178
		/*
		 * In this case the ack is really a juju specific
		 * rcode, so just forward that to the callback.
		 */
179
		close_transaction(t, card, status);
180 181 182 183
		break;
	}
}

184
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
185
		int destination_id, int source_id, int generation, int speed,
186
		unsigned long long offset, void *payload, size_t length)
187 188 189
{
	int ext_tcode;

190 191 192 193 194 195 196 197 198 199 200 201
	if (tcode == TCODE_STREAM_DATA) {
		packet->header[0] =
			HEADER_DATA_LENGTH(length) |
			destination_id |
			HEADER_TCODE(TCODE_STREAM_DATA);
		packet->header_length = 4;
		packet->payload = payload;
		packet->payload_length = length;

		goto common;
	}

202
	if (tcode > 0x10) {
203
		ext_tcode = tcode & ~0x10;
204 205 206 207 208
		tcode = TCODE_LOCK_REQUEST;
	} else
		ext_tcode = 0;

	packet->header[0] =
209 210 211
		HEADER_RETRY(RETRY_X) |
		HEADER_TLABEL(tlabel) |
		HEADER_TCODE(tcode) |
212
		HEADER_DESTINATION(destination_id);
213
	packet->header[1] =
214
		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
215 216 217 218 219 220 221 222 223 224 225 226 227
	packet->header[2] =
		offset;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
		packet->header[3] = *(u32 *)payload;
		packet->header_length = 16;
		packet->payload_length = 0;
		break;

	case TCODE_LOCK_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		packet->header[3] =
228 229
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
230 231 232 233 234 235 236 237 238 239 240 241
		packet->header_length = 16;
		packet->payload = payload;
		packet->payload_length = length;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		packet->header_length = 12;
		packet->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		packet->header[3] =
242 243
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
244 245 246
		packet->header_length = 16;
		packet->payload_length = 0;
		break;
247 248

	default:
249
		WARN(1, "wrong tcode %d", tcode);
250
	}
251
 common:
252 253
	packet->speed = speed;
	packet->generation = generation;
254
	packet->ack = 0;
255
	packet->payload_mapped = false;
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static int allocate_tlabel(struct fw_card *card)
{
	int tlabel;

	tlabel = card->current_tlabel;
	while (card->tlabel_mask & (1ULL << tlabel)) {
		tlabel = (tlabel + 1) & 0x3f;
		if (tlabel == card->current_tlabel)
			return -EBUSY;
	}

	card->current_tlabel = (tlabel + 1) & 0x3f;
	card->tlabel_mask |= 1ULL << tlabel;

	return tlabel;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * This function provides low-level access to the IEEE1394 transaction
 * logic.  Most C programs would use either fw_read(), fw_write() or
 * fw_lock() instead - those function are convenience wrappers for
 * this function.  The fw_send_request() function is primarily
 * provided as a flexible, one-stop entry point for languages bindings
 * and protocol bindings.
 *
 * FIXME: Document this function further, in particular the possible
 * values for rcode in the callback.  In short, we map ACK_COMPLETE to
 * RCODE_COMPLETE, internal errors set errno and set rcode to
 * RCODE_SEND_ERROR (which is out of range for standard ieee1394
 * rcodes).  All other rcodes are forwarded unchanged.  For all
 * errors, payload is NULL, length is 0.
 *
 * Can not expect the callback to be called before the function
 * returns, though this does happen in some cases (ACK_COMPLETE and
 * errors).
 *
 * The payload is only used for write requests and must not be freed
 * until the callback has been called.
 *
 * @param card the card from which to send the request
 * @param tcode the tcode for this transaction.  Do not use
U
Uwe Kleine-König 已提交
299
 *   TCODE_LOCK_REQUEST directly, instead use TCODE_LOCK_MASK_SWAP
300
 *   etc. to specify tcode and ext_tcode.
301
 * @param node_id the destination node ID (bus ID and PHY ID concatenated)
302 303 304 305 306 307 308 309
 * @param generation the generation for which node_id is valid
 * @param speed the speed to use for sending the request
 * @param offset the 48 bit offset on the destination node
 * @param payload the data payload for the request subaction
 * @param length the length in bytes of the data to read
 * @param callback function to be called when the transaction is completed
 * @param callback_data pointer to arbitrary data, which will be
 *   passed to the callback
310 311 312
 *
 * In case of asynchronous stream packets i.e. TCODE_STREAM_DATA, the caller
 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
313
 */
314 315 316 317
void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
		     int destination_id, int generation, int speed,
		     unsigned long long offset, void *payload, size_t length,
		     fw_transaction_callback_t callback, void *callback_data)
318 319
{
	unsigned long flags;
320
	int tlabel;
321

322 323 324 325
	/*
	 * Allocate tlabel from the bitmap and put the transaction on
	 * the list while holding the card spinlock.
	 */
326 327 328

	spin_lock_irqsave(&card->lock, flags);

329 330
	tlabel = allocate_tlabel(card);
	if (tlabel < 0) {
331 332 333 334 335
		spin_unlock_irqrestore(&card->lock, flags);
		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
		return;
	}

J
Jay Fenlason 已提交
336
	t->node_id = destination_id;
337
	t->tlabel = tlabel;
338 339 340 341
	t->card = card;
	setup_timer(&t->split_timeout_timer,
		    split_transaction_timeout_callback, (unsigned long)t);
	/* FIXME: start this timer later, relative to t->timestamp */
342 343
	mod_timer(&t->split_timeout_timer,
		  jiffies + card->split_timeout_jiffies);
344 345 346
	t->callback = callback;
	t->callback_data = callback_data;

J
Jay Fenlason 已提交
347 348 349
	fw_fill_request(&t->packet, tcode, t->tlabel,
			destination_id, card->node_id, generation,
			speed, offset, payload, length);
350 351
	t->packet.callback = transmit_complete_callback;

352 353 354 355
	list_add_tail(&t->link, &card->transaction_list);

	spin_unlock_irqrestore(&card->lock, flags);

356 357 358 359
	card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);

J
Jay Fenlason 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct transaction_callback_data {
	struct completion done;
	void *payload;
	int rcode;
};

static void transaction_callback(struct fw_card *card, int rcode,
				 void *payload, size_t length, void *data)
{
	struct transaction_callback_data *d = data;

	if (rcode == RCODE_COMPLETE)
		memcpy(d->payload, payload, length);
	d->rcode = rcode;
	complete(&d->done);
}

/**
 * fw_run_transaction - send request and sleep until transaction is completed
 *
 * Returns the RCODE.
 */
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
383
		       int generation, int speed, unsigned long long offset,
384
		       void *payload, size_t length)
J
Jay Fenlason 已提交
385 386 387 388
{
	struct transaction_callback_data d;
	struct fw_transaction t;

389
	init_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
390
	init_completion(&d.done);
391
	d.payload = payload;
J
Jay Fenlason 已提交
392
	fw_send_request(card, &t, tcode, destination_id, generation, speed,
393
			offset, payload, length, transaction_callback, &d);
J
Jay Fenlason 已提交
394
	wait_for_completion(&d.done);
395
	destroy_timer_on_stack(&t.split_timeout_timer);
J
Jay Fenlason 已提交
396 397 398 399 400

	return d.rcode;
}
EXPORT_SYMBOL(fw_run_transaction);

401 402
static DEFINE_MUTEX(phy_config_mutex);
static DECLARE_COMPLETION(phy_config_done);
403 404 405

static void transmit_phy_packet_callback(struct fw_packet *packet,
					 struct fw_card *card, int status)
406
{
407
	complete(&phy_config_done);
408 409
}

410 411 412 413 414 415 416
static struct fw_packet phy_config_packet = {
	.header_length	= 8,
	.payload_length	= 0,
	.speed		= SCODE_100,
	.callback	= transmit_phy_packet_callback,
};

417 418
void fw_send_phy_config(struct fw_card *card,
			int node_id, int generation, int gap_count)
419
{
420
	long timeout = DIV_ROUND_UP(HZ, 10);
421 422 423 424
	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
		   PHY_CONFIG_ROOT_ID(node_id) |
		   PHY_CONFIG_GAP_COUNT(gap_count);

425 426 427 428 429 430 431 432 433
	mutex_lock(&phy_config_mutex);

	phy_config_packet.header[0] = data;
	phy_config_packet.header[1] = ~data;
	phy_config_packet.generation = generation;
	INIT_COMPLETION(phy_config_done);

	card->driver->send_request(card, &phy_config_packet);
	wait_for_completion_timeout(&phy_config_done, timeout);
434

435
	mutex_unlock(&phy_config_mutex);
436 437
}

438 439
static struct fw_address_handler *lookup_overlapping_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
440 441 442 443 444 445 446 447 448 449 450 451
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
		if (handler->offset < offset + length &&
		    offset < handler->offset + handler->length)
			return handler;
	}

	return NULL;
}

452 453 454 455 456 457 458
static bool is_enclosing_handler(struct fw_address_handler *handler,
				 unsigned long long offset, size_t length)
{
	return handler->offset <= offset &&
		offset + length <= handler->offset + handler->length;
}

459 460
static struct fw_address_handler *lookup_enclosing_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
461 462 463 464
{
	struct fw_address_handler *handler;

	list_for_each_entry(handler, list, link) {
465
		if (is_enclosing_handler(handler, offset, length))
466 467 468 469 470 471 472 473 474
			return handler;
	}

	return NULL;
}

static DEFINE_SPINLOCK(address_handler_lock);
static LIST_HEAD(address_handler_list);

475
const struct fw_address_region fw_high_memory_region =
476
	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
A
Adrian Bunk 已提交
477 478 479 480 481
EXPORT_SYMBOL(fw_high_memory_region);

#if 0
const struct fw_address_region fw_low_memory_region =
	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
482
const struct fw_address_region fw_private_region =
483
	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
484
const struct fw_address_region fw_csr_region =
485 486
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
487
const struct fw_address_region fw_unit_space_region =
488
	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
A
Adrian Bunk 已提交
489
#endif  /*  0  */
490

491 492 493 494 495 496
static bool is_in_fcp_region(u64 offset, size_t length)
{
	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
}

497
/**
498 499 500 501 502 503 504 505 506
 * fw_core_add_address_handler - register for incoming requests
 * @handler: callback
 * @region: region in the IEEE 1212 node space address range
 *
 * region->start, ->end, and handler->length have to be quadlet-aligned.
 *
 * When a request is received that falls within the specified address range,
 * the specified callback is invoked.  The parameters passed to the callback
 * give the details of the particular request.
507 508
 *
 * Return value:  0 on success, non-zero otherwise.
509
 *
510 511
 * The start offset of the handler's address region is determined by
 * fw_core_add_address_handler() and is returned in handler->offset.
512 513
 *
 * Address allocations are exclusive, except for the FCP registers.
514
 */
515 516
int fw_core_add_address_handler(struct fw_address_handler *handler,
				const struct fw_address_region *region)
517 518 519 520 521
{
	struct fw_address_handler *other;
	unsigned long flags;
	int ret = -EBUSY;

522 523 524 525 526 527 528
	if (region->start & 0xffff000000000003ULL ||
	    region->end   & 0xffff000000000003ULL ||
	    region->start >= region->end ||
	    handler->length & 3 ||
	    handler->length == 0)
		return -EINVAL;

529 530
	spin_lock_irqsave(&address_handler_lock, flags);

531
	handler->offset = region->start;
532
	while (handler->offset + handler->length <= region->end) {
533 534 535 536 537 538
		if (is_in_fcp_region(handler->offset, handler->length))
			other = NULL;
		else
			other = lookup_overlapping_address_handler
					(&address_handler_list,
					 handler->offset, handler->length);
539
		if (other != NULL) {
540
			handler->offset += other->length;
541 542 543 544 545 546 547 548 549 550 551 552 553 554
		} else {
			list_add_tail(&handler->link, &address_handler_list);
			ret = 0;
			break;
		}
	}

	spin_unlock_irqrestore(&address_handler_lock, flags);

	return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);

/**
555
 * fw_core_remove_address_handler - unregister an address handler
556 557 558 559 560 561 562 563 564 565 566 567 568
 */
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
	unsigned long flags;

	spin_lock_irqsave(&address_handler_lock, flags);
	list_del(&handler->link);
	spin_unlock_irqrestore(&address_handler_lock, flags);
}
EXPORT_SYMBOL(fw_core_remove_address_handler);

struct fw_request {
	struct fw_packet response;
569
	u32 request_header[4];
570 571 572 573 574
	int ack;
	u32 length;
	u32 data[0];
};

575 576
static void free_response_callback(struct fw_packet *packet,
				   struct fw_card *card, int status)
577 578 579 580 581 582 583
{
	struct fw_request *request;

	request = container_of(packet, struct fw_request, response);
	kfree(request);
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
int fw_get_response_length(struct fw_request *r)
{
	int tcode, ext_tcode, data_length;

	tcode = HEADER_GET_TCODE(r->request_header[0]);

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		return 0;

	case TCODE_READ_QUADLET_REQUEST:
		return 4;

	case TCODE_READ_BLOCK_REQUEST:
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		return data_length;

	case TCODE_LOCK_REQUEST:
		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		switch (ext_tcode) {
		case EXTCODE_FETCH_ADD:
		case EXTCODE_LITTLE_ADD:
			return data_length;
		default:
			return data_length / 2;
		}

	default:
614
		WARN(1, "wrong tcode %d", tcode);
615 616 617 618
		return 0;
	}
}

619 620
void fw_fill_response(struct fw_packet *response, u32 *request_header,
		      int rcode, void *payload, size_t length)
621 622 623
{
	int tcode, tlabel, extended_tcode, source, destination;

624 625 626 627 628
	tcode          = HEADER_GET_TCODE(request_header[0]);
	tlabel         = HEADER_GET_TLABEL(request_header[0]);
	source         = HEADER_GET_DESTINATION(request_header[0]);
	destination    = HEADER_GET_SOURCE(request_header[1]);
	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
629 630

	response->header[0] =
631 632 633
		HEADER_RETRY(RETRY_1) |
		HEADER_TLABEL(tlabel) |
		HEADER_DESTINATION(destination);
634
	response->header[1] =
635 636
		HEADER_SOURCE(source) |
		HEADER_RCODE(rcode);
637 638 639 640 641
	response->header[2] = 0;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
642
		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
643 644 645 646 647 648
		response->header_length = 12;
		response->payload_length = 0;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		response->header[0] |=
649
			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
650 651 652 653
		if (payload != NULL)
			response->header[3] = *(u32 *)payload;
		else
			response->header[3] = 0;
654 655 656 657 658 659
		response->header_length = 16;
		response->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
660
		response->header[0] |= HEADER_TCODE(tcode + 2);
661
		response->header[3] =
662 663
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(extended_tcode);
664
		response->header_length = 16;
665 666
		response->payload = payload;
		response->payload_length = length;
667 668 669
		break;

	default:
670
		WARN(1, "wrong tcode %d", tcode);
671
	}
672

673
	response->payload_mapped = false;
674
}
675
EXPORT_SYMBOL(fw_fill_response);
676

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static u32 compute_split_timeout_timestamp(struct fw_card *card,
					   u32 request_timestamp)
{
	unsigned int cycles;
	u32 timestamp;

	cycles = card->split_timeout_cycles;
	cycles += request_timestamp & 0x1fff;

	timestamp = request_timestamp & ~0x1fff;
	timestamp += (cycles / 8000) << 13;
	timestamp |= cycles % 8000;

	return timestamp;
}

static struct fw_request *allocate_request(struct fw_card *card,
					   struct fw_packet *p)
695 696 697
{
	struct fw_request *request;
	u32 *data, length;
698
	int request_tcode;
699

700
	request_tcode = HEADER_GET_TCODE(p->header[0]);
701 702
	switch (request_tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
703
		data = &p->header[3];
704 705 706 707 708
		length = 4;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
709
		data = p->payload;
710
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
711 712 713 714 715 716 717 718 719
		break;

	case TCODE_READ_QUADLET_REQUEST:
		data = NULL;
		length = 4;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		data = NULL;
720
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
721 722 723
		break;

	default:
724 725
		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
			 p->header[0], p->header[1], p->header[2]);
726 727 728
		return NULL;
	}

729
	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
730 731 732
	if (request == NULL)
		return NULL;

733
	request->response.speed = p->speed;
734 735
	request->response.timestamp =
			compute_split_timeout_timestamp(card, p->timestamp);
736
	request->response.generation = p->generation;
737
	request->response.ack = 0;
738
	request->response.callback = free_response_callback;
739
	request->ack = p->ack;
740
	request->length = length;
741
	if (data)
742
		memcpy(request->data, data, length);
743

744
	memcpy(request->request_header, p->header, sizeof(p->header));
745 746 747 748

	return request;
}

749 750
void fw_send_response(struct fw_card *card,
		      struct fw_request *request, int rcode)
751
{
752 753 754
	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
		return;

755 756 757
	/* unified transaction or broadcast transaction: don't respond */
	if (request->ack != ACK_PENDING ||
	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
758
		kfree(request);
759
		return;
760
	}
761

762 763
	if (rcode == RCODE_COMPLETE)
		fw_fill_response(&request->response, request->request_header,
764 765
				 rcode, request->data,
				 fw_get_response_length(request));
766 767 768
	else
		fw_fill_response(&request->response, request->request_header,
				 rcode, NULL, 0);
769 770 771 772 773

	card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);

774 775 776 777
static void handle_exclusive_region_request(struct fw_card *card,
					    struct fw_packet *p,
					    struct fw_request *request,
					    unsigned long long offset)
778 779 780
{
	struct fw_address_handler *handler;
	unsigned long flags;
781
	int tcode, destination, source;
782

783 784
	tcode       = HEADER_GET_TCODE(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
785
	source      = HEADER_GET_SOURCE(p->header[1]);
786 787 788 789 790 791

	spin_lock_irqsave(&address_handler_lock, flags);
	handler = lookup_enclosing_address_handler(&address_handler_list,
						   offset, request->length);
	spin_unlock_irqrestore(&address_handler_lock, flags);

792 793
	/*
	 * FIXME: lookup the fw_node corresponding to the sender of
794 795 796
	 * this request and pass that to the address handler instead
	 * of the node ID.  We may also want to move the address
	 * allocations to fw_node so we only do this callback if the
797 798
	 * upper layers registered it for this node.
	 */
799 800 801 802 803 804

	if (handler == NULL)
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
	else
		handler->address_callback(card, request,
					  tcode, destination, source,
805
					  p->generation, p->speed, offset,
806 807 808
					  request->data, request->length,
					  handler->callback_data);
}
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

static void handle_fcp_region_request(struct fw_card *card,
				      struct fw_packet *p,
				      struct fw_request *request,
				      unsigned long long offset)
{
	struct fw_address_handler *handler;
	unsigned long flags;
	int tcode, destination, source;

	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
	    request->length > 0x200) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);

		return;
	}

	tcode       = HEADER_GET_TCODE(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);

	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);

		return;
	}

	spin_lock_irqsave(&address_handler_lock, flags);
	list_for_each_entry(handler, &address_handler_list, link) {
		if (is_enclosing_handler(handler, offset, request->length))
			handler->address_callback(card, NULL, tcode,
						  destination, source,
						  p->generation, p->speed,
						  offset, request->data,
						  request->length,
						  handler->callback_data);
	}
	spin_unlock_irqrestore(&address_handler_lock, flags);

	fw_send_response(card, request, RCODE_COMPLETE);
}

void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
	struct fw_request *request;
	unsigned long long offset;

	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
		return;

861
	request = allocate_request(card, p);
862 863 864 865 866 867 868 869 870 871 872 873 874 875
	if (request == NULL) {
		/* FIXME: send statically allocated busy packet. */
		return;
	}

	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
		p->header[2];

	if (!is_in_fcp_region(offset, request->length))
		handle_exclusive_region_request(card, p, request, offset);
	else
		handle_fcp_region_request(card, p, request, offset);

}
876 877
EXPORT_SYMBOL(fw_core_handle_request);

878
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
879 880 881 882 883 884 885
{
	struct fw_transaction *t;
	unsigned long flags;
	u32 *data;
	size_t data_length;
	int tcode, tlabel, destination, source, rcode;

886 887 888 889 890
	tcode       = HEADER_GET_TCODE(p->header[0]);
	tlabel      = HEADER_GET_TLABEL(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);
	rcode       = HEADER_GET_RCODE(p->header[1]);
891 892 893 894

	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t->node_id == source && t->tlabel == tlabel) {
895
			list_del_init(&t->link);
896
			card->tlabel_mask &= ~(1ULL << t->tlabel);
897 898 899 900 901 902
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&t->link == &card->transaction_list) {
903 904
		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
			  source, tlabel);
905 906 907
		return;
	}

908 909 910 911
	/*
	 * FIXME: sanity check packet, is length correct, does tcodes
	 * and addresses match.
	 */
912 913 914

	switch (tcode) {
	case TCODE_READ_QUADLET_RESPONSE:
915
		data = (u32 *) &p->header[3];
916 917 918 919 920 921 922 923 924 925
		data_length = 4;
		break;

	case TCODE_WRITE_RESPONSE:
		data = NULL;
		data_length = 0;
		break;

	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_RESPONSE:
926
		data = p->payload;
927
		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
928 929 930 931 932 933 934 935 936
		break;

	default:
		/* Should never happen, this is just to shut up gcc. */
		data = NULL;
		data_length = 0;
		break;
	}

937 938
	del_timer_sync(&t->split_timeout_timer);

939 940 941 942 943 944
	/*
	 * The response handler may be executed while the request handler
	 * is still pending.  Cancel the request handler.
	 */
	card->driver->cancel_packet(card, &t->packet);

945 946 947 948
	t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);

949
static const struct fw_address_region topology_map_region =
950 951
	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
952

953 954 955 956
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
		int speed, unsigned long long offset,
		void *payload, size_t length, void *callback_data)
957
{
958
	int start;
959 960 961 962 963 964 965 966 967 968 969 970

	if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	if ((offset & 3) > 0 || (length & 3) > 0) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
		return;
	}

	start = (offset - topology_map_region.start) / 4;
971
	memcpy(payload, &card->topology_map[start], length);
972 973 974 975 976

	fw_send_response(card, request, RCODE_COMPLETE);
}

static struct fw_address_handler topology_map = {
977
	.length			= 0x400,
978 979 980
	.address_callback	= handle_topology_map,
};

981
static const struct fw_address_region registers_region =
982 983
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static u32 read_state_register(struct fw_card *card)
{
	/*
	 * Fixed bits (IEEE 1394-2008 8.3.2.2.1):
	 * Bits 0-1 (state) always read 00=running.
	 * Bits 2,3 (off, atn) are not implemented as per the spec.
	 * Bit 4 (elog) is not implemented because there is no error log.
	 * Bit 6 (dreq) cannot be set.  It is intended to "disable requests
	 *      from unreliable nodes"; however, IEEE 1212 states that devices
	 *      may "clear their own dreq bit when it has been improperly set".
	 *      Our implementation might be seen as an improperly extensive
	 *      interpretation of "improperly", but the 1212-2001 revision
	 *      dropped this bit altogether, so we're in the clear.  :o)
	 * Bit 7 (lost) always reads 0 because a power reset has never occurred
	 *      during normal operation.
	 * Bit 9 (linkoff) is not implemented because the PC is not powered
	 *      from the FireWire cable.
	 * Bit 15 (gone) always reads 0.  It must be set at a power/command/bus
	 *      reset, but then cleared when the units are ready again, which
	 *      happens immediately for us.
	 */
	return 0;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static void update_split_timeout(struct fw_card *card)
{
	unsigned int cycles;

	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);

	cycles = max(cycles, 800u); /* minimum as per the spec */
	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */

	card->split_timeout_cycles = cycles;
	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
}

1022 1023 1024 1025
static void handle_registers(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
		int speed, unsigned long long offset,
		void *payload, size_t length, void *callback_data)
1026
{
1027
	int reg = offset & ~CSR_REGISTER_BASE;
1028
	__be32 *data = payload;
1029
	int rcode = RCODE_COMPLETE;
1030
	unsigned long flags;
1031 1032

	switch (reg) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	case CSR_STATE_CLEAR:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(read_state_register(card));
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_STATE_SET:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(read_state_register(card));
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			/* FIXME: implement cmstr */
			/* FIXME: implement abdicate */
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	case CSR_NODE_IDS:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->driver->
					read_csr_reg(card, CSR_NODE_IDS));
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr_reg(card, CSR_NODE_IDS,
						    be32_to_cpu(*data));
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1064 1065 1066 1067 1068
	case CSR_RESET_START:
		if (tcode != TCODE_WRITE_QUADLET_REQUEST)
			rcode = RCODE_TYPE_ERROR;
		break;

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	case CSR_SPLIT_TIMEOUT_HI:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_hi);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_hi = be32_to_cpu(*data) & 7;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_SPLIT_TIMEOUT_LO:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_lo);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_lo =
					be32_to_cpu(*data) & 0xfff80000;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

1096
	case CSR_CYCLE_TIME:
1097
		if (TCODE_IS_READ_REQUEST(tcode) && length == 4)
1098 1099
			*data = cpu_to_be32(card->driver->
					read_csr_reg(card, CSR_CYCLE_TIME));
1100 1101 1102
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr_reg(card, CSR_CYCLE_TIME,
						    be32_to_cpu(*data));
1103
		else
1104
			rcode = RCODE_TYPE_ERROR;
1105 1106
		break;

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	case CSR_BUS_TIME:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->driver->
					read_csr_reg(card, CSR_BUS_TIME));
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr_reg(card, CSR_BUS_TIME,
						    be32_to_cpu(*data));
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	case CSR_BUSY_TIMEOUT:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->driver->
					read_csr_reg(card, CSR_BUSY_TIMEOUT));
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr_reg(card, CSR_BUSY_TIMEOUT,
						    be32_to_cpu(*data));
		else
			rcode = RCODE_TYPE_ERROR;
		break;

1129 1130 1131 1132 1133 1134 1135 1136 1137
	case CSR_BROADCAST_CHANNEL:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->broadcast_channel);
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->broadcast_channel =
			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
			    BROADCAST_CHANNEL_INITIAL;
		else
			rcode = RCODE_TYPE_ERROR;
1138 1139 1140 1141 1142 1143
		break;

	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
1144 1145
		/*
		 * FIXME: these are handled by the OHCI hardware and
1146 1147 1148
		 * the stack never sees these request. If we add
		 * support for a new type of controller that doesn't
		 * handle this in hardware we need to deal with these
1149 1150
		 * transactions.
		 */
1151 1152 1153 1154
		BUG();
		break;

	default:
1155
		rcode = RCODE_ADDRESS_ERROR;
1156 1157
		break;
	}
1158 1159

	fw_send_response(card, request, rcode);
1160 1161 1162 1163 1164 1165 1166
}

static struct fw_address_handler registers = {
	.length			= 0x400,
	.address_callback	= handle_registers,
};

1167 1168 1169 1170
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");

1171
static const u32 vendor_textual_descriptor[] = {
1172
	/* textual descriptor leaf () */
1173
	0x00060000,
1174 1175 1176 1177 1178
	0x00000000,
	0x00000000,
	0x4c696e75,		/* L i n u */
	0x78204669,		/* x   F i */
	0x72657769,		/* r e w i */
1179
	0x72650000,		/* r e     */
1180 1181
};

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static const u32 model_textual_descriptor[] = {
	/* model descriptor leaf () */
	0x00030000,
	0x00000000,
	0x00000000,
	0x4a756a75,		/* J u j u */
};

static struct fw_descriptor vendor_id_descriptor = {
	.length = ARRAY_SIZE(vendor_textual_descriptor),
	.immediate = 0x03d00d1e,
1193
	.key = 0x81000000,
1194 1195 1196 1197 1198 1199 1200 1201
	.data = vendor_textual_descriptor,
};

static struct fw_descriptor model_id_descriptor = {
	.length = ARRAY_SIZE(model_textual_descriptor),
	.immediate = 0x17000001,
	.key = 0x81000000,
	.data = model_textual_descriptor,
1202 1203 1204 1205
};

static int __init fw_core_init(void)
{
1206
	int ret;
1207

1208 1209 1210
	ret = bus_register(&fw_bus_type);
	if (ret < 0)
		return ret;
1211

1212 1213 1214 1215 1216 1217
	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
	if (fw_cdev_major < 0) {
		bus_unregister(&fw_bus_type);
		return fw_cdev_major;
	}

1218 1219 1220 1221
	fw_core_add_address_handler(&topology_map, &topology_map_region);
	fw_core_add_address_handler(&registers, &registers_region);
	fw_core_add_descriptor(&vendor_id_descriptor);
	fw_core_add_descriptor(&model_id_descriptor);
1222 1223 1224 1225 1226 1227

	return 0;
}

static void __exit fw_core_cleanup(void)
{
1228
	unregister_chrdev(fw_cdev_major, "firewire");
1229
	bus_unregister(&fw_bus_type);
1230
	idr_destroy(&fw_device_idr);
1231 1232 1233 1234
}

module_init(fw_core_init);
module_exit(fw_core_cleanup);