core.c 22.0 KB
Newer Older
1
#include <linux/perf_event.h>
2
#include <linux/export.h>
3 4 5
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
6
#include <linux/delay.h>
7
#include <linux/nmi.h>
8
#include <asm/apicdef.h>
9

10
#include "../perf_event.h"
11

12 13
static DEFINE_PER_CPU(unsigned int, perf_nmi_counter);

14
static __initconst const u64 amd_hw_cache_event_ids
15 16 17 18 19 20 21
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
22
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
23 24
	},
	[ C(OP_WRITE) ] = {
25
		[ C(RESULT_ACCESS) ] = 0,
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
64
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
65 66 67 68 69 70 71 72 73 74 75 76 77
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
78
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
103 104 105 106 107 108 109 110 111 112 113 114 115 116
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
117 118 119 120 121
};

/*
 * AMD Performance Monitor K7 and later.
 */
122
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
123
{
124 125
  [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
  [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
126 127
  [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x077d,
  [PERF_COUNT_HW_CACHE_MISSES]			= 0x077e,
128 129 130 131
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
  [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
  [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
  [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
132 133 134 135 136 137 138
};

static u64 amd_pmu_event_map(int hw_event)
{
	return amd_perfmon_event_map[hw_event];
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * Previously calculated offsets
 */
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;

/*
 * Legacy CPUs:
 *   4 counters starting at 0xc0010000 each offset by 1
 *
 * CPUs with core performance counter extensions:
 *   6 counters starting at 0xc0010200 each offset by 2
 */
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
154
	int offset;
155 156 157 158 159 160 161 162 163 164 165 166

	if (!index)
		return index;

	if (eventsel)
		offset = event_offsets[index];
	else
		offset = count_offsets[index];

	if (offset)
		return offset;

167
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
168 169 170 171 172 173 174 175 176 177 178 179
		offset = index;
	else
		offset = index << 1;

	if (eventsel)
		event_offsets[index] = offset;
	else
		count_offsets[index] = offset;

	return offset;
}

180 181
static int amd_core_hw_config(struct perf_event *event)
{
182 183 184 185 186 187 188 189 190
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
191
		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
192
	else if (event->attr.exclude_guest)
193
		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
194

195 196
	return 0;
}
197

198 199 200
/*
 * AMD64 events are detected based on their event codes.
 */
201 202 203 204 205
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

206 207 208 209 210
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

211 212 213 214 215 216 217
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret;

	/* pass precise event sampling to ibs: */
	if (event->attr.precise_ip && get_ibs_caps())
		return -ENOENT;

	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	ret = x86_pmu_hw_config(event);
	if (ret)
		return ret;

	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return amd_core_hw_config(event);
}

239 240
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
241 242 243 244 245 246 247 248 249 250 251 252
{
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
253
	for (i = 0; i < x86_pmu.num_counters; i++) {
254
		if (cmpxchg(nb->owners + i, event, NULL) == event)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
			break;
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
291
  * calling __amd_put_nb_event_constraints()
292 293 294 295
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
296 297
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			       struct event_constraint *c)
298 299 300
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
301 302
	struct perf_event *old;
	int idx, new = -1;
303

304 305 306 307 308 309
	if (!c)
		c = &unconstrained;

	if (cpuc->is_fake)
		return c;

310 311 312 313 314 315 316 317 318 319
	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
320
	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
		if (new == -1 || hwc->idx == idx)
			/* assign free slot, prefer hwc->idx */
			old = cmpxchg(nb->owners + idx, NULL, event);
		else if (nb->owners[idx] == event)
			/* event already present */
			old = event;
		else
			continue;

		if (old && old != event)
			continue;

		/* reassign to this slot */
		if (new != -1)
			cmpxchg(nb->owners + new, event, NULL);
		new = idx;
337 338

		/* already present, reuse */
339
		if (old == event)
340
			break;
341 342 343 344 345 346
	}

	if (new == -1)
		return &emptyconstraint;

	return &nb->event_constraints[new];
347 348
}

P
Peter Zijlstra 已提交
349
static struct amd_nb *amd_alloc_nb(int cpu)
350 351 352 353
{
	struct amd_nb *nb;
	int i;

354
	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
355 356 357
	if (!nb)
		return NULL;

P
Peter Zijlstra 已提交
358
	nb->nb_id = -1;
359 360 361 362

	/*
	 * initialize all possible NB constraints
	 */
363
	for (i = 0; i < x86_pmu.num_counters; i++) {
P
Peter Zijlstra 已提交
364
		__set_bit(i, nb->event_constraints[i].idxmsk);
365 366 367 368 369
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

370 371 372 373 374 375
static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	WARN_ON_ONCE(cpuc->amd_nb);

376
	if (!x86_pmu.amd_nb_constraints)
377
		return 0;
378

P
Peter Zijlstra 已提交
379
	cpuc->amd_nb = amd_alloc_nb(cpu);
380
	if (!cpuc->amd_nb)
381
		return -ENOMEM;
382

383
	return 0;
384 385 386
}

static void amd_pmu_cpu_starting(int cpu)
387
{
388
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
389
	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
390
	struct amd_nb *nb;
391 392
	int i, nb_id;

393
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
394

395
	if (!x86_pmu.amd_nb_constraints)
396 397 398
		return;

	nb_id = amd_get_nb_id(cpu);
399
	WARN_ON_ONCE(nb_id == BAD_APICID);
400 401

	for_each_online_cpu(i) {
402 403
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
404 405
			continue;

406
		if (nb->nb_id == nb_id) {
407
			*onln = cpuc->amd_nb;
408 409 410
			cpuc->amd_nb = nb;
			break;
		}
411
	}
412 413 414

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
415 416
}

417
static void amd_pmu_cpu_dead(int cpu)
418 419 420
{
	struct cpu_hw_events *cpuhw;

421
	if (!x86_pmu.amd_nb_constraints)
422 423 424 425
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

426
	if (cpuhw->amd_nb) {
427 428 429 430
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);
431

432 433
		cpuhw->amd_nb = NULL;
	}
434 435
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * When a PMC counter overflows, an NMI is used to process the event and
 * reset the counter. NMI latency can result in the counter being updated
 * before the NMI can run, which can result in what appear to be spurious
 * NMIs. This function is intended to wait for the NMI to run and reset
 * the counter to avoid possible unhandled NMI messages.
 */
#define OVERFLOW_WAIT_COUNT	50

static void amd_pmu_wait_on_overflow(int idx)
{
	unsigned int i;
	u64 counter;

	/*
	 * Wait for the counter to be reset if it has overflowed. This loop
	 * should exit very, very quickly, but just in case, don't wait
	 * forever...
	 */
	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
		rdmsrl(x86_pmu_event_addr(idx), counter);
		if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
			break;

		/* Might be in IRQ context, so can't sleep */
		udelay(1);
	}
}

static void amd_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	x86_pmu_disable_all();

	/*
	 * This shouldn't be called from NMI context, but add a safeguard here
	 * to return, since if we're in NMI context we can't wait for an NMI
	 * to reset an overflowed counter value.
	 */
	if (in_nmi())
		return;

	/*
	 * Check each counter for overflow and wait for it to be reset by the
	 * NMI if it has overflowed. This relies on the fact that all active
	 * counters are always enabled when this function is caled and
	 * ARCH_PERFMON_EVENTSEL_INT is always set.
	 */
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_wait_on_overflow(idx);
	}
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*
 * Because of NMI latency, if multiple PMC counters are active or other sources
 * of NMIs are received, the perf NMI handler can handle one or more overflowed
 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
 * back-to-back NMI support won't be active. This PMC handler needs to take into
 * account that this can occur, otherwise this could result in unknown NMI
 * messages being issued. Examples of this is PMC overflow while in the NMI
 * handler when multiple PMCs are active or PMC overflow while handling some
 * other source of an NMI.
 *
 * Attempt to mitigate this by using the number of active PMCs to determine
 * whether to return NMI_HANDLED if the perf NMI handler did not handle/reset
 * any PMCs. The per-CPU perf_nmi_counter variable is set to a minimum of the
 * number of active PMCs or 2. The value of 2 is used in case an NMI does not
 * arrive at the LAPIC in time to be collapsed into an already pending NMI.
 */
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int active, handled;

	/*
	 * Obtain the active count before calling x86_pmu_handle_irq() since
	 * it is possible that x86_pmu_handle_irq() may make a counter
	 * inactive (through x86_pmu_stop).
	 */
	active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);

	/* Process any counter overflows */
	handled = x86_pmu_handle_irq(regs);

	/*
	 * If a counter was handled, record the number of possible remaining
	 * NMIs that can occur.
	 */
	if (handled) {
		this_cpu_write(perf_nmi_counter,
			       min_t(unsigned int, 2, active));

		return handled;
	}

	if (!this_cpu_read(perf_nmi_counter))
		return NMI_DONE;

	this_cpu_dec(perf_nmi_counter);

	return NMI_HANDLED;
}

545
static struct event_constraint *
546 547
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
548 549 550 551 552 553 554
{
	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
		return &unconstrained;

555
	return __amd_get_nb_event_constraints(cpuc, event, NULL);
556 557 558 559 560 561 562 563 564
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
		__amd_put_nb_event_constraints(cpuc, event);
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *amd_format_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
617
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
618
 * 0x003	FP	PERF_CTL[3]
619
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
620 621 622 623 624
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
625
 * 0x031	LS	PERF_CTL[2:0] (**)
626 627 628 629 630 631 632 633 634 635 636 637 638
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
639
 * 0x1C0	EX	PERF_CTL[5:3]
640 641
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
642
 *
643 644
 * (*)  depending on the umask all FPU counters may be used
 * (**) only one unitmask enabled at a time
645 646 647 648 649
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
650
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
651 652 653 654
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
655 656
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
657
{
658 659
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);
660 661 662 663

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
664 665 666 667 668 669 670 671 672 673
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
674 675 676 677 678
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
679
		return &amd_f15_PMC53;
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
695 696 697 698 699 700
		case 0x031:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				return &amd_f15_PMC20;
			return &emptyconstraint;
		case 0x1C0:
			return &amd_f15_PMC53;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
720
		/* moved to uncore.c */
721
		return &emptyconstraint;
722 723 724 725 726
	default:
		return &emptyconstraint;
	}
}

727 728 729 730 731 732 733 734
static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
		    (config & AMD64_EVENTSEL_EVENT) >> 24;

	return x86_event_sysfs_show(page, config, event);
}

735 736
static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
737
	.handle_irq		= amd_pmu_handle_irq,
738
	.disable_all		= amd_pmu_disable_all,
739 740 741 742 743
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
744 745
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
746
	.addr_offset            = amd_pmu_addr_offset,
747 748
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
749
	.num_counters		= AMD64_NUM_COUNTERS,
750 751 752 753 754
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
755
	.get_event_constraints	= amd_get_event_constraints,
756 757
	.put_event_constraints	= amd_put_event_constraints,

758
	.format_attrs		= amd_format_attr,
759
	.events_sysfs_show	= amd_event_sysfs_show,
760

761
	.cpu_prepare		= amd_pmu_cpu_prepare,
762
	.cpu_starting		= amd_pmu_cpu_starting,
763
	.cpu_dead		= amd_pmu_cpu_dead,
764 765

	.amd_nb_constraints	= 1,
766 767
};

768
static int __init amd_core_pmu_init(void)
769
{
770
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
771 772 773 774 775
		return 0;

	switch (boot_cpu_data.x86) {
	case 0x15:
		pr_cont("Fam15h ");
776
		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
777
		break;
778 779 780 781 782 783 784
	case 0x17:
		pr_cont("Fam17h ");
		/*
		 * In family 17h, there are no event constraints in the PMC hardware.
		 * We fallback to using default amd_get_event_constraints.
		 */
		break;
785 786
	default:
		pr_err("core perfctr but no constraints; unknown hardware!\n");
787 788 789 790 791 792
		return -ENODEV;
	}

	/*
	 * If core performance counter extensions exists, we must use
	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
793
	 * amd_pmu_addr_offset().
794 795 796 797
	 */
	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
798 799 800 801 802
	/*
	 * AMD Core perfctr has separate MSRs for the NB events, see
	 * the amd/uncore.c driver.
	 */
	x86_pmu.amd_nb_constraints = 0;
803

804
	pr_cont("core perfctr, ");
805 806 807
	return 0;
}

808
__init int amd_pmu_init(void)
809
{
810 811
	int ret;

812 813 814 815
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

816 817
	x86_pmu = amd_pmu;

818 819 820
	ret = amd_core_pmu_init();
	if (ret)
		return ret;
821

822 823 824 825 826 827 828 829
	if (num_possible_cpus() == 1) {
		/*
		 * No point in allocating data structures to serialize
		 * against other CPUs, when there is only the one CPU.
		 */
		x86_pmu.amd_nb_constraints = 0;
	}

830 831 832 833 834 835
	/* Events are common for all AMDs */
	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
	       sizeof(hw_cache_event_ids));

	return 0;
}
836 837 838

void amd_pmu_enable_virt(void)
{
839
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
840 841 842 843

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
844
	amd_pmu_disable_all();
845 846 847 848 849 850
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
851
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
852 853 854 855 856 857 858

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
859
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
860 861

	/* Reload all events */
862
	amd_pmu_disable_all();
863 864 865
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);