core.c 20.2 KB
Newer Older
1
#include <linux/perf_event.h>
2
#include <linux/export.h>
3 4 5
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
6
#include <linux/delay.h>
7
#include <asm/apicdef.h>
8

9
#include "../perf_event.h"
10

11
static __initconst const u64 amd_hw_cache_event_ids
12 13 14 15 16 17 18
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
19
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
20 21
	},
	[ C(OP_WRITE) ] = {
22
		[ C(RESULT_ACCESS) ] = 0,
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
61
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
62 63 64 65 66 67 68 69 70 71 72 73 74
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
75
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
100 101 102 103 104 105 106 107 108 109 110 111 112 113
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
114 115 116 117 118
};

/*
 * AMD Performance Monitor K7 and later.
 */
119
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
120
{
121 122
  [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
  [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
123 124
  [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x077d,
  [PERF_COUNT_HW_CACHE_MISSES]			= 0x077e,
125 126 127 128
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
  [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
  [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
  [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
129 130 131 132 133 134 135
};

static u64 amd_pmu_event_map(int hw_event)
{
	return amd_perfmon_event_map[hw_event];
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Previously calculated offsets
 */
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;

/*
 * Legacy CPUs:
 *   4 counters starting at 0xc0010000 each offset by 1
 *
 * CPUs with core performance counter extensions:
 *   6 counters starting at 0xc0010200 each offset by 2
 */
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
151
	int offset;
152 153 154 155 156 157 158 159 160 161 162 163

	if (!index)
		return index;

	if (eventsel)
		offset = event_offsets[index];
	else
		offset = count_offsets[index];

	if (offset)
		return offset;

164
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
165 166 167 168 169 170 171 172 173 174 175 176
		offset = index;
	else
		offset = index << 1;

	if (eventsel)
		event_offsets[index] = offset;
	else
		count_offsets[index] = offset;

	return offset;
}

177 178
static int amd_core_hw_config(struct perf_event *event)
{
179 180 181 182 183 184 185 186 187
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
188
		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
189
	else if (event->attr.exclude_guest)
190
		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
191

192 193
	return 0;
}
194

195 196 197
/*
 * AMD64 events are detected based on their event codes.
 */
198 199 200 201 202
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

203 204 205 206 207
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

208 209 210 211 212 213 214
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret;

	/* pass precise event sampling to ibs: */
	if (event->attr.precise_ip && get_ibs_caps())
		return -ENOENT;

	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	ret = x86_pmu_hw_config(event);
	if (ret)
		return ret;

	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return amd_core_hw_config(event);
}

236 237
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
238 239 240 241 242 243 244 245 246 247 248 249
{
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
250
	for (i = 0; i < x86_pmu.num_counters; i++) {
251
		if (cmpxchg(nb->owners + i, event, NULL) == event)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
			break;
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
288
  * calling __amd_put_nb_event_constraints()
289 290 291 292
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
293 294
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			       struct event_constraint *c)
295 296 297
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
298 299
	struct perf_event *old;
	int idx, new = -1;
300

301 302 303 304 305 306
	if (!c)
		c = &unconstrained;

	if (cpuc->is_fake)
		return c;

307 308 309 310 311 312 313 314 315 316
	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
317
	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		if (new == -1 || hwc->idx == idx)
			/* assign free slot, prefer hwc->idx */
			old = cmpxchg(nb->owners + idx, NULL, event);
		else if (nb->owners[idx] == event)
			/* event already present */
			old = event;
		else
			continue;

		if (old && old != event)
			continue;

		/* reassign to this slot */
		if (new != -1)
			cmpxchg(nb->owners + new, event, NULL);
		new = idx;
334 335

		/* already present, reuse */
336
		if (old == event)
337
			break;
338 339 340 341 342 343
	}

	if (new == -1)
		return &emptyconstraint;

	return &nb->event_constraints[new];
344 345
}

P
Peter Zijlstra 已提交
346
static struct amd_nb *amd_alloc_nb(int cpu)
347 348 349 350
{
	struct amd_nb *nb;
	int i;

351
	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
352 353 354
	if (!nb)
		return NULL;

P
Peter Zijlstra 已提交
355
	nb->nb_id = -1;
356 357 358 359

	/*
	 * initialize all possible NB constraints
	 */
360
	for (i = 0; i < x86_pmu.num_counters; i++) {
P
Peter Zijlstra 已提交
361
		__set_bit(i, nb->event_constraints[i].idxmsk);
362 363 364 365 366
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

367 368 369 370 371 372
static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	WARN_ON_ONCE(cpuc->amd_nb);

373
	if (!x86_pmu.amd_nb_constraints)
374
		return 0;
375

P
Peter Zijlstra 已提交
376
	cpuc->amd_nb = amd_alloc_nb(cpu);
377
	if (!cpuc->amd_nb)
378
		return -ENOMEM;
379

380
	return 0;
381 382 383
}

static void amd_pmu_cpu_starting(int cpu)
384
{
385
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
386
	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
387
	struct amd_nb *nb;
388 389
	int i, nb_id;

390
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
391

392
	if (!x86_pmu.amd_nb_constraints)
393 394 395
		return;

	nb_id = amd_get_nb_id(cpu);
396
	WARN_ON_ONCE(nb_id == BAD_APICID);
397 398

	for_each_online_cpu(i) {
399 400
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
401 402
			continue;

403
		if (nb->nb_id == nb_id) {
404
			*onln = cpuc->amd_nb;
405 406 407
			cpuc->amd_nb = nb;
			break;
		}
408
	}
409 410 411

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
412 413
}

414
static void amd_pmu_cpu_dead(int cpu)
415 416 417
{
	struct cpu_hw_events *cpuhw;

418
	if (!x86_pmu.amd_nb_constraints)
419 420 421 422
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

423
	if (cpuhw->amd_nb) {
424 425 426 427
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);
428

429 430
		cpuhw->amd_nb = NULL;
	}
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 * When a PMC counter overflows, an NMI is used to process the event and
 * reset the counter. NMI latency can result in the counter being updated
 * before the NMI can run, which can result in what appear to be spurious
 * NMIs. This function is intended to wait for the NMI to run and reset
 * the counter to avoid possible unhandled NMI messages.
 */
#define OVERFLOW_WAIT_COUNT	50

static void amd_pmu_wait_on_overflow(int idx)
{
	unsigned int i;
	u64 counter;

	/*
	 * Wait for the counter to be reset if it has overflowed. This loop
	 * should exit very, very quickly, but just in case, don't wait
	 * forever...
	 */
	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
		rdmsrl(x86_pmu_event_addr(idx), counter);
		if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
			break;

		/* Might be in IRQ context, so can't sleep */
		udelay(1);
	}
}

static void amd_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	x86_pmu_disable_all();

	/*
	 * This shouldn't be called from NMI context, but add a safeguard here
	 * to return, since if we're in NMI context we can't wait for an NMI
	 * to reset an overflowed counter value.
	 */
	if (in_nmi())
		return;

	/*
	 * Check each counter for overflow and wait for it to be reset by the
	 * NMI if it has overflowed. This relies on the fact that all active
	 * counters are always enabled when this function is caled and
	 * ARCH_PERFMON_EVENTSEL_INT is always set.
	 */
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_wait_on_overflow(idx);
	}
}

491
static struct event_constraint *
492 493
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
494 495 496 497 498 499 500
{
	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
		return &unconstrained;

501
	return __amd_get_nb_event_constraints(cpuc, event, NULL);
502 503 504 505 506 507 508 509 510
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
		__amd_put_nb_event_constraints(cpuc, event);
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *amd_format_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
563
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
564
 * 0x003	FP	PERF_CTL[3]
565
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
566 567 568 569 570
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
571
 * 0x031	LS	PERF_CTL[2:0] (**)
572 573 574 575 576 577 578 579 580 581 582 583 584
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
585
 * 0x1C0	EX	PERF_CTL[5:3]
586 587
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
588
 *
589 590
 * (*)  depending on the umask all FPU counters may be used
 * (**) only one unitmask enabled at a time
591 592 593 594 595
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
596
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
597 598 599 600
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
601 602
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
603
{
604 605
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);
606 607 608 609

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
610 611 612 613 614 615 616 617 618 619
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
620 621 622 623 624
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
625
		return &amd_f15_PMC53;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
641 642 643 644 645 646
		case 0x031:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				return &amd_f15_PMC20;
			return &emptyconstraint;
		case 0x1C0:
			return &amd_f15_PMC53;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
666
		/* moved to uncore.c */
667
		return &emptyconstraint;
668 669 670 671 672
	default:
		return &emptyconstraint;
	}
}

673 674 675 676 677 678 679 680
static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
		    (config & AMD64_EVENTSEL_EVENT) >> 24;

	return x86_event_sysfs_show(page, config, event);
}

681 682
static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
683
	.handle_irq		= x86_pmu_handle_irq,
684
	.disable_all		= amd_pmu_disable_all,
685 686 687 688 689
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
690 691
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
692
	.addr_offset            = amd_pmu_addr_offset,
693 694
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
695
	.num_counters		= AMD64_NUM_COUNTERS,
696 697 698 699 700
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
701
	.get_event_constraints	= amd_get_event_constraints,
702 703
	.put_event_constraints	= amd_put_event_constraints,

704
	.format_attrs		= amd_format_attr,
705
	.events_sysfs_show	= amd_event_sysfs_show,
706

707
	.cpu_prepare		= amd_pmu_cpu_prepare,
708
	.cpu_starting		= amd_pmu_cpu_starting,
709
	.cpu_dead		= amd_pmu_cpu_dead,
710 711

	.amd_nb_constraints	= 1,
712 713
};

714
static int __init amd_core_pmu_init(void)
715
{
716
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
717 718 719 720 721
		return 0;

	switch (boot_cpu_data.x86) {
	case 0x15:
		pr_cont("Fam15h ");
722
		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
723
		break;
724 725 726 727 728 729 730
	case 0x17:
		pr_cont("Fam17h ");
		/*
		 * In family 17h, there are no event constraints in the PMC hardware.
		 * We fallback to using default amd_get_event_constraints.
		 */
		break;
731 732
	default:
		pr_err("core perfctr but no constraints; unknown hardware!\n");
733 734 735 736 737 738
		return -ENODEV;
	}

	/*
	 * If core performance counter extensions exists, we must use
	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
739
	 * amd_pmu_addr_offset().
740 741 742 743
	 */
	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
744 745 746 747 748
	/*
	 * AMD Core perfctr has separate MSRs for the NB events, see
	 * the amd/uncore.c driver.
	 */
	x86_pmu.amd_nb_constraints = 0;
749

750
	pr_cont("core perfctr, ");
751 752 753
	return 0;
}

754
__init int amd_pmu_init(void)
755
{
756 757
	int ret;

758 759 760 761
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

762 763
	x86_pmu = amd_pmu;

764 765 766
	ret = amd_core_pmu_init();
	if (ret)
		return ret;
767

768 769 770 771 772 773 774 775
	if (num_possible_cpus() == 1) {
		/*
		 * No point in allocating data structures to serialize
		 * against other CPUs, when there is only the one CPU.
		 */
		x86_pmu.amd_nb_constraints = 0;
	}

776 777 778 779 780 781
	/* Events are common for all AMDs */
	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
	       sizeof(hw_cache_event_ids));

	return 0;
}
782 783 784

void amd_pmu_enable_virt(void)
{
785
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
786 787 788 789

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
790
	amd_pmu_disable_all();
791 792 793 794 795 796
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
797
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
798 799 800 801 802 803 804

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
805
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
806 807

	/* Reload all events */
808
	amd_pmu_disable_all();
809 810 811
	x86_pmu_enable_all(0);
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);