arm.c 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47
#include <asm/sections.h>
48 49 50 51 52

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 56
static unsigned long hyp_default_vectors;

57 58 59
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 63
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
64
static DEFINE_SPINLOCK(kvm_vmid_lock);
65

66 67 68
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
69
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 71 72 73 74 75 76 77 78
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
85
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 87 88 89
{
	return &kvm_arm_running_vcpu;
}

90
int kvm_arch_hardware_enable(void)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117 118
	int ret = 0;

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128 129
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131 132
	kvm_timer_init(kvm);

133 134 135
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

136 137 138
	/* The maximum number of VCPUs is limited by the host's GIC model */
	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();

139 140 141 142 143
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
144 145 146 147 148 149 150 151
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


152 153 154 155
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
156 157 158 159
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

160 161
	kvm_free_stage2_pgd(kvm);

162 163 164 165 166 167
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
168 169

	kvm_vgic_destroy(kvm);
170 171
}

172
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 174 175
{
	int r;
	switch (ext) {
176
	case KVM_CAP_IRQCHIP:
177
	case KVM_CAP_IOEVENTFD:
178
	case KVM_CAP_DEVICE_CTRL:
179 180 181 182
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
183
	case KVM_CAP_ARM_PSCI:
184
	case KVM_CAP_ARM_PSCI_0_2:
185
	case KVM_CAP_READONLY_MEM:
186
	case KVM_CAP_MP_STATE:
187 188 189 190 191
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
192 193
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
194
		break;
195 196 197 198 199 200 201
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
202
		r = kvm_arch_dev_ioctl_check_extension(ext);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

220 221 222 223 224
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

225 226 227 228 229
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

230 231 232 233 234 235 236 237 238 239
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

240 241 242 243
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

244
	return vcpu;
245 246
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
247 248 249 250 251 252
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

253
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
254
{
255
	kvm_vgic_vcpu_early_init(vcpu);
256 257 258 259
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
260
	kvm_mmu_free_memory_caches(vcpu);
261
	kvm_timer_vcpu_terminate(vcpu);
262
	kvm_vgic_vcpu_destroy(vcpu);
263
	kmem_cache_free(kvm_vcpu_cache, vcpu);
264 265 266 267 268 269 270 271 272
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
273
	return kvm_timer_should_fire(vcpu);
274 275
}

276 277 278 279 280 281 282 283 284 285
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

286 287
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
288 289
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
290
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
291

292 293 294
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

295 296
	kvm_arm_reset_debug_ptr(vcpu);

297 298 299 300 301
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
302
	vcpu->cpu = cpu;
303
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
304

305
	kvm_arm_set_running_vcpu(vcpu);
306 307 308 309
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
310 311 312 313 314 315 316
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

317
	kvm_arm_set_running_vcpu(NULL);
318 319 320 321 322
}

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
323
	if (vcpu->arch.power_off)
324 325 326 327 328
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
329 330 331 332 333
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
334 335
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
336
		vcpu->arch.power_off = false;
337 338
		break;
	case KVM_MP_STATE_STOPPED:
339
		vcpu->arch.power_off = true;
340 341 342 343 344 345
		break;
	default:
		return -EINVAL;
	}

	return 0;
346 347
}

348 349 350 351 352 353 354
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
355 356
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
357
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
358
		&& !v->arch.power_off && !v->arch.pause);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
438
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
439 440

	/* update vttbr to be used with the new vmid */
441
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
442
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
443
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
444
	kvm->arch.vttbr = pgd_phys | vmid;
445 446 447 448 449 450

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
451
	struct kvm *kvm = vcpu->kvm;
452 453
	int ret;

454 455 456 457
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
458

459
	/*
460 461
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
462
	 */
463
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
464
		ret = kvm_vgic_map_resources(kvm);
465 466 467 468
		if (ret)
			return ret;
	}

469 470 471 472 473 474 475 476
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

477 478 479
	return 0;
}

480 481 482 483 484
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;

static void kvm_arm_halt_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
	force_vm_exit(cpu_all_mask);
}

static void kvm_arm_resume_guest(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

		vcpu->arch.pause = false;
		wake_up_interruptible(wq);
	}
}

511
static void vcpu_sleep(struct kvm_vcpu *vcpu)
512 513 514
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

515 516
	wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
				       (!vcpu->arch.pause)));
517 518
}

519 520 521 522 523
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

524 525 526 527 528 529 530 531 532 533 534
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
535 536
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
537 538 539
	int ret;
	sigset_t sigsaved;

540
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
541 542 543 544 545 546
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
547 548 549 550 551 552
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

553 554 555 556 557 558 559 560 561 562 563 564 565
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

566
		if (vcpu->arch.power_off || vcpu->arch.pause)
567
			vcpu_sleep(vcpu);
568

569 570 571 572 573
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
574
		preempt_disable();
575
		kvm_timer_flush_hwstate(vcpu);
576 577
		kvm_vgic_flush_hwstate(vcpu);

578 579 580 581 582 583 584 585 586 587
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

588
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
589
			vcpu->arch.power_off || vcpu->arch.pause) {
590
			local_irq_enable();
591
			kvm_timer_sync_hwstate(vcpu);
592
			kvm_vgic_sync_hwstate(vcpu);
593
			preempt_enable();
594 595 596
			continue;
		}

597 598
		kvm_arm_setup_debug(vcpu);

599 600 601 602
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
603
		__kvm_guest_enter();
604 605 606 607 608
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
609
		vcpu->stat.exits++;
610 611 612 613
		/*
		 * Back from guest
		 *************************************************************/

614 615
		kvm_arm_clear_debug(vcpu);

616 617 618 619 620 621 622 623 624 625 626 627 628
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
629 630 631 632 633 634 635 636
		 * We do local_irq_enable() before calling kvm_guest_exit() so
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
		 * preemption after calling kvm_guest_exit() so that if we get
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
		kvm_guest_exit();
637
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
638

639 640 641 642 643 644 645
		/*
		 * We must sync the timer state before the vgic state so that
		 * the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_timer_sync_hwstate(vcpu);

646
		kvm_vgic_sync_hwstate(vcpu);
647 648 649

		preempt_enable();

650 651 652 653 654 655
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

691 692
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
693 694 695 696 697 698 699 700 701 702 703 704 705
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

706 707 708 709
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
710

711 712
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
713

714 715 716
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
735

736 737 738 739 740
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

741
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
742 743 744 745 746 747
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


792 793 794 795 796 797 798 799 800
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

801 802 803 804 805 806 807
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

808 809
	vcpu_reset_hcr(vcpu);

810
	/*
811
	 * Handle the "start in power-off" case.
812
	 */
813
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
814
		vcpu->arch.power_off = true;
815
	else
816
		vcpu->arch.power_off = false;
817 818 819 820

	return 0;
}

821 822 823 824 825 826 827 828 829 830 831 832 833
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

834
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
835 836 837 838
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
839 840 841 842

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

843 844 845 846 847 848 849 850 851 852 853 854
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

855 856 857
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
892 893
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
894 895 896 897 898 899 900 901 902 903 904 905
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
906 907
}

908 909 910
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
911 912 913 914 915 916 917 918 919
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
920
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
921 922 923
	default:
		return -ENODEV;
	}
924 925
}

926 927 928
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
929 930 931 932
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
933
	case KVM_CREATE_IRQCHIP: {
934
		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
935
	}
936 937 938 939 940 941 942
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
943 944 945 946 947 948 949 950 951 952 953 954 955
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
956 957 958
	default:
		return -EINVAL;
	}
959 960
}

961
static void cpu_init_hyp_mode(void *dummy)
962
{
963 964
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
965 966 967 968 969
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
970
	__hyp_set_vectors(kvm_get_idmap_vector());
971

972 973
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
974
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
975 976 977
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

978
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
979 980

	kvm_arm_init_debug();
981 982
}

983 984 985 986 987 988
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
V
Vladimir Murzin 已提交
989 990
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
991 992 993 994
		break;
	}

	return NOTIFY_OK;
995 996
}

997 998 999 1000
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

1001 1002 1003 1004 1005
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1006 1007
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

1074 1075 1076 1077 1078 1079
	err = create_hyp_mappings(__start_rodata, __end_rodata);
	if (err) {
		kvm_err("Cannot map rodata section\n");
		goto out_free_mappings;
	}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
1094
	 * Map the host CPU structures
1095
	 */
1096 1097
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
1098
		err = -ENOMEM;
1099
		kvm_err("Cannot allocate host CPU state\n");
1100 1101 1102 1103
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
1104
		kvm_cpu_context_t *cpu_ctxt;
1105

1106 1107
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1108 1109

		if (err) {
1110 1111
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
1112 1113 1114
		}
	}

1115 1116 1117 1118 1119
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

1120 1121 1122 1123 1124
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
1125
		goto out_free_context;
1126

1127 1128 1129 1130 1131
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1132
		goto out_free_context;
1133

1134 1135 1136 1137
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1138 1139
	kvm_perf_init();

1140 1141 1142 1143
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1144
	kvm_info("Hyp mode initialized successfully\n");
1145

1146
	return 0;
1147 1148
out_free_context:
	free_percpu(kvm_host_cpu_state);
1149
out_free_mappings:
1150
	free_hyp_pgds();
1151 1152 1153 1154 1155 1156 1157 1158
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1159 1160 1161 1162 1163
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1177 1178 1179
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1180 1181
int kvm_arch_init(void *opaque)
{
1182
	int err;
1183
	int ret, cpu;
1184 1185 1186 1187 1188 1189

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1190 1191 1192 1193 1194 1195
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1196 1197
	}

1198 1199
	cpu_notifier_register_begin();

1200 1201 1202 1203
	err = init_hyp_mode();
	if (err)
		goto out_err;

1204
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1205 1206 1207 1208 1209
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1210 1211
	cpu_notifier_register_done();

1212 1213
	hyp_cpu_pm_init();

1214
	kvm_coproc_table_init();
1215
	return 0;
1216
out_err:
1217
	cpu_notifier_register_done();
1218
	return err;
1219 1220 1221 1222 1223
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1224
	kvm_perf_teardown();
1225 1226 1227 1228 1229 1230 1231 1232 1233
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);