rc-main.c 39.5 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/leds.h>
20
#include <linux/slab.h>
21
#include <linux/device.h>
22
#include <linux/module.h>
23
#include "rc-core-priv.h"
24

25 26
/* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
#define IRRCV_NUM_DEVICES      256
27
static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
28

29 30 31
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
32

33 34 35
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

36
/* Used to keep track of known keymaps */
37 38
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
39
static struct led_trigger *led_feedback;
40

41
static struct rc_map_list *seek_rc_map(const char *name)
42
{
43
	struct rc_map_list *map = NULL;
44 45 46 47 48 49 50 51 52 53 54 55 56

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

57
struct rc_map *rc_map_get(const char *name)
58 59
{

60
	struct rc_map_list *map;
61 62 63 64

	map = seek_rc_map(name);
#ifdef MODULE
	if (!map) {
65
		int rc = request_module("%s", name);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
84
EXPORT_SYMBOL_GPL(rc_map_get);
85

86
int rc_map_register(struct rc_map_list *map)
87 88 89 90 91 92
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
93
EXPORT_SYMBOL_GPL(rc_map_register);
94

95
void rc_map_unregister(struct rc_map_list *map)
96 97 98 99 100
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
101
EXPORT_SYMBOL_GPL(rc_map_unregister);
102 103


104
static struct rc_map_table empty[] = {
105 106 107
	{ 0x2a, KEY_COFFEE },
};

108
static struct rc_map_list empty_map = {
109 110 111
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
112
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
113 114 115 116
		.name    = RC_MAP_EMPTY,
	}
};

117 118
/**
 * ir_create_table() - initializes a scancode table
119
 * @rc_map:	the rc_map to initialize
120
 * @name:	name to assign to the table
121
 * @rc_type:	ir type to assign to the new table
122 123 124
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
125
 * This routine will initialize the rc_map and will allocate
126
 * memory to hold at least the specified number of elements.
127
 */
128
static int ir_create_table(struct rc_map *rc_map,
129
			   const char *name, u64 rc_type, size_t size)
130
{
131 132
	rc_map->name = name;
	rc_map->rc_type = rc_type;
133 134
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135 136
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
137 138 139
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140
		   rc_map->size, rc_map->alloc);
141 142 143 144 145
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
146
 * @rc_map:	the table whose mappings need to be freed
147 148 149 150
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
151
static void ir_free_table(struct rc_map *rc_map)
152
{
153 154 155
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
156 157
}

158
/**
159
 * ir_resize_table() - resizes a scancode table if necessary
160
 * @rc_map:	the rc_map to resize
161
 * @gfp_flags:	gfp flags to use when allocating memory
162
 * @return:	zero on success or a negative error code
163
 *
164
 * This routine will shrink the rc_map if it has lots of
165
 * unused entries and grow it if it is full.
166
 */
167
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
168
{
169
	unsigned int oldalloc = rc_map->alloc;
170
	unsigned int newalloc = oldalloc;
171 172
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
173

174
	if (rc_map->size == rc_map->len) {
175
		/* All entries in use -> grow keytable */
176
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177
			return -ENOMEM;
178

179 180 181
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
182

183
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184 185 186 187
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
188

189 190
	if (newalloc == oldalloc)
		return 0;
191

192
	newscan = kmalloc(newalloc, gfp_flags);
193 194 195 196
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
197

198
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199 200
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
201
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202 203
	kfree(oldscan);
	return 0;
204 205
}

206
/**
207
 * ir_update_mapping() - set a keycode in the scancode->keycode table
208
 * @dev:	the struct rc_dev device descriptor
209
 * @rc_map:	scancode table to be adjusted
210 211 212 213
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
214
 * This routine is used to update scancode->keycode mapping at given
215 216
 * position.
 */
217
static unsigned int ir_update_mapping(struct rc_dev *dev,
218
				      struct rc_map *rc_map,
219 220 221
				      unsigned int index,
				      unsigned int new_keycode)
{
222
	int old_keycode = rc_map->scan[index].keycode;
223 224 225 226 227
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 229 230
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231
			(rc_map->len - index) * sizeof(struct rc_map_table));
232 233 234 235
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
236 237
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
238
		__set_bit(new_keycode, dev->input_dev->keybit);
239 240 241 242
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
243
		__clear_bit(old_keycode, dev->input_dev->keybit);
244
		/* ... but another scancode might use the same keycode */
245 246
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
247
				__set_bit(old_keycode, dev->input_dev->keybit);
248 249 250 251 252
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
253
		ir_resize_table(rc_map, GFP_ATOMIC);
254 255 256 257 258 259
	}

	return old_keycode;
}

/**
260
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
261
 * @dev:	the struct rc_dev device descriptor
262
 * @rc_map:	scancode table to be searched
263 264
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
265
 *		accommodate not yet present scancodes
266 267
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
268
 *
269
 * This routine is used to locate given scancode in rc_map.
270 271
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
272
 */
273
static unsigned int ir_establish_scancode(struct rc_dev *dev,
274
					  struct rc_map *rc_map,
275 276
					  unsigned int scancode,
					  bool resize)
277
{
278
	unsigned int i;
279 280 281 282 283 284

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
285 286
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
287
	 */
288 289
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
290 291

	/* First check if we already have a mapping for this ir command */
292 293
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
294 295
			return i;

296
		/* Keytable is sorted from lowest to highest scancode */
297
		if (rc_map->scan[i].scancode >= scancode)
298 299
			break;
	}
300

301
	/* No previous mapping found, we might need to grow the table */
302 303
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304 305
			return -1U;
	}
306

307
	/* i is the proper index to insert our new keycode */
308 309
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310
			(rc_map->len - i) * sizeof(struct rc_map_table));
311 312 313
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
314

315
	return i;
316 317
}

318
/**
319
 * ir_setkeycode() - set a keycode in the scancode->keycode table
320
 * @idev:	the struct input_dev device descriptor
321
 * @scancode:	the desired scancode
322 323
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
324
 *
325
 * This routine is used to handle evdev EVIOCSKEY ioctl.
326
 */
327
static int ir_setkeycode(struct input_dev *idev,
328 329
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
330
{
331
	struct rc_dev *rdev = input_get_drvdata(idev);
332
	struct rc_map *rc_map = &rdev->rc_map;
333 334
	unsigned int index;
	unsigned int scancode;
335
	int retval = 0;
336
	unsigned long flags;
337

338
	spin_lock_irqsave(&rc_map->lock, flags);
339 340 341

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
342
		if (index >= rc_map->len) {
343 344 345 346 347 348 349 350
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

351 352
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
353 354 355 356 357
			retval = -ENOMEM;
			goto out;
		}
	}

358
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
359 360

out:
361
	spin_unlock_irqrestore(&rc_map->lock, flags);
362
	return retval;
363 364 365
}

/**
366
 * ir_setkeytable() - sets several entries in the scancode->keycode table
367
 * @dev:	the struct rc_dev device descriptor
368 369
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
370
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
371
 *
372
 * This routine is used to handle table initialization.
373
 */
374
static int ir_setkeytable(struct rc_dev *dev,
375
			  const struct rc_map *from)
376
{
377
	struct rc_map *rc_map = &dev->rc_map;
378 379 380
	unsigned int i, index;
	int rc;

381
	rc = ir_create_table(rc_map, from->name,
382
			     from->rc_type, from->size);
383 384 385 386
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387
		   rc_map->size, rc_map->alloc);
388

389
	for (i = 0; i < from->size; i++) {
390
		index = ir_establish_scancode(dev, rc_map,
391
					      from->scan[i].scancode, false);
392
		if (index >= rc_map->len) {
393
			rc = -ENOMEM;
394
			break;
395 396
		}

397
		ir_update_mapping(dev, rc_map, index,
398
				  from->scan[i].keycode);
399
	}
400 401

	if (rc)
402
		ir_free_table(rc_map);
403

404
	return rc;
405 406
}

407 408
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
409
 * @rc_map:	the struct rc_map to search
410 411 412 413 414 415
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
416
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417 418
					  unsigned int scancode)
{
419
	int start = 0;
420
	int end = rc_map->len - 1;
421
	int mid;
422 423 424

	while (start <= end) {
		mid = (start + end) / 2;
425
		if (rc_map->scan[mid].scancode < scancode)
426
			start = mid + 1;
427
		else if (rc_map->scan[mid].scancode > scancode)
428 429 430 431 432 433 434 435
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

436
/**
437
 * ir_getkeycode() - get a keycode from the scancode->keycode table
438
 * @idev:	the struct input_dev device descriptor
439
 * @scancode:	the desired scancode
440 441
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
442
 *
443
 * This routine is used to handle evdev EVIOCGKEY ioctl.
444
 */
445
static int ir_getkeycode(struct input_dev *idev,
446
			 struct input_keymap_entry *ke)
447
{
448
	struct rc_dev *rdev = input_get_drvdata(idev);
449
	struct rc_map *rc_map = &rdev->rc_map;
450
	struct rc_map_table *entry;
451 452 453 454
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
455

456
	spin_lock_irqsave(&rc_map->lock, flags);
457 458 459 460 461 462 463 464

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

465
		index = ir_lookup_by_scancode(rc_map, scancode);
466 467
	}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
485 486
		retval = -EINVAL;
		goto out;
487 488
	}

489 490
	retval = 0;

491
out:
492
	spin_unlock_irqrestore(&rc_map->lock, flags);
493
	return retval;
494 495 496
}

/**
497
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498 499 500
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
501
 *
502 503 504
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
505
 */
506
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
507
{
508
	struct rc_map *rc_map = &dev->rc_map;
509 510 511 512
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

513
	spin_lock_irqsave(&rc_map->lock, flags);
514

515 516 517
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
518

519
	spin_unlock_irqrestore(&rc_map->lock, flags);
520

521 522
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523
			   dev->input_name, scancode, keycode);
524

525
	return keycode;
526
}
527
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
528

529
/**
530
 * ir_do_keyup() - internal function to signal the release of a keypress
531
 * @dev:	the struct rc_dev descriptor of the device
532
 * @sync:	whether or not to call input_sync
533
 *
534 535
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
536
 */
537
static void ir_do_keyup(struct rc_dev *dev, bool sync)
538
{
539
	if (!dev->keypressed)
540 541
		return;

542 543
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
544
	led_trigger_event(led_feedback, LED_OFF);
545 546
	if (sync)
		input_sync(dev->input_dev);
547
	dev->keypressed = false;
548
}
549 550

/**
551
 * rc_keyup() - signals the release of a keypress
552
 * @dev:	the struct rc_dev descriptor of the device
553 554 555 556
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
557
void rc_keyup(struct rc_dev *dev)
558 559 560
{
	unsigned long flags;

561
	spin_lock_irqsave(&dev->keylock, flags);
562
	ir_do_keyup(dev, true);
563
	spin_unlock_irqrestore(&dev->keylock, flags);
564
}
565
EXPORT_SYMBOL_GPL(rc_keyup);
566 567 568

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
569
 * @cookie:	a pointer to the struct rc_dev for the device
570 571 572
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
573
 */
574
static void ir_timer_keyup(unsigned long cookie)
575
{
576
	struct rc_dev *dev = (struct rc_dev *)cookie;
577 578 579 580 581 582 583 584 585 586 587 588
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
589 590
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591
		ir_do_keyup(dev, true);
592
	spin_unlock_irqrestore(&dev->keylock, flags);
593 594 595
}

/**
596
 * rc_repeat() - signals that a key is still pressed
597
 * @dev:	the struct rc_dev descriptor of the device
598 599 600 601 602
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
603
void rc_repeat(struct rc_dev *dev)
604 605
{
	unsigned long flags;
606

607
	spin_lock_irqsave(&dev->keylock, flags);
608

609
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610
	input_sync(dev->input_dev);
611

612
	if (!dev->keypressed)
613
		goto out;
614

615 616
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
617 618

out:
619
	spin_unlock_irqrestore(&dev->keylock, flags);
620
}
621
EXPORT_SYMBOL_GPL(rc_repeat);
622 623

/**
624
 * ir_do_keydown() - internal function to process a keypress
625
 * @dev:	the struct rc_dev descriptor of the device
626
 * @protocol:	the protocol of the keypress
627 628 629
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
630
 *
631 632
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
633
 */
634 635
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
636
{
637
	bool new_event = (!dev->keypressed		 ||
638
			  dev->last_protocol != protocol ||
639
			  dev->last_scancode != scancode ||
640
			  dev->last_toggle   != toggle);
641

642 643
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
644

645
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
646

647 648 649
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
650
		dev->last_protocol = protocol;
651 652 653 654 655
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
656 657
			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
			   dev->input_name, keycode, protocol, scancode);
658
		input_report_key(dev->input_dev, keycode, 1);
659 660

		led_trigger_event(led_feedback, LED_FULL);
661
	}
662

663
	input_sync(dev->input_dev);
664
}
665

666
/**
667
 * rc_keydown() - generates input event for a key press
668
 * @dev:	the struct rc_dev descriptor of the device
669 670
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
671 672 673
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
674 675
 * This routine is used to signal that a key has been pressed on the
 * remote control.
676
 */
677
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
678 679
{
	unsigned long flags;
680
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
681

682
	spin_lock_irqsave(&dev->keylock, flags);
683
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
684

685 686 687
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
688
	}
689
	spin_unlock_irqrestore(&dev->keylock, flags);
690
}
691
EXPORT_SYMBOL_GPL(rc_keydown);
692

693
/**
694
 * rc_keydown_notimeout() - generates input event for a key press without
695
 *                          an automatic keyup event at a later time
696
 * @dev:	the struct rc_dev descriptor of the device
697 698
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
699 700 701
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
702
 * This routine is used to signal that a key has been pressed on the
703
 * remote control. The driver must manually call rc_keyup() at a later stage.
704
 */
705 706
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
707 708
{
	unsigned long flags;
709
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
710

711
	spin_lock_irqsave(&dev->keylock, flags);
712
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
713
	spin_unlock_irqrestore(&dev->keylock, flags);
714
}
715
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
716

717 718 719 720 721 722 723 724
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
725
	if (!rdev->users++ && rdev->open != NULL)
726 727 728 729 730 731 732 733 734 735 736
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

737
static int ir_open(struct input_dev *idev)
738
{
739
	struct rc_dev *rdev = input_get_drvdata(idev);
740

741 742 743 744 745 746 747 748
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

749
		 if (!--rdev->users && rdev->close != NULL)
750 751 752 753
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
754
}
755
EXPORT_SYMBOL_GPL(rc_close);
756

757
static void ir_close(struct input_dev *idev)
758
{
759
	struct rc_dev *rdev = input_get_drvdata(idev);
760
	rc_close(rdev);
761 762
}

763
/* class for /sys/class/rc */
764
static char *rc_devnode(struct device *dev, umode_t *mode)
765 766 767 768
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

769
static struct class rc_class = {
770
	.name		= "rc",
771
	.devnode	= rc_devnode,
772 773
};

774 775 776 777 778
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
779 780 781 782
static struct {
	u64	type;
	char	*name;
} proto_names[] = {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	{ RC_BIT_NONE,		"none"		},
	{ RC_BIT_OTHER,		"other"		},
	{ RC_BIT_UNKNOWN,	"unknown"	},
	{ RC_BIT_RC5 |
	  RC_BIT_RC5X,		"rc-5"		},
	{ RC_BIT_NEC,		"nec"		},
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
	  RC_BIT_RC6_MCE,	"rc-6"		},
	{ RC_BIT_JVC,		"jvc"		},
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
	  RC_BIT_SONY20,	"sony"		},
	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
	{ RC_BIT_SANYO,		"sanyo"		},
800
	{ RC_BIT_SHARP,		"sharp"		},
801 802
	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
	{ RC_BIT_LIRC,		"lirc"		},
803
	{ RC_BIT_XMP,		"xmp"		},
804 805 806
};

/**
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
	}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

/**
 * show_protocols() - shows the current/wakeup IR protocol(s)
833
 * @device:	the device descriptor
834
 * @mattr:	the device attribute struct
835 836 837
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
838
 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
839 840
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
841 842 843
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
844
 */
845
static ssize_t show_protocols(struct device *device,
846 847
			      struct device_attribute *mattr, char *buf)
{
848
	struct rc_dev *dev = to_rc_dev(device);
849
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
850 851 852 853 854
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
855
	if (!dev)
856 857
		return -EINVAL;

858 859
	mutex_lock(&dev->lock);

860
	if (fattr->type == RC_FILTER_NORMAL) {
861
		enabled = dev->enabled_protocols;
862 863 864
		if (dev->raw)
			allowed = ir_raw_get_allowed_protocols();
		else
865
			allowed = dev->allowed_protocols;
866
	} else {
867 868
		enabled = dev->enabled_wakeup_protocols;
		allowed = dev->allowed_wakeup_protocols;
869
	}
870

871 872 873 874
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
875 876 877 878 879 880

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
881 882 883

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
884 885 886 887 888
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';
889

890 891 892 893
	return tmp + 1 - buf;
}

/**
894 895 896
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
897
 *
898 899
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
900 901
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
902
 * Returns the number of changes performed or a negative error code.
903
 */
904
static int parse_protocol_change(u64 *protocols, const char *buf)
905 906
{
	const char *tmp;
907 908
	unsigned count = 0;
	bool enable, disable;
909
	u64 mask;
910
	int i;
911

912
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

929 930 931 932
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
933 934 935
			}
		}

936 937
		if (i == ARRAY_SIZE(proto_names)) {
			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
938
			return -EINVAL;
939 940 941 942
		}

		count++;

943
		if (enable)
944
			*protocols |= mask;
945
		else if (disable)
946
			*protocols &= ~mask;
947
		else
948
			*protocols = mask;
949 950 951 952
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		return -EINVAL;
	}

	return count;
}

/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
	u64 *current_protocols;
	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
	struct rc_scancode_filter *filter;
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	if (fattr->type == RC_FILTER_NORMAL) {
		IR_dprintk(1, "Normal protocol change requested\n");
993
		current_protocols = &dev->enabled_protocols;
994
		change_protocol = dev->change_protocol;
995
		filter = &dev->scancode_filter;
996 997 998
		set_filter = dev->s_filter;
	} else {
		IR_dprintk(1, "Wakeup protocol change requested\n");
999
		current_protocols = &dev->enabled_wakeup_protocols;
1000
		change_protocol = dev->change_wakeup_protocol;
1001
		filter = &dev->scancode_wakeup_filter;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		set_filter = dev->s_wakeup_filter;
	}

	if (!change_protocol) {
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

	rc = change_protocol(dev, &new_protocols);
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1022
		goto out;
1023 1024
	}

1025 1026 1027
	if (new_protocols == old_protocols) {
		rc = len;
		goto out;
1028 1029
	}

1030 1031
	*current_protocols = new_protocols;
	IR_dprintk(1, "Protocols changed to 0x%llx\n", (long long)new_protocols);
1032

1033 1034 1035 1036 1037
	/*
	 * If the protocol is changed the filter needs updating.
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1038 1039 1040 1041 1042
	if (set_filter && filter->mask) {
		if (new_protocols)
			rc = set_filter(dev, filter);
		else
			rc = -1;
1043

1044 1045 1046 1047 1048
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
			set_filter(dev, filter);
		}
1049 1050
	}

1051
	rc = len;
1052 1053 1054

out:
	mutex_unlock(&dev->lock);
1055
	return rc;
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1081
	struct rc_scancode_filter *filter;
1082 1083 1084 1085 1086 1087
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1088
	if (fattr->type == RC_FILTER_NORMAL)
1089
		filter = &dev->scancode_filter;
1090
	else
1091
		filter = &dev->scancode_wakeup_filter;
1092

1093
	mutex_lock(&dev->lock);
1094 1095
	if (fattr->mask)
		val = filter->mask;
1096
	else
1097
		val = filter->data;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1124
			    const char *buf, size_t len)
1125 1126 1127
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1128
	struct rc_scancode_filter new_filter, *filter;
1129 1130
	int ret;
	unsigned long val;
1131
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1132
	u64 *enabled_protocols;
1133 1134 1135 1136 1137 1138 1139 1140 1141

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1142 1143
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1144 1145
		enabled_protocols = &dev->enabled_protocols;
		filter = &dev->scancode_filter;
1146 1147
	} else {
		set_filter = dev->s_wakeup_filter;
1148 1149
		enabled_protocols = &dev->enabled_wakeup_protocols;
		filter = &dev->scancode_wakeup_filter;
1150 1151
	}

1152 1153
	if (!set_filter)
		return -EINVAL;
1154 1155 1156

	mutex_lock(&dev->lock);

1157
	new_filter = *filter;
1158
	if (fattr->mask)
1159
		new_filter.mask = val;
1160
	else
1161
		new_filter.data = val;
1162

1163
	if (!*enabled_protocols && val) {
1164 1165 1166 1167
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1168

1169
	ret = set_filter(dev, &new_filter);
1170 1171
	if (ret < 0)
		goto unlock;
1172

1173
	*filter = new_filter;
1174 1175 1176

unlock:
	mutex_unlock(&dev->lock);
1177
	return (ret < 0) ? ret : len;
1178 1179
}

1180 1181 1182 1183
static void rc_dev_release(struct device *device)
{
}

1184 1185 1186 1187 1188 1189 1190 1191 1192
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1193
	struct rc_dev *dev = to_rc_dev(device);
1194

1195 1196 1197
	if (!dev || !dev->input_dev)
		return -ENODEV;

1198 1199
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1200 1201
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1202 1203 1204 1205 1206 1207 1208

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1209 1210 1211 1212
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1213 1214 1215 1216 1217 1218 1219 1220
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1221

1222
static struct attribute *rc_dev_protocol_attrs[] = {
1223
	&dev_attr_protocols.attr.attr,
1224 1225 1226 1227 1228 1229 1230 1231
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1232
	&dev_attr_wakeup_protocols.attr.attr,
1233 1234 1235 1236 1237 1238 1239 1240
	NULL,
};

static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
	.attrs	= rc_dev_wakeup_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1241 1242
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1243 1244 1245
	NULL,
};

1246 1247
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1248 1249
};

1250 1251 1252 1253 1254 1255 1256 1257
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1258 1259 1260
};

static struct device_type rc_dev_type = {
1261
	.release	= rc_dev_release,
1262 1263 1264
	.uevent		= rc_dev_uevent,
};

1265
struct rc_dev *rc_allocate_device(void)
1266
{
1267
	struct rc_dev *dev;
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1279 1280
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1281 1282
	input_set_drvdata(dev->input_dev, dev);

1283
	spin_lock_init(&dev->rc_map.lock);
1284
	spin_lock_init(&dev->keylock);
1285
	mutex_init(&dev->lock);
1286
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1287

1288
	dev->dev.type = &rc_dev_type;
1289
	dev->dev.class = &rc_class;
1290 1291 1292 1293 1294 1295 1296 1297
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1298
{
1299 1300 1301 1302
	if (!dev)
		return;

	if (dev->input_dev)
1303
		input_free_device(dev->input_dev);
1304 1305 1306 1307 1308

	put_device(&dev->dev);

	kfree(dev);
	module_put(THIS_MODULE);
1309 1310 1311 1312 1313
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1314
	static bool raw_init = false; /* raw decoders loaded? */
1315
	struct rc_map *rc_map;
1316
	const char *path;
1317
	int rc, devno, attr = 0;
1318

1319 1320
	if (!dev || !dev->map_name)
		return -EINVAL;
1321

1322
	rc_map = rc_map_get(dev->map_name);
1323
	if (!rc_map)
1324
		rc_map = rc_map_get(RC_MAP_EMPTY);
1325
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1337 1338 1339 1340 1341 1342 1343 1344
	do {
		devno = find_first_zero_bit(ir_core_dev_number,
					    IRRCV_NUM_DEVICES);
		/* No free device slots */
		if (devno >= IRRCV_NUM_DEVICES)
			return -ENOMEM;
	} while (test_and_set_bit(devno, ir_core_dev_number));

1345 1346 1347
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1348
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1349 1350 1351 1352 1353 1354
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	if (dev->change_wakeup_protocol)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
	 * rule, which will in turn call show_protocols and access
	 * dev->enabled_protocols before it has been initialized.
	 */
	mutex_lock(&dev->lock);

1363
	dev->devno = devno;
1364 1365 1366 1367
	dev_set_name(&dev->dev, "rc%ld", dev->devno);
	dev_set_drvdata(&dev->dev, dev);
	rc = device_add(&dev->dev);
	if (rc)
1368
		goto out_unlock;
1369

1370
	rc = ir_setkeytable(dev, rc_map);
1371 1372 1373 1374 1375 1376 1377
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1378 1379 1380 1381

	/* input_register_device can call ir_open, so unlock mutex here */
	mutex_unlock(&dev->lock);

1382
	rc = input_register_device(dev->input_dev);
1383 1384 1385

	mutex_lock(&dev->lock);

1386 1387
	if (rc)
		goto out_table;
1388

1389
	/*
L
Lucas De Marchi 已提交
1390
	 * Default delay of 250ms is too short for some protocols, especially
1391 1392 1393 1394 1395 1396
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1397 1398 1399 1400 1401 1402 1403
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1404
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1405
	printk(KERN_INFO "%s: %s as %s\n",
1406 1407
		dev_name(&dev->dev),
		dev->input_name ? dev->input_name : "Unspecified device",
1408 1409 1410
		path ? path : "N/A");
	kfree(path);

1411
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1412 1413 1414 1415 1416 1417
		/* Load raw decoders, if they aren't already */
		if (!raw_init) {
			IR_dprintk(1, "Loading raw decoders\n");
			ir_raw_init();
			raw_init = true;
		}
1418 1419 1420 1421 1422 1423
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1424 1425
		u64 rc_type = (1 << rc_map->rc_type);
		rc = dev->change_protocol(dev, &rc_type);
1426 1427
		if (rc < 0)
			goto out_raw;
1428
		dev->enabled_protocols = rc_type;
1429 1430
	}

1431 1432
	mutex_unlock(&dev->lock);

1433 1434 1435
	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
		   dev->devno,
		   dev->driver_name ? dev->driver_name : "unknown",
1436
		   rc_map->name ? rc_map->name : "unknown",
1437 1438
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1439
	return 0;
1440 1441 1442 1443 1444 1445 1446 1447

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1448
	ir_free_table(&dev->rc_map);
1449 1450
out_dev:
	device_del(&dev->dev);
1451 1452
out_unlock:
	mutex_unlock(&dev->lock);
1453
	clear_bit(dev->devno, ir_core_dev_number);
1454
	return rc;
1455
}
1456
EXPORT_SYMBOL_GPL(rc_register_device);
1457

1458
void rc_unregister_device(struct rc_dev *dev)
1459
{
1460 1461
	if (!dev)
		return;
1462

1463
	del_timer_sync(&dev->timer_keyup);
1464

1465 1466
	clear_bit(dev->devno, ir_core_dev_number);

1467 1468 1469
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1470 1471 1472 1473
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1474 1475 1476
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1477
	device_del(&dev->dev);
1478

1479
	rc_free_device(dev);
1480
}
1481

1482
EXPORT_SYMBOL_GPL(rc_unregister_device);
1483 1484 1485 1486 1487

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1488
static int __init rc_core_init(void)
1489
{
1490
	int rc = class_register(&rc_class);
1491
	if (rc) {
1492
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1493 1494 1495
		return rc;
	}

1496
	led_trigger_register_simple("rc-feedback", &led_feedback);
1497
	rc_map_register(&empty_map);
1498 1499 1500 1501

	return 0;
}

1502
static void __exit rc_core_exit(void)
1503
{
1504
	class_unregister(&rc_class);
1505
	led_trigger_unregister_simple(led_feedback);
1506
	rc_map_unregister(&empty_map);
1507 1508
}

1509
subsys_initcall(rc_core_init);
1510
module_exit(rc_core_exit);
1511

1512 1513 1514
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1515

1516
MODULE_AUTHOR("Mauro Carvalho Chehab");
1517
MODULE_LICENSE("GPL");