mcp251x.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
44 45
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
46 47 48 49 50 51 52 53 54 55 56 57 58 59
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
60
#include <linux/can/led.h>
61 62 63 64 65 66 67 68 69 70 71 72
#include <linux/can/platform/mcp251x.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
73
#include <linux/slab.h>
74 75
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
76
#include <linux/regulator/consumer.h>
77 78 79 80 81 82 83 84

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0
85 86 87 88 89
#define RTS_TXB0		0x01
#define RTS_TXB1		0x02
#define RTS_TXB2		0x04
#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
132 133 134
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
176
#  define RXBSIDL_SRR   0x10
177 178 179 180 181 182 183 184 185 186 187 188 189 190
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
191 192 193 194 195 196 197 198
#define RXFSIDH(n) ((n) * 4)
#define RXFSIDL(n) ((n) * 4 + 1)
#define RXFEID8(n) ((n) * 4 + 2)
#define RXFEID0(n) ((n) * 4 + 3)
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

221
static const struct can_bittiming_const mcp251x_bittiming_const = {
222 223 224 225 226 227 228 229 230 231 232
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

233 234 235 236 237
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

238 239 240 241
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
242
	enum mcp251x_model model;
243

244 245
	struct mutex mcp_lock; /* SPI device lock */

246 247 248 249 250 251 252
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;
253

254 255
	struct workqueue_struct *wq;
	struct work_struct tx_work;
256 257
	struct work_struct restart_work;

258 259 260 261 262 263 264
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
265 266
	struct regulator *power;
	struct regulator *transceiver;
267 268
};

269 270 271
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
272
	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
273 274 275 276 277 278
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);

279 280 281 282
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

283 284
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
308
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
336
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
337 338 339 340 341 342 343 344 345 346 347
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

348 349 350
static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
351
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
352 353 354 355 356 357 358 359 360 361

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

362 363
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
364
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
365 366 367 368 369 370 371 372 373 374 375

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
376
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
377 378 379 380 381 382 383 384 385 386 387 388

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
389
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
390

391
	if (mcp251x_is_2510(spi)) {
392 393 394 395 396 397 398 399 400 401 402 403 404 405
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
406
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
428 429 430 431

	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
	mcp251x_spi_trans(priv->spi, 1);
432 433 434 435 436
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
437
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
438

439
	if (mcp251x_is_2510(spi)) {
440 441 442 443
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
444 445

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
446 447 448 449 450 451 452 453 454 455 456
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
457
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
489 490
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
491 492
	}
	/* Data length */
493
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
494 495 496 497
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
498 499 500

	can_led_event(priv->net, CAN_LED_EVENT_RX);

501
	netif_rx_ni(skb);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

520
	if (can_dropped_invalid_skb(net, skb))
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
536
		mcp251x_clean(net);
537 538 539 540 541
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
542
		queue_work(priv->wq, &priv->restart_work);
543 544 545 546 547 548 549 550
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

551
static int mcp251x_set_normal_mode(struct spi_device *spi)
552
{
553
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
554 555 556 557 558
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
559
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
560 561 562 563

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
564 565 566
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
567 568
	} else {
		/* Put device into normal mode */
569
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
570 571 572 573 574 575 576 577

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
578
				return -EBUSY;
579 580 581 582
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
583
	return 0;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		 mcp251x_read_reg(spi, CNF1),
		 mcp251x_read_reg(spi, CNF2),
		 mcp251x_read_reg(spi, CNF3));

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
612
	mcp251x_do_set_bittiming(net);
613

614 615 616 617
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
618 619 620
	return 0;
}

621
static int mcp251x_hw_reset(struct spi_device *spi)
622
{
623
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
624
	int ret;
625
	unsigned long timeout;
626 627 628

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
	ret = spi_write(spi, priv->spi_tx_buf, 1);
629
	if (ret) {
630
		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
631 632 633
		return -EIO;
	}

634
	/* Wait for reset to finish */
635
	timeout = jiffies + HZ;
636
	mdelay(10);
637 638 639 640 641 642 643 644 645 646
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
	       != CANCTRL_REQOP_CONF) {
		schedule();
		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev, "MCP251x didn't"
				" enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
	return 0;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
	int st1, st2;

	mcp251x_hw_reset(spi);

	/*
	 * Please note that these are "magic values" based on after
	 * reset defaults taken from data sheet which allows us to see
	 * if we really have a chip on the bus (we avoid common all
	 * zeroes or all ones situations)
	 */
	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;

	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);

	/* Check for power up default values */
	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
}

670 671 672 673 674 675 676 677 678 679 680
static int mcp251x_power_enable(struct regulator *reg, int enable)
{
	if (IS_ERR(reg))
		return 0;

	if (enable)
		return regulator_enable(reg);
	else
		return regulator_disable(reg);
}

681
static void mcp251x_open_clean(struct net_device *net)
682 683 684
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
685

686 687
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
688
	mcp251x_power_enable(priv->transceiver, 0);
689
	close_candev(net);
690 691 692 693 694 695 696 697 698
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	close_candev(net);

699 700 701 702 703 704 705
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

706 707 708 709 710
	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
711
	mcp251x_clean(net);
712 713 714

	mcp251x_hw_sleep(spi);

715
	mcp251x_power_enable(priv->transceiver, 0);
716 717 718

	priv->can.state = CAN_STATE_STOPPED;

719 720
	mutex_unlock(&priv->mcp_lock);

721 722
	can_led_event(net, CAN_LED_EVENT_STOP);

723 724 725
	return 0;
}

726 727 728 729 730 731 732
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
733
		frame->can_id |= can_id;
734
		frame->data[1] = data1;
735
		netif_rx_ni(skb);
736
	} else {
737
		netdev_err(net, "cannot allocate error skb\n");
738 739 740
	}
}

741 742 743 744 745 746 747 748
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

749
	mutex_lock(&priv->mcp_lock);
750 751 752
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
753 754 755 756 757 758 759 760 761
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
762 763
		}
	}
764
	mutex_unlock(&priv->mcp_lock);
765 766
}

767
static void mcp251x_restart_work_handler(struct work_struct *ws)
768 769
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
770
						 restart_work);
771 772 773
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

774
	mutex_lock(&priv->mcp_lock);
775 776 777 778 779 780 781 782
	if (priv->after_suspend) {
		mdelay(10);
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
783
			mcp251x_clean(net);
784
			mcp251x_set_normal_mode(spi);
785
			netif_wake_queue(net);
786 787 788 789
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
790
		priv->force_quit = 0;
791 792
	}

793 794 795 796 797 798 799 800 801
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
802

803 804 805 806 807
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
808

809 810 811
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
812
		u8 intf, eflag;
813
		u8 clear_intf = 0;
814
		int can_id = 0, data1 = 0;
815

816 817
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

818 819 820
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

821
		/* receive buffer 0 */
822 823
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
824 825 826 827 828 829
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
830 831
		}

832 833
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
834
			mcp251x_hw_rx(spi, 1);
835 836 837
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
838
		}
839

840
		/* any error or tx interrupt we need to clear? */
841 842
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
843 844
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
845

846 847
		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

889 890 891
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
892
				if (eflag & EFLG_RX0OVR) {
893
					net->stats.rx_over_errors++;
894 895 896
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
897
					net->stats.rx_over_errors++;
898 899
					net->stats.rx_errors++;
				}
900 901
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
902
			}
903
			mcp251x_error_skb(net, can_id, data1);
904 905 906 907
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
908
				priv->force_quit = 1;
909 910
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
911
				break;
912 913 914 915 916 917
			}
		}

		if (intf == 0)
			break;

918
		if (intf & CANINTF_TX) {
919 920
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
921
			can_led_event(net, CAN_LED_EVENT_TX);
922 923 924 925 926 927 928
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

929 930 931 932
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
933

934 935 936 937 938
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
939
	unsigned long flags;
940 941 942 943 944 945 946 947 948
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
949
	mcp251x_power_enable(priv->transceiver, 1);
950 951 952 953 954

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

955 956 957 958 959 960
	flags = IRQF_ONESHOT;
	if (pdata->irq_flags)
		flags |= pdata->irq_flags;
	else
		flags |= IRQF_TRIGGER_FALLING;

961
	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
962
				   flags, DEVICE_NAME, priv);
963 964
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
965
		mcp251x_power_enable(priv->transceiver, 0);
966 967 968 969
		close_candev(net);
		goto open_unlock;
	}

970
	priv->wq = create_freezable_workqueue("mcp251x_wq");
971 972 973 974 975 976 977 978 979 980 981 982
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
983
	}
984 985 986 987 988
	ret = mcp251x_set_normal_mode(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
989 990 991

	can_led_event(net, CAN_LED_EVENT_OPEN);

992 993 994 995 996
	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
997 998 999 1000 1001 1002 1003 1004
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
};

B
Bill Pemberton 已提交
1005
static int mcp251x_can_probe(struct spi_device *spi)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
{
	struct net_device *net;
	struct mcp251x_priv *priv;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret = -ENODEV;

	if (!pdata)
		/* Platform data is required for osc freq */
		goto error_out;

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
	if (!net) {
		ret = -ENOMEM;
		goto error_alloc;
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
	priv->can.clock.freq = pdata->oscillator_frequency / 2;
1030 1031
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1032
	priv->model = spi_get_device_id(spi)->driver_data;
1033
	priv->net = net;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	priv->power = devm_regulator_get(&spi->dev, "vdd");
	priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
		ret = -EPROBE_DEFER;
		goto error_power;
	}

	ret = mcp251x_power_enable(priv->power, 1);
	if (ret)
		goto error_power;

1047
	spi_set_drvdata(spi, priv);
1048 1049

	priv->spi = spi;
1050
	mutex_init(&priv->mcp_lock);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
						      PAGE_SIZE,
						      &priv->spi_tx_dma,
						      GFP_DMA);

		if (priv->spi_tx_buf) {
1066
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
			goto error_tx_buf;
		}
		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1083
		if (!priv->spi_rx_buf) {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			ret = -ENOMEM;
			goto error_rx_buf;
		}
	}

	SET_NETDEV_DEV(net, &spi->dev);

	/* Configure the SPI bus */
	spi->mode = SPI_MODE_0;
	spi->bits_per_word = 8;
	spi_setup(spi);

1096
	/* Here is OK to not lock the MCP, no one knows about it yet */
1097
	if (!mcp251x_hw_probe(spi)) {
1098
		ret = -ENODEV;
1099 1100 1101 1102 1103
		goto error_probe;
	}
	mcp251x_hw_sleep(spi);

	ret = register_candev(net);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (ret)
		goto error_probe;

	devm_can_led_init(net);

	dev_info(&spi->dev, "probed\n");

	return ret;

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
error_probe:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_rx_buf);
error_rx_buf:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_tx_buf);
error_tx_buf:
	if (mcp251x_enable_dma)
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
1123 1124 1125
	mcp251x_power_enable(priv->power, 0);
error_power:
	free_candev(net);
1126 1127 1128 1129 1130 1131
error_alloc:
	dev_err(&spi->dev, "probe failed\n");
error_out:
	return ret;
}

B
Bill Pemberton 已提交
1132
static int mcp251x_can_remove(struct spi_device *spi)
1133
{
1134
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	struct net_device *net = priv->net;

	unregister_candev(net);

	if (mcp251x_enable_dma) {
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
	} else {
		kfree(priv->spi_tx_buf);
		kfree(priv->spi_rx_buf);
	}

1147 1148 1149
	mcp251x_power_enable(priv->power, 0);

	free_candev(net);
1150 1151 1152 1153

	return 0;
}

1154 1155 1156
#ifdef CONFIG_PM_SLEEP

static int mcp251x_can_suspend(struct device *dev)
1157
{
1158
	struct spi_device *spi = to_spi_device(dev);
1159
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1160 1161
	struct net_device *net = priv->net;

1162 1163 1164 1165 1166 1167
	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
1168 1169 1170 1171
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
1172
		mcp251x_power_enable(priv->transceiver, 0);
1173 1174 1175 1176 1177
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

1178 1179
	if (!IS_ERR(priv->power)) {
		regulator_disable(priv->power);
1180 1181 1182 1183 1184 1185
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

1186
static int mcp251x_can_resume(struct device *dev)
1187
{
1188
	struct spi_device *spi = to_spi_device(dev);
1189
	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1190 1191

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1192
		mcp251x_power_enable(priv->power, 1);
1193
		queue_work(priv->wq, &priv->restart_work);
1194 1195
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
1196
			mcp251x_power_enable(priv->transceiver, 1);
1197
			queue_work(priv->wq, &priv->restart_work);
1198 1199 1200 1201
		} else {
			priv->after_suspend = 0;
		}
	}
1202 1203
	priv->force_quit = 0;
	enable_irq(spi->irq);
1204 1205
	return 0;
}
1206
#endif
1207 1208 1209

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
	mcp251x_can_resume);
1210

1211
static const struct spi_device_id mcp251x_id_table[] = {
1212 1213 1214 1215 1216 1217 1218
	{ "mcp2510",	CAN_MCP251X_MCP2510 },
	{ "mcp2515",	CAN_MCP251X_MCP2515 },
	{ },
};

MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

1219 1220 1221 1222
static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
		.owner = THIS_MODULE,
1223
		.pm = &mcp251x_can_pm_ops,
1224 1225
	},

1226
	.id_table = mcp251x_id_table,
1227
	.probe = mcp251x_can_probe,
B
Bill Pemberton 已提交
1228
	.remove = mcp251x_can_remove,
1229
};
1230
module_spi_driver(mcp251x_can_driver);
1231 1232 1233 1234 1235

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");