mcp251x.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the version 2 of the GNU General Public License
 * as published by the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 *
 * Your platform definition file should specify something like:
 *
 * static struct mcp251x_platform_data mcp251x_info = {
 *         .oscillator_frequency = 8000000,
 *         .board_specific_setup = &mcp251x_setup,
 *         .power_enable = mcp251x_power_enable,
 *         .transceiver_enable = NULL,
 * };
 *
 * static struct spi_board_info spi_board_info[] = {
 *         {
47 48
 *                 .modalias = "mcp2510",
 *			// or "mcp2515" depending on your controller
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 *                 .platform_data = &mcp251x_info,
 *                 .irq = IRQ_EINT13,
 *                 .max_speed_hz = 2*1000*1000,
 *                 .chip_select = 2,
 *         },
 * };
 *
 * Please see mcp251x.h for a description of the fields in
 * struct mcp251x_platform_data.
 *
 */

#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/platform/mcp251x.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
75
#include <linux/slab.h>
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#include <linux/spi/spi.h>
#include <linux/uaccess.h>

/* SPI interface instruction set */
#define INSTRUCTION_WRITE	0x02
#define INSTRUCTION_READ	0x03
#define INSTRUCTION_BIT_MODIFY	0x05
#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET	0xC0

/* MPC251x registers */
#define CANSTAT	      0x0e
#define CANCTRL	      0x0f
#  define CANCTRL_REQOP_MASK	    0xe0
#  define CANCTRL_REQOP_CONF	    0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP	    0x20
#  define CANCTRL_REQOP_NORMAL	    0x00
#  define CANCTRL_OSM		    0x08
#  define CANCTRL_ABAT		    0x10
#define TEC	      0x1c
#define REC	      0x1d
#define CNF1	      0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2	      0x29
#  define CNF2_BTLMODE	   0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3	      0x28
#  define CNF3_SOF	   0x08
#  define CNF3_WAKFIL	   0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE	      0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF	      0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
128 129 130
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define EFLG	      0x2d
#  define EFLG_EWARN	0x01
#  define EFLG_RXWAR	0x02
#  define EFLG_TXWAR	0x04
#  define EFLG_RXEP	0x08
#  define EFLG_TXEP	0x10
#  define EFLG_TXBO	0x20
#  define EFLG_RX0OVR	0x40
#  define EFLG_RX1OVR	0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF	0x40
#  define TXBCTRL_MLOA	0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT	0x04
#  define RXBCTRL_RXM0	0x20
#  define RXBCTRL_RXM1	0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
172
#  define RXBSIDL_SRR   0x10
173 174 175 176 177 178 179 180 181 182 183 184 185 186
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
187 188 189 190 191 192 193 194
#define RXFSIDH(n) ((n) * 4)
#define RXFSIDL(n) ((n) * 4 + 1)
#define RXFEID8(n) ((n) * 4 + 2)
#define RXFEID0(n) ((n) * 4 + 3)
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

#define GET_BYTE(val, byte)			\
	(((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)			\
	(((val) & 0xff) << ((byte) * 8))

/*
 * Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN	8
#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS	128

#define TX_ECHO_SKB_MAX	1

#define DEVICE_NAME "mcp251x"

static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
module_param(mcp251x_enable_dma, int, S_IRUGO);
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");

static struct can_bittiming_const mcp251x_bittiming_const = {
	.name = DEVICE_NAME,
	.tseg1_min = 3,
	.tseg1_max = 16,
	.tseg2_min = 2,
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 64,
	.brp_inc = 1,
};

229 230 231 232 233
enum mcp251x_model {
	CAN_MCP251X_MCP2510	= 0x2510,
	CAN_MCP251X_MCP2515	= 0x2515,
};

234 235 236 237
struct mcp251x_priv {
	struct can_priv	   can;
	struct net_device *net;
	struct spi_device *spi;
238
	enum mcp251x_model model;
239

240 241
	struct mutex mcp_lock; /* SPI device lock */

242 243 244 245 246 247 248
	u8 *spi_tx_buf;
	u8 *spi_rx_buf;
	dma_addr_t spi_tx_dma;
	dma_addr_t spi_rx_dma;

	struct sk_buff *tx_skb;
	int tx_len;
249

250 251
	struct workqueue_struct *wq;
	struct work_struct tx_work;
252 253
	struct work_struct restart_work;

254 255 256 257 258 259 260 261 262
	int force_quit;
	int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
	int restart_tx;
};

263 264 265 266 267 268 269 270 271 272
#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
	return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);
MCP251X_IS(2515);

273 274 275 276
static void mcp251x_clean(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);

277 278
	if (priv->tx_skb || priv->tx_len)
		net->stats.tx_errors++;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (priv->tx_skb)
		dev_kfree_skb(priv->tx_skb);
	if (priv->tx_len)
		can_free_echo_skb(priv->net, 0);
	priv->tx_skb = NULL;
	priv->tx_len = 0;
}

/*
 * Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct spi_transfer t = {
		.tx_buf = priv->spi_tx_buf,
		.rx_buf = priv->spi_rx_buf,
		.len = len,
		.cs_change = 0,
	};
	struct spi_message m;
	int ret;

	spi_message_init(&m);

	if (mcp251x_enable_dma) {
		t.tx_dma = priv->spi_tx_dma;
		t.rx_dma = priv->spi_rx_dma;
		m.is_dma_mapped = 1;
	}

	spi_message_add_tail(&t, &m);

	ret = spi_sync(spi, &m);
	if (ret)
		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
	return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	u8 val = 0;

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 3);
	val = priv->spi_rx_buf[2];

	return val;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
		uint8_t *v1, uint8_t *v2)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_READ;
	priv->spi_tx_buf[1] = reg;

	mcp251x_spi_trans(spi, 4);

	*v1 = priv->spi_rx_buf[2];
	*v2 = priv->spi_rx_buf[3];
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = val;

	mcp251x_spi_trans(spi, 3);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
			       u8 mask, uint8_t val)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
	priv->spi_tx_buf[1] = reg;
	priv->spi_tx_buf[2] = mask;
	priv->spi_tx_buf[3] = val;

	mcp251x_spi_trans(spi, 4);
}

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
				int len, int tx_buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

385
	if (mcp251x_is_2510(spi)) {
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		int i;

		for (i = 1; i < TXBDAT_OFF + len; i++)
			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
					  buf[i]);
	} else {
		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
	}
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
			  int tx_buf_idx)
{
	u32 sid, eid, exide, rtr;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
	if (exide)
		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
	else
		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
		(exide << SIDL_EXIDE_SHIFT) |
		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
	mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
				int buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

429
	if (mcp251x_is_2510(spi)) {
430 431 432 433
		int i, len;

		for (i = 1; i < RXBDAT_OFF; i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
434 435

		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
		for (; i < (RXBDAT_OFF + len); i++)
			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
	} else {
		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
	}
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct sk_buff *skb;
	struct can_frame *frame;
	u8 buf[SPI_TRANSFER_BUF_LEN];

	skb = alloc_can_skb(priv->net, &frame);
	if (!skb) {
		dev_err(&spi->dev, "cannot allocate RX skb\n");
		priv->net->stats.rx_dropped++;
		return;
	}

	mcp251x_hw_rx_frame(spi, buf, buf_idx);
	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
		/* Extended ID format */
		frame->can_id = CAN_EFF_FLAG;
		frame->can_id |=
			/* Extended ID part */
			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
			SET_BYTE(buf[RXBEID8_OFF], 1) |
			SET_BYTE(buf[RXBEID0_OFF], 0) |
			/* Standard ID part */
			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
		/* Remote transmission request */
		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
			frame->can_id |= CAN_RTR_FLAG;
	} else {
		/* Standard ID format */
		frame->can_id =
			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
479 480
		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
			frame->can_id |= CAN_RTR_FLAG;
481 482
	}
	/* Data length */
483
	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
484 485 486 487
	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

	priv->net->stats.rx_packets++;
	priv->net->stats.rx_bytes += frame->can_dlc;
488
	netif_rx_ni(skb);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
					   struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;

	if (priv->tx_skb || priv->tx_len) {
		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
		return NETDEV_TX_BUSY;
	}

507
	if (can_dropped_invalid_skb(net, skb))
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		return NETDEV_TX_OK;

	netif_stop_queue(net);
	priv->tx_skb = skb;
	queue_work(priv->wq, &priv->tx_work);

	return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
	struct mcp251x_priv *priv = netdev_priv(net);

	switch (mode) {
	case CAN_MODE_START:
523
		mcp251x_clean(net);
524 525 526 527 528
		/* We have to delay work since SPI I/O may sleep */
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
		priv->restart_tx = 1;
		if (priv->can.restart_ms == 0)
			priv->after_suspend = AFTER_SUSPEND_RESTART;
529
		queue_work(priv->wq, &priv->restart_work);
530 531 532 533 534 535 536 537
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

538
static int mcp251x_set_normal_mode(struct spi_device *spi)
539 540 541 542 543 544 545
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	unsigned long timeout;

	/* Enable interrupts */
	mcp251x_write_reg(spi, CANINTE,
			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
546
			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
547 548 549 550

	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* Put device into loopback mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
551 552 553
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* Put device into listen-only mode */
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
554 555
	} else {
		/* Put device into normal mode */
556
		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
557 558 559 560 561 562 563 564

		/* Wait for the device to enter normal mode */
		timeout = jiffies + HZ;
		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
			schedule();
			if (time_after(jiffies, timeout)) {
				dev_err(&spi->dev, "MCP251x didn't"
					" enter in normal mode\n");
565
				return -EBUSY;
566 567 568 569
			}
		}
	}
	priv->can.state = CAN_STATE_ERROR_ACTIVE;
570
	return 0;
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct can_bittiming *bt = &priv->can.bittiming;
	struct spi_device *spi = priv->spi;

	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
			  (bt->brp - 1));
	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
			   CNF2_SAM : 0) |
			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
			  (bt->prop_seg - 1));
	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
			   (bt->phase_seg2 - 1));
	dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
		 mcp251x_read_reg(spi, CNF1),
		 mcp251x_read_reg(spi, CNF2),
		 mcp251x_read_reg(spi, CNF3));

	return 0;
}

static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
			 struct spi_device *spi)
{
599
	mcp251x_do_set_bittiming(net);
600

601 602 603 604
	mcp251x_write_reg(spi, RXBCTRL(0),
			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
	mcp251x_write_reg(spi, RXBCTRL(1),
			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
605 606 607
	return 0;
}

608
static int mcp251x_hw_reset(struct spi_device *spi)
609 610 611
{
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	int ret;
612
	unsigned long timeout;
613 614 615

	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
	ret = spi_write(spi, priv->spi_tx_buf, 1);
616
	if (ret) {
617
		dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
618 619 620
		return -EIO;
	}

621
	/* Wait for reset to finish */
622
	timeout = jiffies + HZ;
623
	mdelay(10);
624 625 626 627 628 629 630 631 632 633
	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
	       != CANCTRL_REQOP_CONF) {
		schedule();
		if (time_after(jiffies, timeout)) {
			dev_err(&spi->dev, "MCP251x didn't"
				" enter in conf mode after reset\n");
			return -EBUSY;
		}
	}
	return 0;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
	int st1, st2;

	mcp251x_hw_reset(spi);

	/*
	 * Please note that these are "magic values" based on after
	 * reset defaults taken from data sheet which allows us to see
	 * if we really have a chip on the bus (we avoid common all
	 * zeroes or all ones situations)
	 */
	st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
	st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;

	dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);

	/* Check for power up default values */
	return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
}

657
static void mcp251x_open_clean(struct net_device *net)
658 659 660 661
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
662

663 664
	free_irq(spi->irq, priv);
	mcp251x_hw_sleep(spi);
665
	if (pdata->transceiver_enable)
666 667
		pdata->transceiver_enable(0);
	close_candev(net);
668 669 670 671 672 673 674 675 676 677
}

static int mcp251x_stop(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;

	close_candev(net);

678 679 680 681 682 683 684
	priv->force_quit = 1;
	free_irq(spi->irq, priv);
	destroy_workqueue(priv->wq);
	priv->wq = NULL;

	mutex_lock(&priv->mcp_lock);

685 686 687 688 689
	/* Disable and clear pending interrupts */
	mcp251x_write_reg(spi, CANINTE, 0x00);
	mcp251x_write_reg(spi, CANINTF, 0x00);

	mcp251x_write_reg(spi, TXBCTRL(0), 0);
690
	mcp251x_clean(net);
691 692 693 694 695 696 697 698

	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	priv->can.state = CAN_STATE_STOPPED;

699 700
	mutex_unlock(&priv->mcp_lock);

701 702 703
	return 0;
}

704 705 706 707 708 709 710
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_err_skb(net, &frame);
	if (skb) {
711
		frame->can_id |= can_id;
712
		frame->data[1] = data1;
713
		netif_rx_ni(skb);
714
	} else {
715
		netdev_err(net, "cannot allocate error skb\n");
716 717 718
	}
}

719 720 721 722 723 724 725 726
static void mcp251x_tx_work_handler(struct work_struct *ws)
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
						 tx_work);
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
	struct can_frame *frame;

727
	mutex_lock(&priv->mcp_lock);
728 729 730
	if (priv->tx_skb) {
		if (priv->can.state == CAN_STATE_BUS_OFF) {
			mcp251x_clean(net);
731 732 733 734 735 736 737 738 739
		} else {
			frame = (struct can_frame *)priv->tx_skb->data;

			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
			mcp251x_hw_tx(spi, frame, 0);
			priv->tx_len = 1 + frame->can_dlc;
			can_put_echo_skb(priv->tx_skb, net, 0);
			priv->tx_skb = NULL;
740 741
		}
	}
742
	mutex_unlock(&priv->mcp_lock);
743 744
}

745
static void mcp251x_restart_work_handler(struct work_struct *ws)
746 747
{
	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
748
						 restart_work);
749 750 751
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;

752
	mutex_lock(&priv->mcp_lock);
753 754 755 756 757 758 759 760
	if (priv->after_suspend) {
		mdelay(10);
		mcp251x_hw_reset(spi);
		mcp251x_setup(net, priv, spi);
		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
			mcp251x_set_normal_mode(spi);
		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
			netif_device_attach(net);
761
			mcp251x_clean(net);
762
			mcp251x_set_normal_mode(spi);
763
			netif_wake_queue(net);
764 765 766 767
		} else {
			mcp251x_hw_sleep(spi);
		}
		priv->after_suspend = 0;
768
		priv->force_quit = 0;
769 770
	}

771 772 773 774 775 776 777 778 779
	if (priv->restart_tx) {
		priv->restart_tx = 0;
		mcp251x_write_reg(spi, TXBCTRL(0), 0);
		mcp251x_clean(net);
		netif_wake_queue(net);
		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
	}
	mutex_unlock(&priv->mcp_lock);
}
780

781 782 783 784 785
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
	struct mcp251x_priv *priv = dev_id;
	struct spi_device *spi = priv->spi;
	struct net_device *net = priv->net;
786

787 788 789
	mutex_lock(&priv->mcp_lock);
	while (!priv->force_quit) {
		enum can_state new_state;
790
		u8 intf, eflag;
791
		u8 clear_intf = 0;
792
		int can_id = 0, data1 = 0;
793

794 795
		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

796 797 798
		/* mask out flags we don't care about */
		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

799
		/* receive buffer 0 */
800 801
		if (intf & CANINTF_RX0IF) {
			mcp251x_hw_rx(spi, 0);
802 803 804 805 806 807
			/*
			 * Free one buffer ASAP
			 * (The MCP2515 does this automatically.)
			 */
			if (mcp251x_is_2510(spi))
				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
808 809
		}

810 811
		/* receive buffer 1 */
		if (intf & CANINTF_RX1IF) {
812
			mcp251x_hw_rx(spi, 1);
813 814 815
			/* the MCP2515 does this automatically */
			if (mcp251x_is_2510(spi))
				clear_intf |= CANINTF_RX1IF;
816
		}
817

818
		/* any error or tx interrupt we need to clear? */
819 820
		if (intf & (CANINTF_ERR | CANINTF_TX))
			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
821 822
		if (clear_intf)
			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
823

824 825
		if (eflag)
			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
		/* Update can state */
		if (eflag & EFLG_TXBO) {
			new_state = CAN_STATE_BUS_OFF;
			can_id |= CAN_ERR_BUSOFF;
		} else if (eflag & EFLG_TXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
		} else if (eflag & EFLG_RXEP) {
			new_state = CAN_STATE_ERROR_PASSIVE;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
		} else if (eflag & EFLG_TXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_TX_WARNING;
		} else if (eflag & EFLG_RXWAR) {
			new_state = CAN_STATE_ERROR_WARNING;
			can_id |= CAN_ERR_CRTL;
			data1 |= CAN_ERR_CRTL_RX_WARNING;
		} else {
			new_state = CAN_STATE_ERROR_ACTIVE;
		}

		/* Update can state statistics */
		switch (priv->can.state) {
		case CAN_STATE_ERROR_ACTIVE:
			if (new_state >= CAN_STATE_ERROR_WARNING &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_warning++;
		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
			    new_state <= CAN_STATE_BUS_OFF)
				priv->can.can_stats.error_passive++;
			break;
		default:
			break;
		}
		priv->can.state = new_state;

867 868 869
		if (intf & CANINTF_ERRIF) {
			/* Handle overflow counters */
			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
870
				if (eflag & EFLG_RX0OVR) {
871
					net->stats.rx_over_errors++;
872 873 874
					net->stats.rx_errors++;
				}
				if (eflag & EFLG_RX1OVR) {
875
					net->stats.rx_over_errors++;
876 877
					net->stats.rx_errors++;
				}
878 879
				can_id |= CAN_ERR_CRTL;
				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
880
			}
881
			mcp251x_error_skb(net, can_id, data1);
882 883 884 885
		}

		if (priv->can.state == CAN_STATE_BUS_OFF) {
			if (priv->can.restart_ms == 0) {
886
				priv->force_quit = 1;
887 888
				can_bus_off(net);
				mcp251x_hw_sleep(spi);
889
				break;
890 891 892 893 894 895
			}
		}

		if (intf == 0)
			break;

896
		if (intf & CANINTF_TX) {
897 898 899 900 901 902 903 904 905
			net->stats.tx_packets++;
			net->stats.tx_bytes += priv->tx_len - 1;
			if (priv->tx_len) {
				can_get_echo_skb(net, 0);
				priv->tx_len = 0;
			}
			netif_wake_queue(net);
		}

906 907 908 909
	}
	mutex_unlock(&priv->mcp_lock);
	return IRQ_HANDLED;
}
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int mcp251x_open(struct net_device *net)
{
	struct mcp251x_priv *priv = netdev_priv(net);
	struct spi_device *spi = priv->spi;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret;

	ret = open_candev(net);
	if (ret) {
		dev_err(&spi->dev, "unable to set initial baudrate!\n");
		return ret;
	}

	mutex_lock(&priv->mcp_lock);
	if (pdata->transceiver_enable)
		pdata->transceiver_enable(1);

	priv->force_quit = 0;
	priv->tx_skb = NULL;
	priv->tx_len = 0;

	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
933 934
		  pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
		  DEVICE_NAME, priv);
935 936 937 938 939 940 941 942
	if (ret) {
		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
		if (pdata->transceiver_enable)
			pdata->transceiver_enable(0);
		close_candev(net);
		goto open_unlock;
	}

943
	priv->wq = create_freezable_workqueue("mcp251x_wq");
944 945 946 947 948 949 950 951 952 953 954 955
	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

	ret = mcp251x_hw_reset(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	ret = mcp251x_setup(net, priv, spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
956
	}
957 958 959 960 961 962 963 964 965 966
	ret = mcp251x_set_normal_mode(spi);
	if (ret) {
		mcp251x_open_clean(net);
		goto open_unlock;
	}
	netif_wake_queue(net);

open_unlock:
	mutex_unlock(&priv->mcp_lock);
	return ret;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
}

static const struct net_device_ops mcp251x_netdev_ops = {
	.ndo_open = mcp251x_open,
	.ndo_stop = mcp251x_stop,
	.ndo_start_xmit = mcp251x_hard_start_xmit,
};

static int __devinit mcp251x_can_probe(struct spi_device *spi)
{
	struct net_device *net;
	struct mcp251x_priv *priv;
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	int ret = -ENODEV;

	if (!pdata)
		/* Platform data is required for osc freq */
		goto error_out;

	/* Allocate can/net device */
	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
	if (!net) {
		ret = -ENOMEM;
		goto error_alloc;
	}

	net->netdev_ops = &mcp251x_netdev_ops;
	net->flags |= IFF_ECHO;

	priv = netdev_priv(net);
	priv->can.bittiming_const = &mcp251x_bittiming_const;
	priv->can.do_set_mode = mcp251x_do_set_mode;
	priv->can.clock.freq = pdata->oscillator_frequency / 2;
1000 1001
	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1002
	priv->model = spi_get_device_id(spi)->driver_data;
1003 1004 1005 1006
	priv->net = net;
	dev_set_drvdata(&spi->dev, priv);

	priv->spi = spi;
1007
	mutex_init(&priv->mcp_lock);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	/* If requested, allocate DMA buffers */
	if (mcp251x_enable_dma) {
		spi->dev.coherent_dma_mask = ~0;

		/*
		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
		 * that much and share it between Tx and Rx DMA buffers.
		 */
		priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
						      PAGE_SIZE,
						      &priv->spi_tx_dma,
						      GFP_DMA);

		if (priv->spi_tx_buf) {
1023
			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
							(PAGE_SIZE / 2));
		} else {
			/* Fall back to non-DMA */
			mcp251x_enable_dma = 0;
		}
	}

	/* Allocate non-DMA buffers */
	if (!mcp251x_enable_dma) {
		priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
		if (!priv->spi_tx_buf) {
			ret = -ENOMEM;
			goto error_tx_buf;
		}
		priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
1040
		if (!priv->spi_rx_buf) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
			ret = -ENOMEM;
			goto error_rx_buf;
		}
	}

	if (pdata->power_enable)
		pdata->power_enable(1);

	/* Call out to platform specific setup */
	if (pdata->board_specific_setup)
		pdata->board_specific_setup(spi);

	SET_NETDEV_DEV(net, &spi->dev);

	/* Configure the SPI bus */
	spi->mode = SPI_MODE_0;
	spi->bits_per_word = 8;
	spi_setup(spi);

1060
	/* Here is OK to not lock the MCP, no one knows about it yet */
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (!mcp251x_hw_probe(spi)) {
		dev_info(&spi->dev, "Probe failed\n");
		goto error_probe;
	}
	mcp251x_hw_sleep(spi);

	if (pdata->transceiver_enable)
		pdata->transceiver_enable(0);

	ret = register_candev(net);
	if (!ret) {
		dev_info(&spi->dev, "probed\n");
		return ret;
	}
error_probe:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_rx_buf);
error_rx_buf:
	if (!mcp251x_enable_dma)
		kfree(priv->spi_tx_buf);
error_tx_buf:
	free_candev(net);
	if (mcp251x_enable_dma)
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
error_alloc:
	if (pdata->power_enable)
		pdata->power_enable(0);
	dev_err(&spi->dev, "probe failed\n");
error_out:
	return ret;
}

static int __devexit mcp251x_can_remove(struct spi_device *spi)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct net_device *net = priv->net;

	unregister_candev(net);
	free_candev(net);

	if (mcp251x_enable_dma) {
		dma_free_coherent(&spi->dev, PAGE_SIZE,
				  priv->spi_tx_buf, priv->spi_tx_dma);
	} else {
		kfree(priv->spi_tx_buf);
		kfree(priv->spi_rx_buf);
	}

	if (pdata->power_enable)
		pdata->power_enable(0);

	return 0;
}

#ifdef CONFIG_PM
static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
	struct net_device *net = priv->net;

1124 1125 1126 1127 1128 1129
	priv->force_quit = 1;
	disable_irq(spi->irq);
	/*
	 * Note: at this point neither IST nor workqueues are running.
	 * open/stop cannot be called anyway so locking is not needed
	 */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	if (netif_running(net)) {
		netif_device_detach(net);

		mcp251x_hw_sleep(spi);
		if (pdata->transceiver_enable)
			pdata->transceiver_enable(0);
		priv->after_suspend = AFTER_SUSPEND_UP;
	} else {
		priv->after_suspend = AFTER_SUSPEND_DOWN;
	}

	if (pdata->power_enable) {
		pdata->power_enable(0);
		priv->after_suspend |= AFTER_SUSPEND_POWER;
	}

	return 0;
}

static int mcp251x_can_resume(struct spi_device *spi)
{
	struct mcp251x_platform_data *pdata = spi->dev.platform_data;
	struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);

	if (priv->after_suspend & AFTER_SUSPEND_POWER) {
		pdata->power_enable(1);
1156
		queue_work(priv->wq, &priv->restart_work);
1157 1158 1159 1160
	} else {
		if (priv->after_suspend & AFTER_SUSPEND_UP) {
			if (pdata->transceiver_enable)
				pdata->transceiver_enable(1);
1161
			queue_work(priv->wq, &priv->restart_work);
1162 1163 1164 1165
		} else {
			priv->after_suspend = 0;
		}
	}
1166 1167
	priv->force_quit = 0;
	enable_irq(spi->irq);
1168 1169 1170 1171 1172 1173 1174
	return 0;
}
#else
#define mcp251x_can_suspend NULL
#define mcp251x_can_resume NULL
#endif

1175
static const struct spi_device_id mcp251x_id_table[] = {
1176 1177 1178 1179 1180 1181 1182
	{ "mcp2510",	CAN_MCP251X_MCP2510 },
	{ "mcp2515",	CAN_MCP251X_MCP2515 },
	{ },
};

MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

1183 1184 1185 1186 1187 1188 1189
static struct spi_driver mcp251x_can_driver = {
	.driver = {
		.name = DEVICE_NAME,
		.bus = &spi_bus_type,
		.owner = THIS_MODULE,
	},

1190
	.id_table = mcp251x_id_table,
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	.probe = mcp251x_can_probe,
	.remove = __devexit_p(mcp251x_can_remove),
	.suspend = mcp251x_can_suspend,
	.resume = mcp251x_can_resume,
};

static int __init mcp251x_can_init(void)
{
	return spi_register_driver(&mcp251x_can_driver);
}

static void __exit mcp251x_can_exit(void)
{
	spi_unregister_driver(&mcp251x_can_driver);
}

module_init(mcp251x_can_init);
module_exit(mcp251x_can_exit);

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
	      "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x CAN driver");
MODULE_LICENSE("GPL v2");