mt2063.c 65.1 KB
Newer Older
1 2 3 4 5
/*
 * Driver for mt2063 Micronas tuner
 *
 * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
6 7 8
 * This driver came from a driver originally written by:
 *		Henry Wang <Henry.wang@AzureWave.com>
 * Made publicly available by Terratec, at:
9
 *	http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10
 * The original driver's license is GPL, as declared with MODULE_LICENSE()
11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation under version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

22 23 24 25
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
26
#include <linux/videodev2.h>
27 28 29

#include "mt2063.h"

30 31 32 33 34 35 36 37 38
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set Verbosity level");

#define dprintk(level, fmt, arg...) do {				\
if (debug >= level)							\
	printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg);	\
} while (0)

39

40
/* positive error codes used internally */
41

42
/*  Info: Unavoidable LO-related spur may be present in the output  */
43
#define MT2063_SPUR_PRESENT_ERR             (0x00800000)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

/*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
#define MT2063_SPUR_CNT_MASK                (0x001f0000)
#define MT2063_SPUR_SHIFT                   (16)

/*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
#define MT2063_UPC_RANGE                    (0x04000000)

/*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
#define MT2063_DNC_RANGE                    (0x08000000)

/*
 *  Constant defining the version of the following structure
 *  and therefore the API for this code.
 *
 *  When compiling the tuner driver, the preprocessor will
 *  check against this version number to make sure that
 *  it matches the version that the tuner driver knows about.
 */

/* DECT Frequency Avoidance */
#define MT2063_DECT_AVOID_US_FREQS      0x00000001

#define MT2063_DECT_AVOID_EURO_FREQS    0x00000002

#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)

#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)

enum MT2063_DECT_Avoid_Type {
	MT2063_NO_DECT_AVOIDANCE = 0,				/* Do not create DECT exclusion zones.     */
	MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,	/* Avoid US DECT frequencies.              */
	MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,	/* Avoid European DECT frequencies.        */
	MT2063_AVOID_BOTH					/* Avoid both regions. Not typically used. */
};

#define MT2063_MAX_ZONES 48

struct MT2063_ExclZone_t {
	u32 min_;
	u32 max_;
	struct MT2063_ExclZone_t *next_;
};

/*
 *  Structure of data needed for Spur Avoidance
 */
struct MT2063_AvoidSpursData_t {
	u32 f_ref;
	u32 f_in;
	u32 f_LO1;
	u32 f_if1_Center;
	u32 f_if1_Request;
	u32 f_if1_bw;
	u32 f_LO2;
	u32 f_out;
	u32 f_out_bw;
	u32 f_LO1_Step;
	u32 f_LO2_Step;
	u32 f_LO1_FracN_Avoid;
	u32 f_LO2_FracN_Avoid;
	u32 f_zif_bw;
	u32 f_min_LO_Separation;
	u32 maxH1;
	u32 maxH2;
	enum MT2063_DECT_Avoid_Type avoidDECT;
	u32 bSpurPresent;
	u32 bSpurAvoided;
	u32 nSpursFound;
	u32 nZones;
	struct MT2063_ExclZone_t *freeZones;
	struct MT2063_ExclZone_t *usedZones;
	struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
};

/*
120 121
 * Parameter for function MT2063_SetPowerMask that specifies the power down
 * of various sections of the MT2063.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
 */
enum MT2063_Mask_Bits {
	MT2063_REG_SD = 0x0040,		/* Shutdown regulator                 */
	MT2063_SRO_SD = 0x0020,		/* Shutdown SRO                       */
	MT2063_AFC_SD = 0x0010,		/* Shutdown AFC A/D                   */
	MT2063_PD_SD = 0x0002,		/* Enable power detector shutdown     */
	MT2063_PDADC_SD = 0x0001,	/* Enable power detector A/D shutdown */
	MT2063_VCO_SD = 0x8000,		/* Enable VCO shutdown                */
	MT2063_LTX_SD = 0x4000,		/* Enable LTX shutdown                */
	MT2063_LT1_SD = 0x2000,		/* Enable LT1 shutdown                */
	MT2063_LNA_SD = 0x1000,		/* Enable LNA shutdown                */
	MT2063_UPC_SD = 0x0800,		/* Enable upconverter shutdown        */
	MT2063_DNC_SD = 0x0400,		/* Enable downconverter shutdown      */
	MT2063_VGA_SD = 0x0200,		/* Enable VGA shutdown                */
	MT2063_AMP_SD = 0x0100,		/* Enable AMP shutdown                */
	MT2063_ALL_SD = 0xFF73,		/* All shutdown bits for this tuner   */
	MT2063_NONE_SD = 0x0000		/* No shutdown bits                   */
};

/*
 *  Possible values for MT2063_DNC_OUTPUT
 */
enum MT2063_DNC_Output_Enable {
	MT2063_DNC_NONE = 0,
	MT2063_DNC_1,
	MT2063_DNC_2,
	MT2063_DNC_BOTH
};

/*
152 153 154
 *  Two-wire serial bus subaddresses of the tuner registers.
 *  Also known as the tuner's register addresses.
 */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
enum MT2063_Register_Offsets {
	MT2063_REG_PART_REV = 0,	/*  0x00: Part/Rev Code         */
	MT2063_REG_LO1CQ_1,		/*  0x01: LO1C Queued Byte 1    */
	MT2063_REG_LO1CQ_2,		/*  0x02: LO1C Queued Byte 2    */
	MT2063_REG_LO2CQ_1,		/*  0x03: LO2C Queued Byte 1    */
	MT2063_REG_LO2CQ_2,		/*  0x04: LO2C Queued Byte 2    */
	MT2063_REG_LO2CQ_3,		/*  0x05: LO2C Queued Byte 3    */
	MT2063_REG_RSVD_06,		/*  0x06: Reserved              */
	MT2063_REG_LO_STATUS,		/*  0x07: LO Status             */
	MT2063_REG_FIFFC,		/*  0x08: FIFF Center           */
	MT2063_REG_CLEARTUNE,		/*  0x09: ClearTune Filter      */
	MT2063_REG_ADC_OUT,		/*  0x0A: ADC_OUT               */
	MT2063_REG_LO1C_1,		/*  0x0B: LO1C Byte 1           */
	MT2063_REG_LO1C_2,		/*  0x0C: LO1C Byte 2           */
	MT2063_REG_LO2C_1,		/*  0x0D: LO2C Byte 1           */
	MT2063_REG_LO2C_2,		/*  0x0E: LO2C Byte 2           */
	MT2063_REG_LO2C_3,		/*  0x0F: LO2C Byte 3           */
	MT2063_REG_RSVD_10,		/*  0x10: Reserved              */
	MT2063_REG_PWR_1,		/*  0x11: PWR Byte 1            */
	MT2063_REG_PWR_2,		/*  0x12: PWR Byte 2            */
	MT2063_REG_TEMP_STATUS,		/*  0x13: Temp Status           */
	MT2063_REG_XO_STATUS,		/*  0x14: Crystal Status        */
	MT2063_REG_RF_STATUS,		/*  0x15: RF Attn Status        */
	MT2063_REG_FIF_STATUS,		/*  0x16: FIF Attn Status       */
	MT2063_REG_LNA_OV,		/*  0x17: LNA Attn Override     */
	MT2063_REG_RF_OV,		/*  0x18: RF Attn Override      */
	MT2063_REG_FIF_OV,		/*  0x19: FIF Attn Override     */
	MT2063_REG_LNA_TGT,		/*  0x1A: Reserved              */
	MT2063_REG_PD1_TGT,		/*  0x1B: Pwr Det 1 Target      */
	MT2063_REG_PD2_TGT,		/*  0x1C: Pwr Det 2 Target      */
	MT2063_REG_RSVD_1D,		/*  0x1D: Reserved              */
	MT2063_REG_RSVD_1E,		/*  0x1E: Reserved              */
	MT2063_REG_RSVD_1F,		/*  0x1F: Reserved              */
	MT2063_REG_RSVD_20,		/*  0x20: Reserved              */
	MT2063_REG_BYP_CTRL,		/*  0x21: Bypass Control        */
	MT2063_REG_RSVD_22,		/*  0x22: Reserved              */
	MT2063_REG_RSVD_23,		/*  0x23: Reserved              */
	MT2063_REG_RSVD_24,		/*  0x24: Reserved              */
	MT2063_REG_RSVD_25,		/*  0x25: Reserved              */
	MT2063_REG_RSVD_26,		/*  0x26: Reserved              */
	MT2063_REG_RSVD_27,		/*  0x27: Reserved              */
	MT2063_REG_FIFF_CTRL,		/*  0x28: FIFF Control          */
	MT2063_REG_FIFF_OFFSET,		/*  0x29: FIFF Offset           */
	MT2063_REG_CTUNE_CTRL,		/*  0x2A: Reserved              */
	MT2063_REG_CTUNE_OV,		/*  0x2B: Reserved              */
	MT2063_REG_CTRL_2C,		/*  0x2C: Reserved              */
	MT2063_REG_FIFF_CTRL2,		/*  0x2D: Fiff Control          */
	MT2063_REG_RSVD_2E,		/*  0x2E: Reserved              */
	MT2063_REG_DNC_GAIN,		/*  0x2F: DNC Control           */
	MT2063_REG_VGA_GAIN,		/*  0x30: VGA Gain Ctrl         */
	MT2063_REG_RSVD_31,		/*  0x31: Reserved              */
	MT2063_REG_TEMP_SEL,		/*  0x32: Temperature Selection */
	MT2063_REG_RSVD_33,		/*  0x33: Reserved              */
	MT2063_REG_RSVD_34,		/*  0x34: Reserved              */
	MT2063_REG_RSVD_35,		/*  0x35: Reserved              */
	MT2063_REG_RSVD_36,		/*  0x36: Reserved              */
	MT2063_REG_RSVD_37,		/*  0x37: Reserved              */
	MT2063_REG_RSVD_38,		/*  0x38: Reserved              */
	MT2063_REG_RSVD_39,		/*  0x39: Reserved              */
	MT2063_REG_RSVD_3A,		/*  0x3A: Reserved              */
	MT2063_REG_RSVD_3B,		/*  0x3B: Reserved              */
	MT2063_REG_RSVD_3C,		/*  0x3C: Reserved              */
	MT2063_REG_END_REGS
};

struct mt2063_state {
	struct i2c_adapter *i2c;

223 224
	bool init;

225 226 227 228 229 230 231 232 233
	const struct mt2063_config *config;
	struct dvb_tuner_ops ops;
	struct dvb_frontend *frontend;
	struct tuner_state status;

	u32 frequency;
	u32 srate;
	u32 bandwidth;
	u32 reference;
234 235 236 237 238 239 240 241 242

	u32 tuner_id;
	struct MT2063_AvoidSpursData_t AS_Data;
	u32 f_IF1_actual;
	u32 rcvr_mode;
	u32 ctfilt_sw;
	u32 CTFiltMax[31];
	u32 num_regs;
	u8 reg[MT2063_REG_END_REGS];
243
};
244

245 246 247
/*
 * mt2063_write - Write data into the I2C bus
 */
248
static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
249
{
250
	struct dvb_frontend *fe = state->frontend;
251
	int ret;
252
	u8 buf[60];
253 254 255 256 257 258 259
	struct i2c_msg msg = {
		.addr = state->config->tuner_address,
		.flags = 0,
		.buf = buf,
		.len = len + 1
	};

260 261
	dprintk(2, "\n");

262
	msg.buf[0] = reg;
263 264
	memcpy(msg.buf + 1, data, len);

265 266
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
267
	ret = i2c_transfer(state->i2c, &msg, 1);
268 269
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
270 271

	if (ret < 0)
272
		printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
273 274 275 276

	return ret;
}

277 278 279 280 281 282 283
/*
 * mt2063_write - Write register data into the I2C bus, caching the value
 */
static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
{
	u32 status;

284 285
	dprintk(2, "\n");

286 287 288 289 290 291 292 293 294 295 296 297
	if (reg >= MT2063_REG_END_REGS)
		return -ERANGE;

	status = mt2063_write(state, reg, &val, 1);
	if (status < 0)
		return status;

	state->reg[reg] = val;

	return 0;
}

298 299 300 301
/*
 * mt2063_read - Read data from the I2C bus
 */
static u32 mt2063_read(struct mt2063_state *state,
302
			   u8 subAddress, u8 *pData, u32 cnt)
303
{
304 305 306 307
	u32 status = 0;	/* Status to be returned        */
	struct dvb_frontend *fe = state->frontend;
	u32 i = 0;

308 309
	dprintk(2, "\n");

310 311
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
312 313

	for (i = 0; i < cnt; i++) {
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		int ret;
		u8 b0[] = { subAddress + i };
		struct i2c_msg msg[] = {
			{
				.addr = state->config->tuner_address,
				.flags = I2C_M_RD,
				.buf = b0,
				.len = 1
			}, {
				.addr = state->config->tuner_address,
				.flags = I2C_M_RD,
				.buf = pData + 1,
				.len = 1
			}
		};

		ret = i2c_transfer(state->i2c, msg, 2);
		if (ret < 0)
332 333
			break;
	}
334 335 336
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

337
	return status;
338 339
}

340 341 342
/*
 * FIXME: Is this really needed?
 */
343
static int MT2063_Sleep(struct dvb_frontend *fe)
344 345
{
	/*
346
	 *  ToDo:  Add code here to implement a OS blocking
347
	 */
348 349 350
	msleep(10);

	return 0;
351 352
}

353 354 355
/*
 * Microtune spur avoidance
 */
356 357 358 359 360 361

/*  Implement ceiling, floor functions.  */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))

struct MT2063_FIFZone_t {
362 363
	s32 min_;
	s32 max_;
364 365 366 367 368 369 370
};

static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode)
{
	struct MT2063_ExclZone_t *pNode;
371 372 373

	dprintk(2, "\n");

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	/*  Check for a node in the free list  */
	if (pAS_Info->freeZones != NULL) {
		/*  Use one from the free list  */
		pNode = pAS_Info->freeZones;
		pAS_Info->freeZones = pNode->next_;
	} else {
		/*  Grab a node from the array  */
		pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
	}

	if (pPrevNode != NULL) {
		pNode->next_ = pPrevNode->next_;
		pPrevNode->next_ = pNode;
	} else {		/*  insert at the beginning of the list  */

		pNode->next_ = pAS_Info->usedZones;
		pAS_Info->usedZones = pNode;
	}

	pAS_Info->nZones++;
	return pNode;
}

static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode,
					    struct MT2063_ExclZone_t
					    *pNodeToRemove)
{
	struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;

405 406
	dprintk(2, "\n");

407 408 409 410 411 412 413 414 415 416 417 418 419 420
	/*  Make previous node point to the subsequent node  */
	if (pPrevNode != NULL)
		pPrevNode->next_ = pNext;

	/*  Add pNodeToRemove to the beginning of the freeZones  */
	pNodeToRemove->next_ = pAS_Info->freeZones;
	pAS_Info->freeZones = pNodeToRemove;

	/*  Decrement node count  */
	pAS_Info->nZones--;

	return pNext;
}

421 422 423 424 425 426 427 428
/*
 * MT_AddExclZone()
 *
 * Add (and merge) an exclusion zone into the list.
 * If the range (f_min, f_max) is totally outside the
 * 1st IF BW, ignore the entry.
 * If the range (f_min, f_max) is negative, ignore the entry.
 */
429
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
430
			       u32 f_min, u32 f_max)
431 432 433 434 435
{
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_ExclZone_t *pPrev = NULL;
	struct MT2063_ExclZone_t *pNext = NULL;

436 437
	dprintk(2, "\n");

438 439 440 441 442
	/*  Check to see if this overlaps the 1st IF filter  */
	if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
	    && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
	    && (f_min < f_max)) {
		/*
443 444 445 446 447
		 *                1        2         3      4       5        6
		 *
		 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
		 *                or       or        or     or      or
		 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		 */

		/*  Check for our place in the list  */
		while ((pNode != NULL) && (pNode->max_ < f_min)) {
			pPrev = pNode;
			pNode = pNode->next_;
		}

		if ((pNode != NULL) && (pNode->min_ < f_max)) {
			/*  Combine me with pNode  */
			if (f_min < pNode->min_)
				pNode->min_ = f_min;
			if (f_max > pNode->max_)
				pNode->max_ = f_max;
		} else {
			pNode = InsertNode(pAS_Info, pPrev);
			pNode->min_ = f_min;
			pNode->max_ = f_max;
		}

		/*  Look for merging possibilities  */
		pNext = pNode->next_;
		while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
			if (pNext->max_ > pNode->max_)
				pNode->max_ = pNext->max_;
473 474
			/*  Remove pNext, return ptr to pNext->next  */
			pNext = RemoveNode(pAS_Info, pNode, pNext);
475 476 477 478
		}
	}
}

479
/*
480 481 482
 *  Reset all exclusion zones.
 *  Add zones to protect the PLL FracN regions near zero
 */
483 484 485 486
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
	u32 center;

487 488
	dprintk(2, "\n");

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	pAS_Info->nZones = 0;	/*  this clears the used list  */
	pAS_Info->usedZones = NULL;	/*  reset ptr                  */
	pAS_Info->freeZones = NULL;	/*  reset ptr                  */

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
	      pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO1_FracN_Avoid) {
		/*  Exclude LO1 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO1_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO1_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
	      pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO2_FracN_Avoid) {
		/*  Exclude LO2 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO2_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO2_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		/*  Exclude LO1 values that conflict with DECT channels */
		MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in);	/* Ctr = 1921.536 */
		MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in);	/* Ctr = 1923.264 */
		MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in);	/* Ctr = 1924.992 */
		MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in);	/* Ctr = 1926.720 */
		MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in);	/* Ctr = 1928.448 */
	}

	if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in);	/* Ctr = 1897.344 */
		MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in);	/* Ctr = 1895.616 */
		MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in);	/* Ctr = 1893.888 */
		MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in);	/* Ctr = 1892.16  */
		MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in);	/* Ctr = 1890.432 */
		MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in);	/* Ctr = 1888.704 */
		MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in);	/* Ctr = 1886.976 */
		MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in);	/* Ctr = 1885.248 */
		MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in);	/* Ctr = 1883.52  */
		MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in);	/* Ctr = 1881.792 */
	}
}

548 549 550 551 552 553
/*
 * MT_ChooseFirstIF - Choose the best available 1st IF
 *                    If f_Desired is not excluded, choose that first.
 *                    Otherwise, return the value closest to f_Center that is
 *                    not excluded
 */
554
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
555 556
{
	/*
557 558 559 560 561 562
	 * Update "f_Desired" to be the nearest "combinational-multiple" of
	 * "f_LO1_Step".
	 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
	 * And F_LO1 is the arithmetic sum of f_in + f_Center.
	 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
	 * However, the sum must be.
563
	 */
564
	const u32 f_Desired =
565 566 567 568
	    pAS_Info->f_LO1_Step *
	    ((pAS_Info->f_if1_Request + pAS_Info->f_in +
	      pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
	    pAS_Info->f_in;
569
	const u32 f_Step =
570 571 572
	    (pAS_Info->f_LO1_Step >
	     pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
	    f_LO2_Step;
573 574 575 576 577 578 579
	u32 f_Center;
	s32 i;
	s32 j = 0;
	u32 bDesiredExcluded = 0;
	u32 bZeroExcluded = 0;
	s32 tmpMin, tmpMax;
	s32 bestDiff;
580 581 582
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];

583 584
	dprintk(2, "\n");

585 586 587
	if (pAS_Info->nZones == 0)
		return f_Desired;

588 589 590 591
	/*
	 *  f_Center needs to be an integer multiple of f_Step away
	 *  from f_Desired
	 */
592 593 594 595 596 597 598 599 600 601 602 603 604
	if (pAS_Info->f_if1_Center > f_Desired)
		f_Center =
		    f_Desired +
		    f_Step *
		    ((pAS_Info->f_if1_Center - f_Desired +
		      f_Step / 2) / f_Step);
	else
		f_Center =
		    f_Desired -
		    f_Step *
		    ((f_Desired - pAS_Info->f_if1_Center +
		      f_Step / 2) / f_Step);

605 606 607 608
	/*
	 * Take MT_ExclZones, center around f_Center and change the
	 * resolution to f_Step
	 */
609 610 611
	while (pNode != NULL) {
		/*  floor function  */
		tmpMin =
612
		    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
613 614 615

		/*  ceil function  */
		tmpMax =
616
		    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

		if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
			bDesiredExcluded = 1;

		if ((tmpMin < 0) && (tmpMax > 0))
			bZeroExcluded = 1;

		/*  See if this zone overlaps the previous  */
		if ((j > 0) && (tmpMin < zones[j - 1].max_))
			zones[j - 1].max_ = tmpMax;
		else {
			/*  Add new zone  */
			zones[j].min_ = tmpMin;
			zones[j].max_ = tmpMax;
			j++;
		}
		pNode = pNode->next_;
	}

	/*
637
	 *  If the desired is okay, return with it
638 639 640 641 642
	 */
	if (bDesiredExcluded == 0)
		return f_Desired;

	/*
643
	 *  If the desired is excluded and the center is okay, return with it
644 645 646 647 648 649 650 651 652 653 654 655 656 657
	 */
	if (bZeroExcluded == 0)
		return f_Center;

	/*  Find the value closest to 0 (f_Center)  */
	bestDiff = zones[0].min_;
	for (i = 0; i < j; i++) {
		if (abs(zones[i].min_) < abs(bestDiff))
			bestDiff = zones[i].min_;
		if (abs(zones[i].max_) < abs(bestDiff))
			bestDiff = zones[i].max_;
	}

	if (bestDiff < 0)
658
		return f_Center - ((u32) (-bestDiff) * f_Step);
659 660 661 662

	return f_Center + (bestDiff * f_Step);
}

663 664 665 666 667 668 669 670
/**
 * gcd() - Uses Euclid's algorithm
 *
 * @u, @v:	Unsigned values whose GCD is desired.
 *
 * Returns THE greatest common divisor of u and v, if either value is 0,
 * the other value is returned as the result.
 */
671
static u32 MT2063_gcd(u32 u, u32 v)
672
{
673
	u32 r;
674 675 676 677 678 679 680 681 682 683

	while (v != 0) {
		r = u % v;
		u = v;
		v = r;
	}

	return u;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
 *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
 *
 *                    ma   mb                                     mc   md
 *                  <--+-+-+-------------------+-------------------+-+-+-->
 *                     |   ^                   0                   ^   |
 *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
 *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
 *
 *                  Note that some equations are doubled to prevent round-off
 *                  problems when calculating fIFBW/2
 *
 * @pAS_Info:	Avoid Spurs information block
 * @fm:		If spur, amount f_IF1 has to move negative
 * @fp:		If spur, amount f_IF1 has to move positive
 *
 *  Returns 1 if an LO spur would be present, otherwise 0.
 */
703
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
704
			u32 *fm, u32 * fp)
705 706 707 708
{
	/*
	 **  Calculate LO frequency settings.
	 */
709 710 711 712 713 714
	u32 n, n0;
	const u32 f_LO1 = pAS_Info->f_LO1;
	const u32 f_LO2 = pAS_Info->f_LO2;
	const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
	const u32 c = d - pAS_Info->f_out_bw;
	const u32 f = pAS_Info->f_zif_bw / 2;
715
	const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
716 717 718 719
	s32 f_nsLO1, f_nsLO2;
	s32 f_Spur;
	u32 ma, mb, mc, md, me, mf;
	u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
720 721 722

	dprintk(2, "\n");

723 724 725 726 727 728 729 730
	*fm = 0;

	/*
	 ** For each edge (d, c & f), calculate a scale, based on the gcd
	 ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
	 ** gcd-based scale factor or f_Scale.
	 */
	lo_gcd = MT2063_gcd(f_LO1, f_LO2);
731
	gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
732
	hgds = gd_Scale / 2;
733
	gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
734
	hgcs = gc_Scale / 2;
735
	gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
736 737
	hgfs = gf_Scale / 2;

738
	n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

	/*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
	for (n = n0; n <= pAS_Info->maxH1; ++n) {
		md = (n * ((f_LO1 + hgds) / gd_Scale) -
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
		if (md >= pAS_Info->maxH1)
			break;

		ma = (n * ((f_LO1 + hgds) / gd_Scale) +
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
		if (md == ma)
			continue;

		mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (mc != md) {
759 760
			f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
			f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
761 762 763 764
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);

765 766
			*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
			*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
			return 1;
		}

		/*  Location of Zero-IF-spur to be checked  */
		me = (n * ((f_LO1 + hgfs) / gf_Scale) +
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		if (me != mf) {
			f_nsLO1 = n * (f_LO1 / gf_Scale);
			f_nsLO2 = me * (f_LO2 / gf_Scale);
			f_Spur =
			    (gf_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);

782 783
			*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
			*fm = (((s32) f - f_Spur) / (me - n)) + 1;
784 785 786 787 788 789 790 791 792 793 794 795
			return 1;
		}

		mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (ma != mb) {
			f_nsLO1 = n * (f_LO1 / gc_Scale);
			f_nsLO2 = ma * (f_LO2 / gc_Scale);
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);

796 797
			*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
			*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
798 799 800 801 802 803 804 805
			return 1;
		}
	}

	/*  No spurs found  */
	return 0;
}

806 807 808 809 810 811
/*
 * MT_AvoidSpurs() - Main entry point to avoid spurs.
 *                   Checks for existing spurs in present LO1, LO2 freqs
 *                   and if present, chooses spur-free LO1, LO2 combination
 *                   that tunes the same input/output frequencies.
 */
812
static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
813
{
814
	u32 status = 0;
815
	u32 fm, fp;		/*  restricted range on LO's        */
816 817 818
	pAS_Info->bSpurAvoided = 0;
	pAS_Info->nSpursFound = 0;

819 820
	dprintk(2, "\n");

821
	if (pAS_Info->maxH1 == 0)
822
		return 0;
823 824

	/*
825 826 827 828 829 830 831 832 833
	 * Avoid LO Generated Spurs
	 *
	 * Make sure that have no LO-related spurs within the IF output
	 * bandwidth.
	 *
	 * If there is an LO spur in this band, start at the current IF1 frequency
	 * and work out until we find a spur-free frequency or run up against the
	 * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
	 * will be unchanged if a spur-free setting is not found.
834 835 836
	 */
	pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
	if (pAS_Info->bSpurPresent) {
837 838 839 840 841
		u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;	/*  current attempt at a 1st IF  */
		u32 zfLO1 = pAS_Info->f_LO1;	/*  current attempt at an LO1 freq  */
		u32 zfLO2 = pAS_Info->f_LO2;	/*  current attempt at an LO2 freq  */
		u32 delta_IF1;
		u32 new_IF1;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

		/*
		 **  Spur was found, attempt to find a spur-free 1st IF
		 */
		do {
			pAS_Info->nSpursFound++;

			/*  Raise f_IF1_upper, if needed  */
			MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);

			/*  Choose next IF1 that is closest to f_IF1_CENTER              */
			new_IF1 = MT2063_ChooseFirstIF(pAS_Info);

			if (new_IF1 > zfIF1) {
				pAS_Info->f_LO1 += (new_IF1 - zfIF1);
				pAS_Info->f_LO2 += (new_IF1 - zfIF1);
			} else {
				pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
				pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
			}
			zfIF1 = new_IF1;

			if (zfIF1 > pAS_Info->f_if1_Center)
				delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
			else
				delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
868 869

			pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
870
		/*
871 872
		 *  Continue while the new 1st IF is still within the 1st IF bandwidth
		 *  and there is a spur in the band (again)
873
		 */
874
		} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
875 876

		/*
877 878 879
		 * Use the LO-spur free values found.  If the search went all
		 * the way to the 1st IF band edge and always found spurs, just
		 * leave the original choice.  It's as "good" as any other.
880 881 882 883 884 885 886 887 888 889 890 891 892
		 */
		if (pAS_Info->bSpurPresent == 1) {
			status |= MT2063_SPUR_PRESENT_ERR;
			pAS_Info->f_LO1 = zfLO1;
			pAS_Info->f_LO2 = zfLO2;
		} else
			pAS_Info->bSpurAvoided = 1;
	}

	status |=
	    ((pAS_Info->
	      nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);

893
	return status;
894 895 896
}

/*
897 898
 * Constants used by the tuning algorithm
 */
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
#define MT2063_REF_FREQ          (16000000UL)	/* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW            (22000000UL)	/* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE       (50000UL)	/* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ        (250000UL)	/* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW             (2000000UL)	/* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1         (15UL)	/* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2          (5UL)	/* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP         (1000000UL)	/* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID          (0UL)	/* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID     (199999UL)	/* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ      (44000000UL)	/* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ    (1100000000UL)	/* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ     (36000000UL)	/* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ     (57000000UL)	/* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ    (1293000000UL)	/* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ    (1614000000UL)	/* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ    (1396000000UL)	/* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ    (2750000000UL)	/* Maximum LO1 frequency (in Hz) */

/*
919 920
 *  Define the supported Part/Rev codes for the MT2063
 */
921 922 923 924 925
#define MT2063_B0       (0x9B)
#define MT2063_B1       (0x9C)
#define MT2063_B2       (0x9D)
#define MT2063_B3       (0x9E)

926 927 928 929 930 931 932
/**
 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
 *
 * @state:	struct mt2063_state pointer
 *
 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
 */
933
static unsigned int mt2063_lockStatus(struct mt2063_state *state)
934
{
935 936 937 938 939
	const u32 nMaxWait = 100;	/*  wait a maximum of 100 msec   */
	const u32 nPollRate = 2;	/*  poll status bits every 2 ms */
	const u32 nMaxLoops = nMaxWait / nPollRate;
	const u8 LO1LK = 0x80;
	u8 LO2LK = 0x08;
940
	u32 status;
941
	u32 nDelays = 0;
942

943 944
	dprintk(2, "\n");

945
	/*  LO2 Lock bit was in a different place for B0 version  */
946
	if (state->tuner_id == MT2063_B0)
947 948 949
		LO2LK = 0x40;

	do {
950 951
		status = mt2063_read(state, MT2063_REG_LO_STATUS,
				     &state->reg[MT2063_REG_LO_STATUS], 1);
952

953
		if (status < 0)
954
			return status;
955

956
		if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
957
		    (LO1LK | LO2LK)) {
958
			return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
959
		}
960
		msleep(nPollRate);	/*  Wait between retries  */
961
	} while (++nDelays < nMaxLoops);
962

963 964 965 966
	/*
	 * Got no lock or partial lock
	 */
	return 0;
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/*
 *  Constants for setting receiver modes.
 *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 *                enum mt2063_delivery_sys
 * -------------+----------------------------------------------
 * Mode 0 :     | MT2063_CABLE_QAM
 * Mode 1 :     | MT2063_CABLE_ANALOG
 * Mode 2 :     | MT2063_OFFAIR_COFDM
 * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
 * Mode 4 :     | MT2063_OFFAIR_ANALOG
 * Mode 5 :     | MT2063_OFFAIR_8VSB
 * --------------+----------------------------------------------
 *
 *                |<----------   Mode  -------------->|
 *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
 *    ------------+-----+-----+-----+-----+-----+-----+
 *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
 *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
 *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
 *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
 *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
 *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
 *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
 *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
 */

enum mt2063_delivery_sys {
	MT2063_CABLE_QAM = 0,		/* Digital cable              */
	MT2063_CABLE_ANALOG,		/* Analog cable               */
	MT2063_OFFAIR_COFDM,		/* Digital offair             */
	MT2063_OFFAIR_COFDM_SAWLESS,	/* Digital offair without SAW */
	MT2063_OFFAIR_ANALOG,		/* Analog offair              */
	MT2063_OFFAIR_8VSB,		/* Analog offair              */
	MT2063_NUM_RCVR_MODES
};

static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };

1030 1031 1032 1033
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1034
					enum MT2063_DNC_Output_Enable *pValue)
1035
{
1036 1037
	dprintk(2, "\n");

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) {	/* if DNC1 is off */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_NONE;
		else
			*pValue = MT2063_DNC_2;
	} else {	/* DNC1 is on */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_1;
		else
			*pValue = MT2063_DNC_BOTH;
	}
	return 0;
}
1051

1052 1053 1054 1055
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1056
					enum MT2063_DNC_Output_Enable nValue)
1057 1058 1059
{
	u32 status = 0;	/* Status to be returned        */
	u8 val = 0;
1060

1061 1062
	dprintk(2, "\n");

1063 1064 1065
	/* selects, which DNC output is used */
	switch (nValue) {
	case MT2063_DNC_NONE:
1066 1067 1068 1069 1070 1071 1072
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1073

1074 1075 1076 1077 1078 1079 1080
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1081

1082 1083 1084 1085 1086 1087 1088
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1089

1090
		break;
1091
	case MT2063_DNC_1:
1092 1093 1094 1095 1096 1097 1098
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1099

1100 1101 1102 1103 1104 1105 1106
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1107

1108 1109 1110 1111 1112 1113 1114
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1115

1116
		break;
1117
	case MT2063_DNC_2:
1118 1119 1120 1121 1122 1123 1124
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1125

1126 1127 1128 1129 1130 1131 1132
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1133

1134 1135 1136 1137 1138 1139 1140
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1141

1142
		break;
1143
	case MT2063_DNC_BOTH:
1144 1145 1146 1147 1148 1149 1150
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1151

1152 1153 1154 1155 1156 1157 1158
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1159

1160 1161 1162 1163 1164 1165 1166
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1167

1168
		break;
1169
	default:
1170
		break;
1171
	}
1172

1173
	return status;
1174 1175
}

1176
/*
1177 1178 1179
 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
 * 			      the selected enum mt2063_delivery_sys type.
 *
1180 1181 1182 1183
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 * @state:	ptr to mt2063_state structure
1184
 * @Mode:	desired reciever delivery system
1185 1186 1187 1188
 *
 * Note: Register cache must be valid for it to work
 */

1189
static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1190
				  enum mt2063_delivery_sys Mode)
1191
{
1192
	u32 status = 0;	/* Status to be returned        */
1193 1194
	u8 val;
	u32 longval;
1195

1196 1197
	dprintk(2, "\n");

1198
	if (Mode >= MT2063_NUM_RCVR_MODES)
1199
		status = -ERANGE;
1200 1201

	/* RFAGCen */
1202
	if (status >= 0) {
1203
		val =
1204
		    (state->
1205
		     reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
1206 1207
								   ? 0x40 :
								   0x00);
1208
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1209
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1210 1211 1212
	}

	/* LNARin */
1213
	if (status >= 0) {
1214
		u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
1215 1216
			 (LNARIN[Mode] & 0x03);
		if (state->reg[MT2063_REG_CTRL_2C] != val)
1217
			status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1218 1219 1220
	}

	/* FIFFQEN and FIFFQ */
1221
	if (status >= 0) {
1222
		val =
1223
		    (state->
1224
		     reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
1225
		    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1226
		if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1227
			status |=
1228
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1229 1230
			/* trigger FIFF calibration, needed after changing FIFFQ */
			val =
1231
			    (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
1232
			status |=
1233
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1234
			val =
1235
			    (state->
1236
			     reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
1237
			status |=
1238
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1239 1240 1241 1242
		}
	}

	/* DNC1GC & DNC2GC */
1243 1244
	status |= mt2063_get_dnc_output_enable(state, &longval);
	status |= mt2063_set_dnc_output_enable(state, longval);
1245 1246

	/* acLNAmax */
1247
	if (status >= 0) {
1248
		u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
1249 1250
			 (ACLNAMAX[Mode] & 0x1F);
		if (state->reg[MT2063_REG_LNA_OV] != val)
1251
			status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1252 1253 1254
	}

	/* LNATGT */
1255
	if (status >= 0) {
1256
		u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
1257 1258
			 (LNATGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1259
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1260 1261 1262
	}

	/* ACRF */
1263
	if (status >= 0) {
1264 1265
		u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
			 (ACRFMAX[Mode] & 0x1F);
1266
		if (state->reg[MT2063_REG_RF_OV] != val)
1267
			status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1268 1269 1270
	}

	/* PD1TGT */
1271
	if (status >= 0) {
1272
		u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
1273 1274
			 (PD1TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1275
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1276 1277 1278
	}

	/* FIFATN */
1279
	if (status >= 0) {
1280 1281 1282
		u8 val = ACFIFMAX[Mode];
		if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
			val = 5;
1283
		val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
1284
		      (val & 0x1F);
1285
		if (state->reg[MT2063_REG_FIF_OV] != val)
1286
			status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1287 1288 1289
	}

	/* PD2TGT */
1290
	if (status >= 0) {
1291
		u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
1292 1293
		    (PD2TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD2_TGT] != val)
1294
			status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1295 1296 1297
	}

	/* Ignore ATN Overload */
1298
	if (status >= 0) {
1299 1300 1301
		val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
		      (RFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1302
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1303 1304 1305
	}

	/* Ignore FIF Overload */
1306
	if (status >= 0) {
1307 1308 1309
		val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
		      (FIFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1310
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1311 1312
	}

1313
	if (status >= 0)
1314
		state->rcvr_mode = Mode;
1315

1316
	return status;
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
 *				  sections of the MT2063
 *
 * @Bits:		Mask bits to be cleared.
 *
 * See definition of MT2063_Mask_Bits type for description
 * of each of the power bits.
 */
1328 1329
static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
				     enum MT2063_Mask_Bits Bits)
1330
{
1331
	u32 status = 0;
1332

1333
	dprintk(2, "\n");
1334 1335
	Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);	/* Only valid bits for this tuner */
	if ((Bits & 0xFF00) != 0) {
1336
		state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1337
		status |=
1338
		    mt2063_write(state,
1339
				    MT2063_REG_PWR_2,
1340
				    &state->reg[MT2063_REG_PWR_2], 1);
1341 1342
	}
	if ((Bits & 0xFF) != 0) {
1343
		state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1344
		status |=
1345
		    mt2063_write(state,
1346
				    MT2063_REG_PWR_1,
1347
				    &state->reg[MT2063_REG_PWR_1], 1);
1348 1349
	}

1350
	return status;
1351 1352
}

1353 1354 1355 1356 1357
/*
 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
 *			       When Shutdown is 1, any section whose power
 *			       mask is set will be shutdown.
 */
1358
static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1359
{
1360
	u32 status;
1361

1362
	dprintk(2, "\n");
1363
	if (Shutdown == 1)
1364
		state->reg[MT2063_REG_PWR_1] |= 0x04;
1365
	else
1366
		state->reg[MT2063_REG_PWR_1] &= ~0x04;
1367

1368
	status = mt2063_write(state,
1369
			    MT2063_REG_PWR_1,
1370
			    &state->reg[MT2063_REG_PWR_1], 1);
1371 1372

	if (Shutdown != 1) {
1373 1374
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1375
		status |=
1376
		    mt2063_write(state,
1377
				    MT2063_REG_BYP_CTRL,
1378
				    &state->reg[MT2063_REG_BYP_CTRL],
1379
				    1);
1380 1381
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1382
		status |=
1383
		    mt2063_write(state,
1384
				    MT2063_REG_BYP_CTRL,
1385
				    &state->reg[MT2063_REG_BYP_CTRL],
1386
				    1);
1387 1388
	}

1389
	return status;
1390 1391
}

1392
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1393 1394 1395 1396 1397
{
	return f_ref * (f_LO / f_ref)
	    + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
 *                        This function preserves maximum precision without
 *                        risk of overflow.  It accurately calculates
 *                        f_ref * num / denom to within 1 HZ with fixed math.
 *
 * @num :	Fractional portion of the multiplier
 * @denom:	denominator portion of the ratio
 * @f_Ref:	SRO frequency.
 *
 * This calculation handles f_ref as two separate 14-bit fields.
 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
 * This is the genesis of the magic number "14" and the magic mask value of
 * 0x03FFF.
 *
 * This routine successfully handles denom values up to and including 2^18.
 *  Returns:        f_ref * num / denom
 */
1416
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1417
{
1418 1419 1420 1421
	u32 t1 = (f_ref >> 14) * num;
	u32 term1 = t1 / denom;
	u32 loss = t1 % denom;
	u32 term2 =
1422
	    (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1423
	return (term1 << 14) + term2;
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*
 * CalcLO1Mult()- Calculates Integer divider value and the numerator
 *                value for a FracN PLL.
 *
 *                This function assumes that the f_LO and f_Ref are
 *                evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near integer multiples
 *		of f_Ref (in Hz).
 *
 * Returns:        Recalculated LO frequency.
 */
1443 1444
static u32 MT2063_CalcLO1Mult(u32 *Div,
			      u32 *FracN,
1445 1446
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/**
 * CalcLO2Mult() - Calculates Integer divider value and the numerator
 *                 value for a FracN PLL.
 *
 *                  This function assumes that the f_LO and f_Ref are
 *                  evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near
 *		integer multiples of f_Ref (in Hz).
 *
 * Returns: Recalculated LO frequency.
 */
1476 1477
static u32 MT2063_CalcLO2Mult(u32 *Div,
			      u32 *FracN,
1478 1479
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
							    8191);
}

1493 1494 1495 1496 1497 1498 1499 1500 1501
/*
 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
 *			   used for a given input frequency.
 *
 * @state:	ptr to tuner data structure
 * @f_in:	RF input center frequency (in Hz).
 *
 * Returns: ClearTune filter number (0-31)
 */
1502
static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1503
{
1504 1505
	u32 RFBand;
	u32 idx;		/*  index loop                      */
1506 1507 1508 1509 1510 1511

	/*
	 **  Find RF Band setting
	 */
	RFBand = 31;		/*  def when f_in > all    */
	for (idx = 0; idx < 31; ++idx) {
1512
		if (state->CTFiltMax[idx] >= f_in) {
1513 1514 1515 1516
			RFBand = idx;
			break;
		}
	}
1517
	return RFBand;
1518 1519
}

1520 1521 1522
/*
 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
 */
1523
static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1524 1525
{				/* RF input center frequency   */

1526
	u32 status = 0;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	u32 LO1;		/*  1st LO register value           */
	u32 Num1;		/*  Numerator for LO1 reg. value    */
	u32 f_IF1;		/*  1st IF requested                */
	u32 LO2;		/*  2nd LO register value           */
	u32 Num2;		/*  Numerator for LO2 reg. value    */
	u32 ofLO1, ofLO2;	/*  last time's LO frequencies      */
	u8 fiffc = 0x80;	/*  FIFF center freq from tuner     */
	u32 fiffof;		/*  Offset from FIFF center freq    */
	const u8 LO1LK = 0x80;	/*  Mask for LO1 Lock bit           */
	u8 LO2LK = 0x08;	/*  Mask for LO2 Lock bit           */
	u8 val;
	u32 RFBand;
1539

1540
	dprintk(2, "\n");
1541 1542
	/*  Check the input and output frequency ranges                   */
	if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1543
		return -EINVAL;
1544

1545 1546
	if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
	    || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1547
		return -EINVAL;
1548 1549

	/*
1550
	 * Save original LO1 and LO2 register values
1551
	 */
1552
	ofLO1 = state->AS_Data.f_LO1;
1553
	ofLO2 = state->AS_Data.f_LO2; 
1554 1555

	/*
1556
	 * Find and set RF Band setting
1557
	 */
1558 1559 1560
	if (state->ctfilt_sw == 1) {
		val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
		if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1561
			status |=
1562
			    mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1563
		}
1564 1565 1566 1567
		val = state->reg[MT2063_REG_CTUNE_OV];
		RFBand = FindClearTuneFilter(state, f_in);
		state->reg[MT2063_REG_CTUNE_OV] =
		    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1568
			      | RFBand);
1569
		if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1570
			status |=
1571
			    mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1572 1573 1574 1575
		}
	}

	/*
1576
	 * Read the FIFF Center Frequency from the tuner
1577
	 */
1578
	if (status >= 0) {
1579
		status |=
1580
		    mt2063_read(state,
1581
				   MT2063_REG_FIFFC,
1582 1583
				   &state->reg[MT2063_REG_FIFFC], 1);
		fiffc = state->reg[MT2063_REG_FIFFC];
1584 1585
	}
	/*
1586
	 * Assign in the requested values
1587
	 */
1588
	state->AS_Data.f_in = f_in;
1589
	/*  Request a 1st IF such that LO1 is on a step size */
1590 1591 1592 1593
	state->AS_Data.f_if1_Request =
	    MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
			     state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref) - f_in;
1594 1595

	/*
1596 1597
	 * Calculate frequency settings.  f_IF1_FREQ + f_in is the
	 * desired LO1 frequency
1598
	 */
1599
	MT2063_ResetExclZones(&state->AS_Data);
1600

1601
	f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1602

1603 1604 1605
	state->AS_Data.f_LO1 =
	    MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref);
1606

1607 1608 1609
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1610 1611

	/*
1612 1613
	 * Check for any LO spurs in the output bandwidth and adjust
	 * the LO settings to avoid them if needed
1614
	 */
1615
	status |= MT2063_AvoidSpurs(&state->AS_Data);
1616
	/*
1617 1618 1619
	 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
	 * Recalculate the LO frequencies and the values to be placed
	 * in the tuning registers.
1620
	 */
1621 1622 1623 1624 1625 1626 1627 1628 1629
	state->AS_Data.f_LO1 =
	    MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
			       state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
			       state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1630 1631

	/*
1632
	 *  Check the upconverter and downconverter frequency ranges
1633
	 */
1634 1635
	if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
	    || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1636
		status |= MT2063_UPC_RANGE;
1637 1638
	if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
	    || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1639 1640
		status |= MT2063_DNC_RANGE;
	/*  LO2 Lock bit was in a different place for B0 version  */
1641
	if (state->tuner_id == MT2063_B0)
1642 1643 1644
		LO2LK = 0x40;

	/*
1645 1646
	 *  If we have the same LO frequencies and we're already locked,
	 *  then skip re-programming the LO registers.
1647
	 */
1648 1649 1650
	if ((ofLO1 != state->AS_Data.f_LO1)
	    || (ofLO2 != state->AS_Data.f_LO2)
	    || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1651 1652
		(LO1LK | LO2LK))) {
		/*
1653 1654 1655 1656 1657
		 * Calculate the FIFFOF register value
		 *
		 *           IF1_Actual
		 * FIFFOF = ------------ - 8 * FIFFC - 4992
		 *            f_ref/64
1658 1659
		 */
		fiffof =
1660 1661
		    (state->AS_Data.f_LO1 -
		     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1662 1663 1664 1665 1666
		    4992;
		if (fiffof > 0xFF)
			fiffof = 0xFF;

		/*
1667 1668
		 * Place all of the calculated values into the local tuner
		 * register fields.
1669
		 */
1670
		if (status >= 0) {
1671 1672 1673
			state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);	/* DIV1q */
			state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);	/* NUM1q */
			state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)	/* DIV2q */
1674
								   |(Num2 >> 12));	/* NUM2q (hi) */
1675 1676
			state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);	/* NUM2q (mid) */
			state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F));	/* NUM2q (lo) */
1677 1678

			/*
1679 1680 1681
			 * Now write out the computed register values
			 * IMPORTANT: There is a required order for writing
			 *            (0x05 must follow all the others).
1682
			 */
1683
			status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);	/* 0x01 - 0x05 */
1684
			if (state->tuner_id == MT2063_B0) {
1685
				/* Re-write the one-shot bits to trigger the tune operation */
1686
				status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);	/* 0x05 */
1687 1688
			}
			/* Write out the FIFF offset only if it's changing */
1689
			if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1690
			    (u8) fiffof) {
1691
				state->reg[MT2063_REG_FIFF_OFFSET] =
1692
				    (u8) fiffof;
1693
				status |=
1694
				    mt2063_write(state,
1695
						    MT2063_REG_FIFF_OFFSET,
1696
						    &state->
1697 1698 1699 1700 1701 1702
						    reg[MT2063_REG_FIFF_OFFSET],
						    1);
			}
		}

		/*
1703
		 * Check for LO's locking
1704 1705
		 */

1706 1707 1708 1709 1710 1711 1712 1713 1714
		if (status < 0)
			return status;

		status = mt2063_lockStatus(state);
		if (status < 0)
			return status;
		if (!status)
			return -EINVAL;		/* Couldn't lock */

1715
		/*
1716
		 * If we locked OK, assign calculated data to mt2063_state structure
1717
		 */
1718
		state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1719 1720
	}

1721
	return status;
1722 1723
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static const u8 MT2063B0_defaults[] = {
	/* Reg,  Value */
	0x19, 0x05,
	0x1B, 0x1D,
	0x1C, 0x1F,
	0x1D, 0x0F,
	0x1E, 0x3F,
	0x1F, 0x0F,
	0x20, 0x3F,
	0x22, 0x21,
	0x23, 0x3F,
	0x24, 0x20,
	0x25, 0x3F,
	0x27, 0xEE,
	0x2C, 0x27,	/*  bit at 0x20 is cleared below  */
	0x30, 0x03,
	0x2C, 0x07,	/*  bit at 0x20 is cleared here   */
	0x2D, 0x87,
	0x2E, 0xAA,
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B1_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x11, 0x10,	/* New Enable AFCsd */
	0x19, 0x05,
	0x1A, 0x6C,
	0x1B, 0x24,
	0x1C, 0x28,
	0x1D, 0x8F,
	0x1E, 0x14,
	0x1F, 0x8F,
	0x20, 0x57,
	0x22, 0x21,	/* New - ver 1.03 */
	0x23, 0x3C,	/* New - ver 1.10 */
	0x24, 0x20,	/* New - ver 1.03 */
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2D, 0x87,	/*  FIFFQ=0  */
	0x2F, 0xF3,
	0x30, 0x0C,	/* New - ver 1.11 */
	0x31, 0x1B,	/* New - ver 1.11 */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B3_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x19, 0x3D,
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

1787 1788
static int mt2063_init(struct dvb_frontend *fe)
{
1789
	u32 status;
1790
	struct mt2063_state *state = fe->tuner_priv;
1791 1792
	u8 all_resets = 0xF0;	/* reset/load bits */
	const u8 *def = NULL;
1793
	char *step;
1794 1795 1796 1797 1798
	u32 FCRUN;
	s32 maxReads;
	u32 fcu_osc;
	u32 i;

1799 1800
	dprintk(2, "\n");

1801 1802 1803 1804
	state->rcvr_mode = MT2063_CABLE_QAM;

	/*  Read the Part/Rev code from the tuner */
	status = mt2063_read(state, MT2063_REG_PART_REV, state->reg, 1);
1805 1806
	if (status < 0) {
		printk(KERN_ERR "Can't read mt2063 part ID\n");
1807
		return status;
1808
	}
1809 1810

	/* Check the part/rev code */
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	switch (state->reg[MT2063_REG_PART_REV]) {
	case MT2063_B0:
		step = "B0";
		break;
	case MT2063_B1:
		step = "B1";
		break;
	case MT2063_B2:
		step = "B2";
		break;
	case MT2063_B3:
		step = "B3";
		break;
	default:
		printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
		       state->reg[MT2063_REG_PART_REV]);
1827
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1828
	}
1829

1830 1831 1832
	/*  Check the 2nd byte of the Part/Rev code from the tuner */
	status = mt2063_read(state, MT2063_REG_RSVD_3B,
			     &state->reg[MT2063_REG_RSVD_3B], 1);
1833

1834
	/* b7 != 0 ==> NOT MT2063 */
1835
	if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1836
		printk(KERN_ERR "mt2063: Unknown 2nd part ID\n");
1837
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1838
	}
1839

1840 1841 1842
	dprintk(1, "Discovered a mt2063 %s (2nd part number 0x%02x)\n",
		step, state->reg[MT2063_REG_RSVD_3B]);

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*  Reset the tuner  */
	status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
	if (status < 0)
		return status;

	/* change all of the default values that vary from the HW reset values */
	/*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
	switch (state->reg[MT2063_REG_PART_REV]) {
	case MT2063_B3:
		def = MT2063B3_defaults;
		break;

	case MT2063_B1:
		def = MT2063B1_defaults;
		break;

	case MT2063_B0:
		def = MT2063B0_defaults;
		break;

	default:
		return -ENODEV;
		break;
1866 1867
	}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	while (status >= 0 && *def) {
		u8 reg = *def++;
		u8 val = *def++;
		status = mt2063_write(state, reg, &val, 1);
	}
	if (status < 0)
		return status;

	/*  Wait for FIFF location to complete.  */
	FCRUN = 1;
	maxReads = 10;
	while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
		msleep(2);
		status = mt2063_read(state,
					 MT2063_REG_XO_STATUS,
					 &state->
					 reg[MT2063_REG_XO_STATUS], 1);
		FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
	}

	if (FCRUN != 0 || status < 0)
		return -ENODEV;

	status = mt2063_read(state,
			   MT2063_REG_FIFFC,
			   &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	/* Read back all the registers from the tuner */
	status = mt2063_read(state,
				MT2063_REG_PART_REV,
				state->reg, MT2063_REG_END_REGS);
	if (status < 0)
		return status;

	/*  Initialize the tuner state.  */
	state->tuner_id = state->reg[MT2063_REG_PART_REV];
	state->AS_Data.f_ref = MT2063_REF_FREQ;
	state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
				      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
	state->AS_Data.f_if1_bw = MT2063_IF1_BW;
	state->AS_Data.f_out = 43750000UL;
	state->AS_Data.f_out_bw = 6750000UL;
	state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
	state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
	state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
	state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
	state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
	state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
	state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
	state->AS_Data.f_LO1 = 2181000000UL;
	state->AS_Data.f_LO2 = 1486249786UL;
	state->f_IF1_actual = state->AS_Data.f_if1_Center;
	state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
	state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
	state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
	state->num_regs = MT2063_REG_END_REGS;
	state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
	state->ctfilt_sw = 0;

	state->CTFiltMax[0] = 69230000;
	state->CTFiltMax[1] = 105770000;
	state->CTFiltMax[2] = 140350000;
	state->CTFiltMax[3] = 177110000;
	state->CTFiltMax[4] = 212860000;
	state->CTFiltMax[5] = 241130000;
	state->CTFiltMax[6] = 274370000;
	state->CTFiltMax[7] = 309820000;
	state->CTFiltMax[8] = 342450000;
	state->CTFiltMax[9] = 378870000;
	state->CTFiltMax[10] = 416210000;
	state->CTFiltMax[11] = 456500000;
	state->CTFiltMax[12] = 495790000;
	state->CTFiltMax[13] = 534530000;
	state->CTFiltMax[14] = 572610000;
	state->CTFiltMax[15] = 598970000;
	state->CTFiltMax[16] = 635910000;
	state->CTFiltMax[17] = 672130000;
	state->CTFiltMax[18] = 714840000;
	state->CTFiltMax[19] = 739660000;
	state->CTFiltMax[20] = 770410000;
	state->CTFiltMax[21] = 814660000;
	state->CTFiltMax[22] = 846950000;
	state->CTFiltMax[23] = 867820000;
	state->CTFiltMax[24] = 915980000;
	state->CTFiltMax[25] = 947450000;
	state->CTFiltMax[26] = 983110000;
	state->CTFiltMax[27] = 1021630000;
	state->CTFiltMax[28] = 1061870000;
	state->CTFiltMax[29] = 1098330000;
	state->CTFiltMax[30] = 1138990000;

	/*
	 **   Fetch the FCU osc value and use it and the fRef value to
	 **   scale all of the Band Max values
	 */

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Read the ClearTune filter calibration value  */
	status = mt2063_read(state, MT2063_REG_FIFFC,
			     &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	fcu_osc = state->reg[MT2063_REG_FIFFC];

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Adjust each of the values in the ClearTune filter cross-over table  */
	for (i = 0; i < 31; i++)
1988
		state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
1989 1990 1991 1992 1993 1994 1995 1996

	status = MT2063_SoftwareShutdown(state, 1);
	if (status < 0)
		return status;
	status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (status < 0)
		return status;

1997 1998
	state->init = true;

1999 2000 2001
	return 0;
}

2002
static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
2003
{
2004 2005
	struct mt2063_state *state = fe->tuner_priv;
	int status;
2006

2007 2008
	dprintk(2, "\n");

2009 2010 2011
	if (!state->init)
		return -ENODEV;

2012 2013 2014 2015 2016
	*tuner_status = 0;
	status = mt2063_lockStatus(state);
	if (status < 0)
		return status;
	if (status)
2017
		*tuner_status = TUNER_STATUS_LOCKED;
2018

2019
	return 0;
2020
}
2021

2022
static int mt2063_release(struct dvb_frontend *fe)
2023
{
2024
	struct mt2063_state *state = fe->tuner_priv;
2025

2026 2027
	dprintk(2, "\n");

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	fe->tuner_priv = NULL;
	kfree(state);

	return 0;
}

static int mt2063_set_analog_params(struct dvb_frontend *fe,
				    struct analog_parameters *params)
{
	struct mt2063_state *state = fe->tuner_priv;
2038 2039 2040 2041 2042
	s32 pict_car;
	s32 pict2chanb_vsb;
	s32 ch_bw;
	s32 if_mid;
	s32 rcvr_mode;
2043 2044
	int status;

2045 2046
	dprintk(2, "\n");

2047 2048 2049 2050 2051 2052
	if (!state->init) {
		status = mt2063_init(fe);
		if (status < 0)
			return status;
	}

2053 2054 2055 2056 2057 2058
	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		pict_car = 38900000;
		ch_bw = 8000000;
		pict2chanb_vsb = -(ch_bw / 2);
		rcvr_mode = MT2063_OFFAIR_ANALOG;
2059
		break;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	case V4L2_TUNER_ANALOG_TV:
		rcvr_mode = MT2063_CABLE_ANALOG;
		if (params->std & ~V4L2_STD_MN) {
			pict_car = 38900000;
			ch_bw = 6000000;
			pict2chanb_vsb = -1250000;
		} else if (params->std & V4L2_STD_PAL_G) {
			pict_car = 38900000;
			ch_bw = 7000000;
			pict2chanb_vsb = -1250000;
2070
		} else {		/* PAL/SECAM standards */
2071 2072 2073 2074
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
		}
2075
		break;
2076 2077
	default:
		return -EINVAL;
2078
	}
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

	status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
	if (status < 0)
		return status;
2091

2092 2093
	state->frequency = params->frequency;
	return 0;
2094 2095
}

2096 2097 2098
/*
 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
 * So, the amount of the needed bandwith is given by:
2099
 *	Bw = Symbol_rate * (1 + 0.15)
2100 2101 2102 2103 2104
 * As such, the maximum symbol rate supported by 6 MHz is given by:
 *	max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
 */
#define MAX_SYMBOL_RATE_6MHz	5217391

2105
static int mt2063_set_params(struct dvb_frontend *fe)
2106
{
2107
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2108
	struct mt2063_state *state = fe->tuner_priv;
2109
	int status;
2110 2111 2112 2113 2114
	s32 pict_car;
	s32 pict2chanb_vsb;
	s32 ch_bw;
	s32 if_mid;
	s32 rcvr_mode;
2115

2116 2117 2118 2119 2120 2121
	if (!state->init) {
		status = mt2063_init(fe);
		if (status < 0)
			return status;
	}

2122 2123
	dprintk(2, "\n");

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (c->bandwidth_hz == 0)
		return -EINVAL;
	if (c->bandwidth_hz <= 6000000)
		ch_bw = 6000000;
	else if (c->bandwidth_hz <= 7000000)
		ch_bw = 7000000;
	else
		ch_bw = 8000000;

	switch (c->delivery_system) {
	case SYS_DVBT:
2135 2136 2137
		rcvr_mode = MT2063_OFFAIR_COFDM;
		pict_car = 36125000;
		pict2chanb_vsb = -(ch_bw / 2);
2138
		break;
2139 2140
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
2141 2142 2143
		rcvr_mode = MT2063_CABLE_QAM;
		pict_car = 36125000;
		pict2chanb_vsb = -(ch_bw / 2);
2144
		break;
2145
	default:
2146
		return -EINVAL;
2147
	}
2148 2149 2150 2151 2152 2153 2154 2155 2156
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

2157
	status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2158 2159

	if (status < 0)
2160
		return status;
2161

2162
	state->frequency = c->frequency;
2163
	return 0;
2164 2165
}

2166
static int mt2063_get_frequency(struct dvb_frontend *fe, u32 *freq)
2167
{
2168
	struct mt2063_state *state = fe->tuner_priv;
2169

2170 2171
	dprintk(2, "\n");

2172 2173 2174
	if (!state->init)
		return -ENODEV;

2175 2176 2177 2178 2179 2180 2181
	*freq = state->frequency;
	return 0;
}

static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct mt2063_state *state = fe->tuner_priv;
2182

2183 2184
	dprintk(2, "\n");

2185 2186 2187
	if (!state->init)
		return -ENODEV;

2188
	*bw = state->AS_Data.f_out_bw - 750000;
2189
	return 0;
2190 2191 2192
}

static struct dvb_tuner_ops mt2063_ops = {
2193
	.info = {
2194 2195 2196 2197 2198 2199 2200
		 .name = "MT2063 Silicon Tuner",
		 .frequency_min = 45000000,
		 .frequency_max = 850000000,
		 .frequency_step = 0,
		 },

	.init = mt2063_init,
2201
	.sleep = MT2063_Sleep,
2202
	.get_status = mt2063_get_status,
2203 2204 2205 2206 2207
	.set_analog_params = mt2063_set_analog_params,
	.set_params    = mt2063_set_params,
	.get_frequency = mt2063_get_frequency,
	.get_bandwidth = mt2063_get_bandwidth,
	.release = mt2063_release,
2208 2209
};

2210 2211 2212
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
				   struct mt2063_config *config,
				   struct i2c_adapter *i2c)
2213
{
2214
	struct mt2063_state *state = NULL;
2215

2216 2217
	dprintk(2, "\n");

2218
	state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2219 2220 2221
	if (state == NULL)
		goto error;

2222 2223 2224 2225 2226 2227
	state->config = config;
	state->i2c = i2c;
	state->frontend = fe;
	state->reference = config->refclock / 1000;	/* kHz */
	fe->tuner_priv = state;
	fe->ops.tuner_ops = mt2063_ops;
2228

2229
	printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2230 2231 2232 2233 2234 2235
	return fe;

error:
	kfree(state);
	return NULL;
}
2236
EXPORT_SYMBOL_GPL(mt2063_attach);
2237

2238 2239 2240 2241 2242 2243 2244 2245 2246
/*
 * Ancillary routines visible outside mt2063
 * FIXME: Remove them in favor of using standard tuner callbacks
 */
unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2247 2248
	dprintk(2, "\n");

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	err = MT2063_SoftwareShutdown(state, 1);
	if (err < 0)
		printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);

	return err;
}
EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);

unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2262 2263
	dprintk(2, "\n");

2264 2265 2266 2267 2268 2269 2270 2271
	err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (err < 0)
		printk(KERN_ERR "%s: Invalid parameter\n", __func__);

	return err;
}
EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);

2272
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2273 2274
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");