mt2063.c 65.6 KB
Newer Older
1 2 3 4 5
/*
 * Driver for mt2063 Micronas tuner
 *
 * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
6 7 8
 * This driver came from a driver originally written by:
 *		Henry Wang <Henry.wang@AzureWave.com>
 * Made publicly available by Terratec, at:
9
 *	http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
10
 * The original driver's license is GPL, as declared with MODULE_LICENSE()
11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation under version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

22 23 24 25
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
26
#include <linux/videodev2.h>
27 28 29

#include "mt2063.h"

30 31 32 33 34 35 36 37 38
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Set Verbosity level");

#define dprintk(level, fmt, arg...) do {				\
if (debug >= level)							\
	printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg);	\
} while (0)

39

40
/* positive error codes used internally */
41

42
/*  Info: Unavoidable LO-related spur may be present in the output  */
43
#define MT2063_SPUR_PRESENT_ERR             (0x00800000)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

/*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
#define MT2063_SPUR_CNT_MASK                (0x001f0000)
#define MT2063_SPUR_SHIFT                   (16)

/*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
#define MT2063_UPC_RANGE                    (0x04000000)

/*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
#define MT2063_DNC_RANGE                    (0x08000000)

/*
 *  Constant defining the version of the following structure
 *  and therefore the API for this code.
 *
 *  When compiling the tuner driver, the preprocessor will
 *  check against this version number to make sure that
 *  it matches the version that the tuner driver knows about.
 */

/* DECT Frequency Avoidance */
#define MT2063_DECT_AVOID_US_FREQS      0x00000001

#define MT2063_DECT_AVOID_EURO_FREQS    0x00000002

#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)

#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)

enum MT2063_DECT_Avoid_Type {
	MT2063_NO_DECT_AVOIDANCE = 0,				/* Do not create DECT exclusion zones.     */
	MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,	/* Avoid US DECT frequencies.              */
	MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,	/* Avoid European DECT frequencies.        */
	MT2063_AVOID_BOTH					/* Avoid both regions. Not typically used. */
};

#define MT2063_MAX_ZONES 48

struct MT2063_ExclZone_t {
	u32 min_;
	u32 max_;
	struct MT2063_ExclZone_t *next_;
};

/*
 *  Structure of data needed for Spur Avoidance
 */
struct MT2063_AvoidSpursData_t {
	u32 f_ref;
	u32 f_in;
	u32 f_LO1;
	u32 f_if1_Center;
	u32 f_if1_Request;
	u32 f_if1_bw;
	u32 f_LO2;
	u32 f_out;
	u32 f_out_bw;
	u32 f_LO1_Step;
	u32 f_LO2_Step;
	u32 f_LO1_FracN_Avoid;
	u32 f_LO2_FracN_Avoid;
	u32 f_zif_bw;
	u32 f_min_LO_Separation;
	u32 maxH1;
	u32 maxH2;
	enum MT2063_DECT_Avoid_Type avoidDECT;
	u32 bSpurPresent;
	u32 bSpurAvoided;
	u32 nSpursFound;
	u32 nZones;
	struct MT2063_ExclZone_t *freeZones;
	struct MT2063_ExclZone_t *usedZones;
	struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
};

/*
120 121
 * Parameter for function MT2063_SetPowerMask that specifies the power down
 * of various sections of the MT2063.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
 */
enum MT2063_Mask_Bits {
	MT2063_REG_SD = 0x0040,		/* Shutdown regulator                 */
	MT2063_SRO_SD = 0x0020,		/* Shutdown SRO                       */
	MT2063_AFC_SD = 0x0010,		/* Shutdown AFC A/D                   */
	MT2063_PD_SD = 0x0002,		/* Enable power detector shutdown     */
	MT2063_PDADC_SD = 0x0001,	/* Enable power detector A/D shutdown */
	MT2063_VCO_SD = 0x8000,		/* Enable VCO shutdown                */
	MT2063_LTX_SD = 0x4000,		/* Enable LTX shutdown                */
	MT2063_LT1_SD = 0x2000,		/* Enable LT1 shutdown                */
	MT2063_LNA_SD = 0x1000,		/* Enable LNA shutdown                */
	MT2063_UPC_SD = 0x0800,		/* Enable upconverter shutdown        */
	MT2063_DNC_SD = 0x0400,		/* Enable downconverter shutdown      */
	MT2063_VGA_SD = 0x0200,		/* Enable VGA shutdown                */
	MT2063_AMP_SD = 0x0100,		/* Enable AMP shutdown                */
	MT2063_ALL_SD = 0xFF73,		/* All shutdown bits for this tuner   */
	MT2063_NONE_SD = 0x0000		/* No shutdown bits                   */
};

/*
 *  Possible values for MT2063_DNC_OUTPUT
 */
enum MT2063_DNC_Output_Enable {
	MT2063_DNC_NONE = 0,
	MT2063_DNC_1,
	MT2063_DNC_2,
	MT2063_DNC_BOTH
};

/*
152 153 154
 *  Two-wire serial bus subaddresses of the tuner registers.
 *  Also known as the tuner's register addresses.
 */
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
enum MT2063_Register_Offsets {
	MT2063_REG_PART_REV = 0,	/*  0x00: Part/Rev Code         */
	MT2063_REG_LO1CQ_1,		/*  0x01: LO1C Queued Byte 1    */
	MT2063_REG_LO1CQ_2,		/*  0x02: LO1C Queued Byte 2    */
	MT2063_REG_LO2CQ_1,		/*  0x03: LO2C Queued Byte 1    */
	MT2063_REG_LO2CQ_2,		/*  0x04: LO2C Queued Byte 2    */
	MT2063_REG_LO2CQ_3,		/*  0x05: LO2C Queued Byte 3    */
	MT2063_REG_RSVD_06,		/*  0x06: Reserved              */
	MT2063_REG_LO_STATUS,		/*  0x07: LO Status             */
	MT2063_REG_FIFFC,		/*  0x08: FIFF Center           */
	MT2063_REG_CLEARTUNE,		/*  0x09: ClearTune Filter      */
	MT2063_REG_ADC_OUT,		/*  0x0A: ADC_OUT               */
	MT2063_REG_LO1C_1,		/*  0x0B: LO1C Byte 1           */
	MT2063_REG_LO1C_2,		/*  0x0C: LO1C Byte 2           */
	MT2063_REG_LO2C_1,		/*  0x0D: LO2C Byte 1           */
	MT2063_REG_LO2C_2,		/*  0x0E: LO2C Byte 2           */
	MT2063_REG_LO2C_3,		/*  0x0F: LO2C Byte 3           */
	MT2063_REG_RSVD_10,		/*  0x10: Reserved              */
	MT2063_REG_PWR_1,		/*  0x11: PWR Byte 1            */
	MT2063_REG_PWR_2,		/*  0x12: PWR Byte 2            */
	MT2063_REG_TEMP_STATUS,		/*  0x13: Temp Status           */
	MT2063_REG_XO_STATUS,		/*  0x14: Crystal Status        */
	MT2063_REG_RF_STATUS,		/*  0x15: RF Attn Status        */
	MT2063_REG_FIF_STATUS,		/*  0x16: FIF Attn Status       */
	MT2063_REG_LNA_OV,		/*  0x17: LNA Attn Override     */
	MT2063_REG_RF_OV,		/*  0x18: RF Attn Override      */
	MT2063_REG_FIF_OV,		/*  0x19: FIF Attn Override     */
	MT2063_REG_LNA_TGT,		/*  0x1A: Reserved              */
	MT2063_REG_PD1_TGT,		/*  0x1B: Pwr Det 1 Target      */
	MT2063_REG_PD2_TGT,		/*  0x1C: Pwr Det 2 Target      */
	MT2063_REG_RSVD_1D,		/*  0x1D: Reserved              */
	MT2063_REG_RSVD_1E,		/*  0x1E: Reserved              */
	MT2063_REG_RSVD_1F,		/*  0x1F: Reserved              */
	MT2063_REG_RSVD_20,		/*  0x20: Reserved              */
	MT2063_REG_BYP_CTRL,		/*  0x21: Bypass Control        */
	MT2063_REG_RSVD_22,		/*  0x22: Reserved              */
	MT2063_REG_RSVD_23,		/*  0x23: Reserved              */
	MT2063_REG_RSVD_24,		/*  0x24: Reserved              */
	MT2063_REG_RSVD_25,		/*  0x25: Reserved              */
	MT2063_REG_RSVD_26,		/*  0x26: Reserved              */
	MT2063_REG_RSVD_27,		/*  0x27: Reserved              */
	MT2063_REG_FIFF_CTRL,		/*  0x28: FIFF Control          */
	MT2063_REG_FIFF_OFFSET,		/*  0x29: FIFF Offset           */
	MT2063_REG_CTUNE_CTRL,		/*  0x2A: Reserved              */
	MT2063_REG_CTUNE_OV,		/*  0x2B: Reserved              */
	MT2063_REG_CTRL_2C,		/*  0x2C: Reserved              */
	MT2063_REG_FIFF_CTRL2,		/*  0x2D: Fiff Control          */
	MT2063_REG_RSVD_2E,		/*  0x2E: Reserved              */
	MT2063_REG_DNC_GAIN,		/*  0x2F: DNC Control           */
	MT2063_REG_VGA_GAIN,		/*  0x30: VGA Gain Ctrl         */
	MT2063_REG_RSVD_31,		/*  0x31: Reserved              */
	MT2063_REG_TEMP_SEL,		/*  0x32: Temperature Selection */
	MT2063_REG_RSVD_33,		/*  0x33: Reserved              */
	MT2063_REG_RSVD_34,		/*  0x34: Reserved              */
	MT2063_REG_RSVD_35,		/*  0x35: Reserved              */
	MT2063_REG_RSVD_36,		/*  0x36: Reserved              */
	MT2063_REG_RSVD_37,		/*  0x37: Reserved              */
	MT2063_REG_RSVD_38,		/*  0x38: Reserved              */
	MT2063_REG_RSVD_39,		/*  0x39: Reserved              */
	MT2063_REG_RSVD_3A,		/*  0x3A: Reserved              */
	MT2063_REG_RSVD_3B,		/*  0x3B: Reserved              */
	MT2063_REG_RSVD_3C,		/*  0x3C: Reserved              */
	MT2063_REG_END_REGS
};

struct mt2063_state {
	struct i2c_adapter *i2c;

	const struct mt2063_config *config;
	struct dvb_tuner_ops ops;
	struct dvb_frontend *frontend;
	struct tuner_state status;

	u32 frequency;
	u32 srate;
	u32 bandwidth;
	u32 reference;
232 233 234 235 236 237 238 239 240

	u32 tuner_id;
	struct MT2063_AvoidSpursData_t AS_Data;
	u32 f_IF1_actual;
	u32 rcvr_mode;
	u32 ctfilt_sw;
	u32 CTFiltMax[31];
	u32 num_regs;
	u8 reg[MT2063_REG_END_REGS];
241
};
242

243 244 245
/*
 * mt2063_write - Write data into the I2C bus
 */
246
static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
247
{
248
	struct dvb_frontend *fe = state->frontend;
249
	int ret;
250
	u8 buf[60];
251 252 253 254 255 256 257
	struct i2c_msg msg = {
		.addr = state->config->tuner_address,
		.flags = 0,
		.buf = buf,
		.len = len + 1
	};

258 259
	dprintk(2, "\n");

260
	msg.buf[0] = reg;
261 262
	memcpy(msg.buf + 1, data, len);

263 264
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
265
	ret = i2c_transfer(state->i2c, &msg, 1);
266 267
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);
268 269

	if (ret < 0)
270
		printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
271 272 273 274

	return ret;
}

275 276 277 278 279 280 281
/*
 * mt2063_write - Write register data into the I2C bus, caching the value
 */
static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
{
	u32 status;

282 283
	dprintk(2, "\n");

284 285 286 287 288 289 290 291 292 293 294 295
	if (reg >= MT2063_REG_END_REGS)
		return -ERANGE;

	status = mt2063_write(state, reg, &val, 1);
	if (status < 0)
		return status;

	state->reg[reg] = val;

	return 0;
}

296 297 298 299
/*
 * mt2063_read - Read data from the I2C bus
 */
static u32 mt2063_read(struct mt2063_state *state,
300
			   u8 subAddress, u8 *pData, u32 cnt)
301
{
302 303 304 305
	u32 status = 0;	/* Status to be returned        */
	struct dvb_frontend *fe = state->frontend;
	u32 i = 0;

306 307
	dprintk(2, "\n");

308 309
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 1);
310 311

	for (i = 0; i < cnt; i++) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		int ret;
		u8 b0[] = { subAddress + i };
		struct i2c_msg msg[] = {
			{
				.addr = state->config->tuner_address,
				.flags = I2C_M_RD,
				.buf = b0,
				.len = 1
			}, {
				.addr = state->config->tuner_address,
				.flags = I2C_M_RD,
				.buf = pData + 1,
				.len = 1
			}
		};

		ret = i2c_transfer(state->i2c, msg, 2);
		if (ret < 0)
330 331
			break;
	}
332 333 334
	if (fe->ops.i2c_gate_ctrl)
		fe->ops.i2c_gate_ctrl(fe, 0);

335
	return status;
336 337
}

338 339 340
/*
 * FIXME: Is this really needed?
 */
341
static int MT2063_Sleep(struct dvb_frontend *fe)
342 343
{
	/*
344
	 *  ToDo:  Add code here to implement a OS blocking
345
	 */
346 347 348
	msleep(10);

	return 0;
349 350
}

351 352 353
/*
 * Microtune spur avoidance
 */
354 355 356 357 358 359

/*  Implement ceiling, floor functions.  */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))

struct MT2063_FIFZone_t {
360 361
	s32 min_;
	s32 max_;
362 363 364 365 366 367 368
};

static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode)
{
	struct MT2063_ExclZone_t *pNode;
369 370 371

	dprintk(2, "\n");

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/*  Check for a node in the free list  */
	if (pAS_Info->freeZones != NULL) {
		/*  Use one from the free list  */
		pNode = pAS_Info->freeZones;
		pAS_Info->freeZones = pNode->next_;
	} else {
		/*  Grab a node from the array  */
		pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
	}

	if (pPrevNode != NULL) {
		pNode->next_ = pPrevNode->next_;
		pPrevNode->next_ = pNode;
	} else {		/*  insert at the beginning of the list  */

		pNode->next_ = pAS_Info->usedZones;
		pAS_Info->usedZones = pNode;
	}

	pAS_Info->nZones++;
	return pNode;
}

static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
					    *pAS_Info,
					    struct MT2063_ExclZone_t *pPrevNode,
					    struct MT2063_ExclZone_t
					    *pNodeToRemove)
{
	struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;

403 404
	dprintk(2, "\n");

405 406 407 408 409 410 411 412 413 414 415 416 417 418
	/*  Make previous node point to the subsequent node  */
	if (pPrevNode != NULL)
		pPrevNode->next_ = pNext;

	/*  Add pNodeToRemove to the beginning of the freeZones  */
	pNodeToRemove->next_ = pAS_Info->freeZones;
	pAS_Info->freeZones = pNodeToRemove;

	/*  Decrement node count  */
	pAS_Info->nZones--;

	return pNext;
}

419 420 421 422 423 424 425 426
/*
 * MT_AddExclZone()
 *
 * Add (and merge) an exclusion zone into the list.
 * If the range (f_min, f_max) is totally outside the
 * 1st IF BW, ignore the entry.
 * If the range (f_min, f_max) is negative, ignore the entry.
 */
427
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
428
			       u32 f_min, u32 f_max)
429 430 431 432 433
{
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_ExclZone_t *pPrev = NULL;
	struct MT2063_ExclZone_t *pNext = NULL;

434 435
	dprintk(2, "\n");

436 437 438 439 440
	/*  Check to see if this overlaps the 1st IF filter  */
	if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
	    && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
	    && (f_min < f_max)) {
		/*
441 442 443 444 445
		 *                1        2         3      4       5        6
		 *
		 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
		 *                or       or        or     or      or
		 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		 */

		/*  Check for our place in the list  */
		while ((pNode != NULL) && (pNode->max_ < f_min)) {
			pPrev = pNode;
			pNode = pNode->next_;
		}

		if ((pNode != NULL) && (pNode->min_ < f_max)) {
			/*  Combine me with pNode  */
			if (f_min < pNode->min_)
				pNode->min_ = f_min;
			if (f_max > pNode->max_)
				pNode->max_ = f_max;
		} else {
			pNode = InsertNode(pAS_Info, pPrev);
			pNode->min_ = f_min;
			pNode->max_ = f_max;
		}

		/*  Look for merging possibilities  */
		pNext = pNode->next_;
		while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
			if (pNext->max_ > pNode->max_)
				pNode->max_ = pNext->max_;
471 472
			/*  Remove pNext, return ptr to pNext->next  */
			pNext = RemoveNode(pAS_Info, pNode, pNext);
473 474 475 476
		}
	}
}

477
/*
478 479 480
 *  Reset all exclusion zones.
 *  Add zones to protect the PLL FracN regions near zero
 */
481 482 483 484
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
	u32 center;

485 486
	dprintk(2, "\n");

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	pAS_Info->nZones = 0;	/*  this clears the used list  */
	pAS_Info->usedZones = NULL;	/*  reset ptr                  */
	pAS_Info->freeZones = NULL;	/*  reset ptr                  */

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
	      pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO1_FracN_Avoid) {
		/*  Exclude LO1 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO1_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO1_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	center =
	    pAS_Info->f_ref *
	    ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
	      pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
	while (center <
	       pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
	       pAS_Info->f_LO2_FracN_Avoid) {
		/*  Exclude LO2 FracN  */
		MT2063_AddExclZone(pAS_Info,
				   center - pAS_Info->f_LO2_FracN_Avoid,
				   center - 1);
		MT2063_AddExclZone(pAS_Info, center + 1,
				   center + pAS_Info->f_LO2_FracN_Avoid);
		center += pAS_Info->f_ref;
	}

	if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		/*  Exclude LO1 values that conflict with DECT channels */
		MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in);	/* Ctr = 1921.536 */
		MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in);	/* Ctr = 1923.264 */
		MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in);	/* Ctr = 1924.992 */
		MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in);	/* Ctr = 1926.720 */
		MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in);	/* Ctr = 1928.448 */
	}

	if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
		MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in);	/* Ctr = 1897.344 */
		MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in);	/* Ctr = 1895.616 */
		MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in);	/* Ctr = 1893.888 */
		MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in);	/* Ctr = 1892.16  */
		MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in);	/* Ctr = 1890.432 */
		MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in);	/* Ctr = 1888.704 */
		MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in);	/* Ctr = 1886.976 */
		MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in);	/* Ctr = 1885.248 */
		MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in);	/* Ctr = 1883.52  */
		MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in);	/* Ctr = 1881.792 */
	}
}

546 547 548 549 550 551
/*
 * MT_ChooseFirstIF - Choose the best available 1st IF
 *                    If f_Desired is not excluded, choose that first.
 *                    Otherwise, return the value closest to f_Center that is
 *                    not excluded
 */
552
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
553 554
{
	/*
555 556 557 558 559 560
	 * Update "f_Desired" to be the nearest "combinational-multiple" of
	 * "f_LO1_Step".
	 * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
	 * And F_LO1 is the arithmetic sum of f_in + f_Center.
	 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
	 * However, the sum must be.
561
	 */
562
	const u32 f_Desired =
563 564 565 566
	    pAS_Info->f_LO1_Step *
	    ((pAS_Info->f_if1_Request + pAS_Info->f_in +
	      pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
	    pAS_Info->f_in;
567
	const u32 f_Step =
568 569 570
	    (pAS_Info->f_LO1_Step >
	     pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
	    f_LO2_Step;
571 572 573 574 575 576 577
	u32 f_Center;
	s32 i;
	s32 j = 0;
	u32 bDesiredExcluded = 0;
	u32 bZeroExcluded = 0;
	s32 tmpMin, tmpMax;
	s32 bestDiff;
578 579 580
	struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
	struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];

581 582
	dprintk(2, "\n");

583 584 585
	if (pAS_Info->nZones == 0)
		return f_Desired;

586 587 588 589
	/*
	 *  f_Center needs to be an integer multiple of f_Step away
	 *  from f_Desired
	 */
590 591 592 593 594 595 596 597 598 599 600 601 602
	if (pAS_Info->f_if1_Center > f_Desired)
		f_Center =
		    f_Desired +
		    f_Step *
		    ((pAS_Info->f_if1_Center - f_Desired +
		      f_Step / 2) / f_Step);
	else
		f_Center =
		    f_Desired -
		    f_Step *
		    ((f_Desired - pAS_Info->f_if1_Center +
		      f_Step / 2) / f_Step);

603 604 605 606
	/*
	 * Take MT_ExclZones, center around f_Center and change the
	 * resolution to f_Step
	 */
607 608 609
	while (pNode != NULL) {
		/*  floor function  */
		tmpMin =
610
		    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
611 612 613

		/*  ceil function  */
		tmpMax =
614
		    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

		if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
			bDesiredExcluded = 1;

		if ((tmpMin < 0) && (tmpMax > 0))
			bZeroExcluded = 1;

		/*  See if this zone overlaps the previous  */
		if ((j > 0) && (tmpMin < zones[j - 1].max_))
			zones[j - 1].max_ = tmpMax;
		else {
			/*  Add new zone  */
			zones[j].min_ = tmpMin;
			zones[j].max_ = tmpMax;
			j++;
		}
		pNode = pNode->next_;
	}

	/*
635
	 *  If the desired is okay, return with it
636 637 638 639 640
	 */
	if (bDesiredExcluded == 0)
		return f_Desired;

	/*
641
	 *  If the desired is excluded and the center is okay, return with it
642 643 644 645 646 647 648 649 650 651 652 653 654 655
	 */
	if (bZeroExcluded == 0)
		return f_Center;

	/*  Find the value closest to 0 (f_Center)  */
	bestDiff = zones[0].min_;
	for (i = 0; i < j; i++) {
		if (abs(zones[i].min_) < abs(bestDiff))
			bestDiff = zones[i].min_;
		if (abs(zones[i].max_) < abs(bestDiff))
			bestDiff = zones[i].max_;
	}

	if (bestDiff < 0)
656
		return f_Center - ((u32) (-bestDiff) * f_Step);
657 658 659 660

	return f_Center + (bestDiff * f_Step);
}

661 662 663 664 665 666 667 668
/**
 * gcd() - Uses Euclid's algorithm
 *
 * @u, @v:	Unsigned values whose GCD is desired.
 *
 * Returns THE greatest common divisor of u and v, if either value is 0,
 * the other value is returned as the result.
 */
669
static u32 MT2063_gcd(u32 u, u32 v)
670
{
671
	u32 r;
672 673 674 675 676 677 678 679 680 681

	while (v != 0) {
		r = u % v;
		u = v;
		v = r;
	}

	return u;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
 *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
 *
 *                    ma   mb                                     mc   md
 *                  <--+-+-+-------------------+-------------------+-+-+-->
 *                     |   ^                   0                   ^   |
 *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
 *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
 *
 *                  Note that some equations are doubled to prevent round-off
 *                  problems when calculating fIFBW/2
 *
 * @pAS_Info:	Avoid Spurs information block
 * @fm:		If spur, amount f_IF1 has to move negative
 * @fp:		If spur, amount f_IF1 has to move positive
 *
 *  Returns 1 if an LO spur would be present, otherwise 0.
 */
701
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
702
			u32 *fm, u32 * fp)
703 704 705 706
{
	/*
	 **  Calculate LO frequency settings.
	 */
707 708 709 710 711 712
	u32 n, n0;
	const u32 f_LO1 = pAS_Info->f_LO1;
	const u32 f_LO2 = pAS_Info->f_LO2;
	const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
	const u32 c = d - pAS_Info->f_out_bw;
	const u32 f = pAS_Info->f_zif_bw / 2;
713
	const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
714 715 716 717
	s32 f_nsLO1, f_nsLO2;
	s32 f_Spur;
	u32 ma, mb, mc, md, me, mf;
	u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
718 719 720

	dprintk(2, "\n");

721 722 723 724 725 726 727 728
	*fm = 0;

	/*
	 ** For each edge (d, c & f), calculate a scale, based on the gcd
	 ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
	 ** gcd-based scale factor or f_Scale.
	 */
	lo_gcd = MT2063_gcd(f_LO1, f_LO2);
729
	gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
730
	hgds = gd_Scale / 2;
731
	gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
732
	hgcs = gc_Scale / 2;
733
	gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
734 735
	hgfs = gf_Scale / 2;

736
	n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

	/*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
	for (n = n0; n <= pAS_Info->maxH1; ++n) {
		md = (n * ((f_LO1 + hgds) / gd_Scale) -
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
		if (md >= pAS_Info->maxH1)
			break;

		ma = (n * ((f_LO1 + hgds) / gd_Scale) +
		      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);

		/*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
		if (md == ma)
			continue;

		mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (mc != md) {
757 758
			f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
			f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
759 760 761 762
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);

763 764
			*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
			*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
			return 1;
		}

		/*  Location of Zero-IF-spur to be checked  */
		me = (n * ((f_LO1 + hgfs) / gf_Scale) +
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
		      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
		if (me != mf) {
			f_nsLO1 = n * (f_LO1 / gf_Scale);
			f_nsLO2 = me * (f_LO2 / gf_Scale);
			f_Spur =
			    (gf_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);

780 781
			*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
			*fm = (((s32) f - f_Spur) / (me - n)) + 1;
782 783 784 785 786 787 788 789 790 791 792 793
			return 1;
		}

		mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
		      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
		if (ma != mb) {
			f_nsLO1 = n * (f_LO1 / gc_Scale);
			f_nsLO2 = ma * (f_LO2 / gc_Scale);
			f_Spur =
			    (gc_Scale * (f_nsLO1 - f_nsLO2)) +
			    n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);

794 795
			*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
			*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
796 797 798 799 800 801 802 803
			return 1;
		}
	}

	/*  No spurs found  */
	return 0;
}

804 805 806 807 808 809
/*
 * MT_AvoidSpurs() - Main entry point to avoid spurs.
 *                   Checks for existing spurs in present LO1, LO2 freqs
 *                   and if present, chooses spur-free LO1, LO2 combination
 *                   that tunes the same input/output frequencies.
 */
810
static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
811
{
812
	u32 status = 0;
813
	u32 fm, fp;		/*  restricted range on LO's        */
814 815 816
	pAS_Info->bSpurAvoided = 0;
	pAS_Info->nSpursFound = 0;

817 818
	dprintk(2, "\n");

819
	if (pAS_Info->maxH1 == 0)
820
		return 0;
821 822

	/*
823 824 825 826 827 828 829 830 831
	 * Avoid LO Generated Spurs
	 *
	 * Make sure that have no LO-related spurs within the IF output
	 * bandwidth.
	 *
	 * If there is an LO spur in this band, start at the current IF1 frequency
	 * and work out until we find a spur-free frequency or run up against the
	 * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
	 * will be unchanged if a spur-free setting is not found.
832 833 834
	 */
	pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
	if (pAS_Info->bSpurPresent) {
835 836 837 838 839
		u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;	/*  current attempt at a 1st IF  */
		u32 zfLO1 = pAS_Info->f_LO1;	/*  current attempt at an LO1 freq  */
		u32 zfLO2 = pAS_Info->f_LO2;	/*  current attempt at an LO2 freq  */
		u32 delta_IF1;
		u32 new_IF1;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

		/*
		 **  Spur was found, attempt to find a spur-free 1st IF
		 */
		do {
			pAS_Info->nSpursFound++;

			/*  Raise f_IF1_upper, if needed  */
			MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);

			/*  Choose next IF1 that is closest to f_IF1_CENTER              */
			new_IF1 = MT2063_ChooseFirstIF(pAS_Info);

			if (new_IF1 > zfIF1) {
				pAS_Info->f_LO1 += (new_IF1 - zfIF1);
				pAS_Info->f_LO2 += (new_IF1 - zfIF1);
			} else {
				pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
				pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
			}
			zfIF1 = new_IF1;

			if (zfIF1 > pAS_Info->f_if1_Center)
				delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
			else
				delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
866 867

			pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
868
		/*
869 870
		 *  Continue while the new 1st IF is still within the 1st IF bandwidth
		 *  and there is a spur in the band (again)
871
		 */
872
		} while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
873 874

		/*
875 876 877
		 * Use the LO-spur free values found.  If the search went all
		 * the way to the 1st IF band edge and always found spurs, just
		 * leave the original choice.  It's as "good" as any other.
878 879 880 881 882 883 884 885 886 887 888 889 890
		 */
		if (pAS_Info->bSpurPresent == 1) {
			status |= MT2063_SPUR_PRESENT_ERR;
			pAS_Info->f_LO1 = zfLO1;
			pAS_Info->f_LO2 = zfLO2;
		} else
			pAS_Info->bSpurAvoided = 1;
	}

	status |=
	    ((pAS_Info->
	      nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);

891
	return status;
892 893 894
}

/*
895 896
 * Constants used by the tuning algorithm
 */
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
#define MT2063_REF_FREQ          (16000000UL)	/* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW            (22000000UL)	/* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE       (50000UL)	/* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ        (250000UL)	/* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW             (2000000UL)	/* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1         (15UL)	/* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2          (5UL)	/* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP         (1000000UL)	/* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID          (0UL)	/* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID     (199999UL)	/* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ      (44000000UL)	/* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ    (1100000000UL)	/* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ     (36000000UL)	/* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ     (57000000UL)	/* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ    (1293000000UL)	/* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ    (1614000000UL)	/* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ    (1396000000UL)	/* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ    (2750000000UL)	/* Maximum LO1 frequency (in Hz) */

/*
917 918
 *  Define the supported Part/Rev codes for the MT2063
 */
919 920 921 922 923
#define MT2063_B0       (0x9B)
#define MT2063_B1       (0x9C)
#define MT2063_B2       (0x9D)
#define MT2063_B3       (0x9E)

924 925 926 927 928 929 930
/**
 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
 *
 * @state:	struct mt2063_state pointer
 *
 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
 */
931
static unsigned int mt2063_lockStatus(struct mt2063_state *state)
932
{
933 934 935 936 937
	const u32 nMaxWait = 100;	/*  wait a maximum of 100 msec   */
	const u32 nPollRate = 2;	/*  poll status bits every 2 ms */
	const u32 nMaxLoops = nMaxWait / nPollRate;
	const u8 LO1LK = 0x80;
	u8 LO2LK = 0x08;
938
	u32 status;
939
	u32 nDelays = 0;
940

941 942
	dprintk(2, "\n");

943
	/*  LO2 Lock bit was in a different place for B0 version  */
944
	if (state->tuner_id == MT2063_B0)
945 946 947
		LO2LK = 0x40;

	do {
948 949
		status = mt2063_read(state, MT2063_REG_LO_STATUS,
				     &state->reg[MT2063_REG_LO_STATUS], 1);
950

951
		if (status < 0)
952
			return status;
953

954
		if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
955
		    (LO1LK | LO2LK)) {
956
			return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
957
		}
958
		msleep(nPollRate);	/*  Wait between retries  */
959
	} while (++nDelays < nMaxLoops);
960

961 962 963 964
	/*
	 * Got no lock or partial lock
	 */
	return 0;
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 *  Constants for setting receiver modes.
 *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 *                enum mt2063_delivery_sys
 * -------------+----------------------------------------------
 * Mode 0 :     | MT2063_CABLE_QAM
 * Mode 1 :     | MT2063_CABLE_ANALOG
 * Mode 2 :     | MT2063_OFFAIR_COFDM
 * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
 * Mode 4 :     | MT2063_OFFAIR_ANALOG
 * Mode 5 :     | MT2063_OFFAIR_8VSB
 * --------------+----------------------------------------------
 *
 *                |<----------   Mode  -------------->|
 *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
 *    ------------+-----+-----+-----+-----+-----+-----+
 *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
 *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
 *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
 *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
 *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
 *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
 *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
 *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
 *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
 *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
 *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
 */

enum mt2063_delivery_sys {
	MT2063_CABLE_QAM = 0,		/* Digital cable              */
	MT2063_CABLE_ANALOG,		/* Analog cable               */
	MT2063_OFFAIR_COFDM,		/* Digital offair             */
	MT2063_OFFAIR_COFDM_SAWLESS,	/* Digital offair without SAW */
	MT2063_OFFAIR_ANALOG,		/* Analog offair              */
	MT2063_OFFAIR_8VSB,		/* Analog offair              */
	MT2063_NUM_RCVR_MODES
};

static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };

1028 1029 1030 1031
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1032
					enum MT2063_DNC_Output_Enable *pValue)
1033
{
1034 1035
	dprintk(2, "\n");

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) {	/* if DNC1 is off */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_NONE;
		else
			*pValue = MT2063_DNC_2;
	} else {	/* DNC1 is on */
		if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)	/* if DNC2 is off */
			*pValue = MT2063_DNC_1;
		else
			*pValue = MT2063_DNC_BOTH;
	}
	return 0;
}
1049

1050 1051 1052 1053
/*
 * mt2063_set_dnc_output_enable()
 */
static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1054
					enum MT2063_DNC_Output_Enable nValue)
1055 1056 1057
{
	u32 status = 0;	/* Status to be returned        */
	u8 val = 0;
1058

1059 1060
	dprintk(2, "\n");

1061 1062 1063
	/* selects, which DNC output is used */
	switch (nValue) {
	case MT2063_DNC_NONE:
1064 1065 1066 1067 1068 1069 1070
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1071

1072 1073 1074 1075 1076 1077 1078
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1079

1080 1081 1082 1083 1084 1085 1086
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1087

1088
		break;
1089
	case MT2063_DNC_1:
1090 1091 1092 1093 1094 1095 1096
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1097

1098 1099 1100 1101 1102 1103 1104
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;	/* Set DNC2GC=3 */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1105

1106 1107 1108 1109 1110 1111 1112
		val = (state->reg[MT2063_REG_RSVD_20] & ~0x40);	/* Set PD2MUX=0 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1113

1114
		break;
1115
	case MT2063_DNC_2:
1116 1117 1118 1119 1120 1121 1122
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;	/* Set DNC1GC=3 */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1123

1124 1125 1126 1127 1128 1129 1130
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1131

1132 1133 1134 1135 1136 1137 1138
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1139

1140
		break;
1141
	case MT2063_DNC_BOTH:
1142 1143 1144 1145 1146 1147 1148
		val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);	/* Set DNC1GC=x */
		if (state->reg[MT2063_REG_DNC_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_DNC_GAIN,
					  val);
1149

1150 1151 1152 1153 1154 1155 1156
		val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);	/* Set DNC2GC=x */
		if (state->reg[MT2063_REG_VGA_GAIN] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_VGA_GAIN,
					  val);
1157

1158 1159 1160 1161 1162 1163 1164
		val = (state->reg[MT2063_REG_RSVD_20] | 0x40);	/* Set PD2MUX=1 */
		if (state->reg[MT2063_REG_RSVD_20] !=
		    val)
			status |=
			    mt2063_setreg(state,
					  MT2063_REG_RSVD_20,
					  val);
1165

1166
		break;
1167
	default:
1168
		break;
1169
	}
1170

1171
	return status;
1172 1173
}

1174
/*
1175 1176 1177
 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
 * 			      the selected enum mt2063_delivery_sys type.
 *
1178 1179 1180 1181
 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 *   DNC Output is selected, the other is always off)
 *
 * @state:	ptr to mt2063_state structure
1182
 * @Mode:	desired reciever delivery system
1183 1184 1185 1186
 *
 * Note: Register cache must be valid for it to work
 */

1187
static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1188
				  enum mt2063_delivery_sys Mode)
1189
{
1190
	u32 status = 0;	/* Status to be returned        */
1191 1192
	u8 val;
	u32 longval;
1193

1194 1195
	dprintk(2, "\n");

1196
	if (Mode >= MT2063_NUM_RCVR_MODES)
1197
		status = -ERANGE;
1198 1199

	/* RFAGCen */
1200
	if (status >= 0) {
1201
		val =
1202
		    (state->
1203
		     reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
1204 1205
								   ? 0x40 :
								   0x00);
1206
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1207
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1208 1209 1210
	}

	/* LNARin */
1211
	if (status >= 0) {
1212
		u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
1213 1214
			 (LNARIN[Mode] & 0x03);
		if (state->reg[MT2063_REG_CTRL_2C] != val)
1215
			status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1216 1217 1218
	}

	/* FIFFQEN and FIFFQ */
1219
	if (status >= 0) {
1220
		val =
1221
		    (state->
1222
		     reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
1223
		    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1224
		if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1225
			status |=
1226
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1227 1228
			/* trigger FIFF calibration, needed after changing FIFFQ */
			val =
1229
			    (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
1230
			status |=
1231
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1232
			val =
1233
			    (state->
1234
			     reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
1235
			status |=
1236
			    mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1237 1238 1239 1240
		}
	}

	/* DNC1GC & DNC2GC */
1241 1242
	status |= mt2063_get_dnc_output_enable(state, &longval);
	status |= mt2063_set_dnc_output_enable(state, longval);
1243 1244

	/* acLNAmax */
1245
	if (status >= 0) {
1246
		u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
1247 1248
			 (ACLNAMAX[Mode] & 0x1F);
		if (state->reg[MT2063_REG_LNA_OV] != val)
1249
			status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1250 1251 1252
	}

	/* LNATGT */
1253
	if (status >= 0) {
1254
		u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
1255 1256
			 (LNATGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1257
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1258 1259 1260
	}

	/* ACRF */
1261
	if (status >= 0) {
1262 1263
		u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
			 (ACRFMAX[Mode] & 0x1F);
1264
		if (state->reg[MT2063_REG_RF_OV] != val)
1265
			status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1266 1267 1268
	}

	/* PD1TGT */
1269
	if (status >= 0) {
1270
		u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
1271 1272
			 (PD1TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1273
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1274 1275 1276
	}

	/* FIFATN */
1277
	if (status >= 0) {
1278 1279 1280
		u8 val = ACFIFMAX[Mode];
		if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
			val = 5;
1281
		val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
1282
		      (val & 0x1F);
1283
		if (state->reg[MT2063_REG_FIF_OV] != val)
1284
			status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1285 1286 1287
	}

	/* PD2TGT */
1288
	if (status >= 0) {
1289
		u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
1290 1291
		    (PD2TGT[Mode] & 0x3F);
		if (state->reg[MT2063_REG_PD2_TGT] != val)
1292
			status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1293 1294 1295
	}

	/* Ignore ATN Overload */
1296
	if (status >= 0) {
1297 1298 1299
		val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
		      (RFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_LNA_TGT] != val)
1300
			status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1301 1302 1303
	}

	/* Ignore FIF Overload */
1304
	if (status >= 0) {
1305 1306 1307
		val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
		      (FIFOVDIS[Mode] ? 0x80 : 0x00);
		if (state->reg[MT2063_REG_PD1_TGT] != val)
1308
			status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1309 1310
	}

1311
	if (status >= 0)
1312
		state->rcvr_mode = Mode;
1313

1314
	return status;
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
 *				  sections of the MT2063
 *
 * @Bits:		Mask bits to be cleared.
 *
 * See definition of MT2063_Mask_Bits type for description
 * of each of the power bits.
 */
1326 1327
static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
				     enum MT2063_Mask_Bits Bits)
1328
{
1329
	u32 status = 0;
1330

1331
	dprintk(2, "\n");
1332 1333
	Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);	/* Only valid bits for this tuner */
	if ((Bits & 0xFF00) != 0) {
1334
		state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1335
		status |=
1336
		    mt2063_write(state,
1337
				    MT2063_REG_PWR_2,
1338
				    &state->reg[MT2063_REG_PWR_2], 1);
1339 1340
	}
	if ((Bits & 0xFF) != 0) {
1341
		state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1342
		status |=
1343
		    mt2063_write(state,
1344
				    MT2063_REG_PWR_1,
1345
				    &state->reg[MT2063_REG_PWR_1], 1);
1346 1347
	}

1348
	return status;
1349 1350
}

1351 1352 1353 1354 1355
/*
 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
 *			       When Shutdown is 1, any section whose power
 *			       mask is set will be shutdown.
 */
1356
static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1357
{
1358
	u32 status;
1359

1360
	dprintk(2, "\n");
1361
	if (Shutdown == 1)
1362
		state->reg[MT2063_REG_PWR_1] |= 0x04;
1363
	else
1364
		state->reg[MT2063_REG_PWR_1] &= ~0x04;
1365

1366
	status = mt2063_write(state,
1367
			    MT2063_REG_PWR_1,
1368
			    &state->reg[MT2063_REG_PWR_1], 1);
1369 1370

	if (Shutdown != 1) {
1371 1372
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1373
		status |=
1374
		    mt2063_write(state,
1375
				    MT2063_REG_BYP_CTRL,
1376
				    &state->reg[MT2063_REG_BYP_CTRL],
1377
				    1);
1378 1379
		state->reg[MT2063_REG_BYP_CTRL] =
		    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1380
		status |=
1381
		    mt2063_write(state,
1382
				    MT2063_REG_BYP_CTRL,
1383
				    &state->reg[MT2063_REG_BYP_CTRL],
1384
				    1);
1385 1386
	}

1387
	return status;
1388 1389
}

1390
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1391 1392 1393 1394 1395
{
	return f_ref * (f_LO / f_ref)
	    + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
 *                        This function preserves maximum precision without
 *                        risk of overflow.  It accurately calculates
 *                        f_ref * num / denom to within 1 HZ with fixed math.
 *
 * @num :	Fractional portion of the multiplier
 * @denom:	denominator portion of the ratio
 * @f_Ref:	SRO frequency.
 *
 * This calculation handles f_ref as two separate 14-bit fields.
 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
 * This is the genesis of the magic number "14" and the magic mask value of
 * 0x03FFF.
 *
 * This routine successfully handles denom values up to and including 2^18.
 *  Returns:        f_ref * num / denom
 */
1414
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1415
{
1416 1417 1418 1419
	u32 t1 = (f_ref >> 14) * num;
	u32 term1 = t1 / denom;
	u32 loss = t1 % denom;
	u32 term2 =
1420
	    (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1421
	return (term1 << 14) + term2;
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * CalcLO1Mult()- Calculates Integer divider value and the numerator
 *                value for a FracN PLL.
 *
 *                This function assumes that the f_LO and f_Ref are
 *                evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near integer multiples
 *		of f_Ref (in Hz).
 *
 * Returns:        Recalculated LO frequency.
 */
1441 1442
static u32 MT2063_CalcLO1Mult(u32 *Div,
			      u32 *FracN,
1443 1444
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/**
 * CalcLO2Mult() - Calculates Integer divider value and the numerator
 *                 value for a FracN PLL.
 *
 *                  This function assumes that the f_LO and f_Ref are
 *                  evenly divisible by f_LO_Step.
 *
 * @Div:	OUTPUT: Whole number portion of the multiplier
 * @FracN:	OUTPUT: Fractional portion of the multiplier
 * @f_LO:	desired LO frequency.
 * @f_LO_Step:	Minimum step size for the LO (in Hz).
 * @f_Ref:	SRO frequency.
 * @f_Avoid:	Range of PLL frequencies to avoid near
 *		integer multiples of f_Ref (in Hz).
 *
 * Returns: Recalculated LO frequency.
 */
1474 1475
static u32 MT2063_CalcLO2Mult(u32 *Div,
			      u32 *FracN,
1476 1477
			      u32 f_LO,
			      u32 f_LO_Step, u32 f_Ref)
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	/*  Calculate the whole number portion of the divider */
	*Div = f_LO / f_Ref;

	/*  Calculate the numerator value (round to nearest f_LO_Step) */
	*FracN =
	    (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
	     (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);

	return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
							    8191);
}

1491 1492 1493 1494 1495 1496 1497 1498 1499
/*
 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
 *			   used for a given input frequency.
 *
 * @state:	ptr to tuner data structure
 * @f_in:	RF input center frequency (in Hz).
 *
 * Returns: ClearTune filter number (0-31)
 */
1500
static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1501
{
1502 1503
	u32 RFBand;
	u32 idx;		/*  index loop                      */
1504 1505 1506 1507 1508 1509

	/*
	 **  Find RF Band setting
	 */
	RFBand = 31;		/*  def when f_in > all    */
	for (idx = 0; idx < 31; ++idx) {
1510
		if (state->CTFiltMax[idx] >= f_in) {
1511 1512 1513 1514
			RFBand = idx;
			break;
		}
	}
1515
	return RFBand;
1516 1517
}

1518 1519 1520
/*
 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
 */
1521
static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1522 1523
{				/* RF input center frequency   */

1524
	u32 status = 0;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	u32 LO1;		/*  1st LO register value           */
	u32 Num1;		/*  Numerator for LO1 reg. value    */
	u32 f_IF1;		/*  1st IF requested                */
	u32 LO2;		/*  2nd LO register value           */
	u32 Num2;		/*  Numerator for LO2 reg. value    */
	u32 ofLO1, ofLO2;	/*  last time's LO frequencies      */
	u32 ofin, ofout;	/*  last time's I/O frequencies     */
	u8 fiffc = 0x80;	/*  FIFF center freq from tuner     */
	u32 fiffof;		/*  Offset from FIFF center freq    */
	const u8 LO1LK = 0x80;	/*  Mask for LO1 Lock bit           */
	u8 LO2LK = 0x08;	/*  Mask for LO2 Lock bit           */
	u8 val;
	u32 RFBand;
1538

1539
	dprintk(2, "\n");
1540 1541
	/*  Check the input and output frequency ranges                   */
	if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1542
		return -EINVAL;
1543

1544 1545
	if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
	    || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1546
		return -EINVAL;
1547 1548

	/*
1549
	 * Save original LO1 and LO2 register values
1550
	 */
1551 1552 1553 1554
	ofLO1 = state->AS_Data.f_LO1;
	ofLO2 = state->AS_Data.f_LO2;
	ofin = state->AS_Data.f_in;
	ofout = state->AS_Data.f_out;
1555 1556

	/*
1557
	 * Find and set RF Band setting
1558
	 */
1559 1560 1561
	if (state->ctfilt_sw == 1) {
		val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
		if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1562
			status |=
1563
			    mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1564
		}
1565 1566 1567 1568
		val = state->reg[MT2063_REG_CTUNE_OV];
		RFBand = FindClearTuneFilter(state, f_in);
		state->reg[MT2063_REG_CTUNE_OV] =
		    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1569
			      | RFBand);
1570
		if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1571
			status |=
1572
			    mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1573 1574 1575 1576
		}
	}

	/*
1577
	 * Read the FIFF Center Frequency from the tuner
1578
	 */
1579
	if (status >= 0) {
1580
		status |=
1581
		    mt2063_read(state,
1582
				   MT2063_REG_FIFFC,
1583 1584
				   &state->reg[MT2063_REG_FIFFC], 1);
		fiffc = state->reg[MT2063_REG_FIFFC];
1585 1586
	}
	/*
1587
	 * Assign in the requested values
1588
	 */
1589
	state->AS_Data.f_in = f_in;
1590
	/*  Request a 1st IF such that LO1 is on a step size */
1591 1592 1593 1594
	state->AS_Data.f_if1_Request =
	    MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
			     state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref) - f_in;
1595 1596

	/*
1597 1598
	 * Calculate frequency settings.  f_IF1_FREQ + f_in is the
	 * desired LO1 frequency
1599
	 */
1600
	MT2063_ResetExclZones(&state->AS_Data);
1601

1602
	f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1603

1604 1605 1606
	state->AS_Data.f_LO1 =
	    MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
			     state->AS_Data.f_ref);
1607

1608 1609 1610
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1611 1612

	/*
1613 1614
	 * Check for any LO spurs in the output bandwidth and adjust
	 * the LO settings to avoid them if needed
1615
	 */
1616
	status |= MT2063_AvoidSpurs(&state->AS_Data);
1617
	/*
1618 1619 1620
	 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
	 * Recalculate the LO frequencies and the values to be placed
	 * in the tuning registers.
1621
	 */
1622 1623 1624 1625 1626 1627 1628 1629 1630
	state->AS_Data.f_LO1 =
	    MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
			       state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
			     state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
	state->AS_Data.f_LO2 =
	    MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
			       state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1631 1632

	/*
1633
	 *  Check the upconverter and downconverter frequency ranges
1634
	 */
1635 1636
	if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
	    || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1637
		status |= MT2063_UPC_RANGE;
1638 1639
	if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
	    || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1640 1641
		status |= MT2063_DNC_RANGE;
	/*  LO2 Lock bit was in a different place for B0 version  */
1642
	if (state->tuner_id == MT2063_B0)
1643 1644 1645
		LO2LK = 0x40;

	/*
1646 1647
	 *  If we have the same LO frequencies and we're already locked,
	 *  then skip re-programming the LO registers.
1648
	 */
1649 1650 1651
	if ((ofLO1 != state->AS_Data.f_LO1)
	    || (ofLO2 != state->AS_Data.f_LO2)
	    || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1652 1653
		(LO1LK | LO2LK))) {
		/*
1654 1655 1656 1657 1658
		 * Calculate the FIFFOF register value
		 *
		 *           IF1_Actual
		 * FIFFOF = ------------ - 8 * FIFFC - 4992
		 *            f_ref/64
1659 1660
		 */
		fiffof =
1661 1662
		    (state->AS_Data.f_LO1 -
		     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1663 1664 1665 1666 1667
		    4992;
		if (fiffof > 0xFF)
			fiffof = 0xFF;

		/*
1668 1669
		 * Place all of the calculated values into the local tuner
		 * register fields.
1670
		 */
1671
		if (status >= 0) {
1672 1673 1674
			state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);	/* DIV1q */
			state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);	/* NUM1q */
			state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)	/* DIV2q */
1675
								   |(Num2 >> 12));	/* NUM2q (hi) */
1676 1677
			state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);	/* NUM2q (mid) */
			state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F));	/* NUM2q (lo) */
1678 1679

			/*
1680 1681 1682
			 * Now write out the computed register values
			 * IMPORTANT: There is a required order for writing
			 *            (0x05 must follow all the others).
1683
			 */
1684
			status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);	/* 0x01 - 0x05 */
1685
			if (state->tuner_id == MT2063_B0) {
1686
				/* Re-write the one-shot bits to trigger the tune operation */
1687
				status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);	/* 0x05 */
1688 1689
			}
			/* Write out the FIFF offset only if it's changing */
1690
			if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1691
			    (u8) fiffof) {
1692
				state->reg[MT2063_REG_FIFF_OFFSET] =
1693
				    (u8) fiffof;
1694
				status |=
1695
				    mt2063_write(state,
1696
						    MT2063_REG_FIFF_OFFSET,
1697
						    &state->
1698 1699 1700 1701 1702 1703
						    reg[MT2063_REG_FIFF_OFFSET],
						    1);
			}
		}

		/*
1704
		 * Check for LO's locking
1705 1706
		 */

1707 1708 1709 1710 1711 1712 1713 1714 1715
		if (status < 0)
			return status;

		status = mt2063_lockStatus(state);
		if (status < 0)
			return status;
		if (!status)
			return -EINVAL;		/* Couldn't lock */

1716
		/*
1717
		 * If we locked OK, assign calculated data to mt2063_state structure
1718
		 */
1719
		state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1720 1721
	}

1722
	return status;
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static const u8 MT2063B0_defaults[] = {
	/* Reg,  Value */
	0x19, 0x05,
	0x1B, 0x1D,
	0x1C, 0x1F,
	0x1D, 0x0F,
	0x1E, 0x3F,
	0x1F, 0x0F,
	0x20, 0x3F,
	0x22, 0x21,
	0x23, 0x3F,
	0x24, 0x20,
	0x25, 0x3F,
	0x27, 0xEE,
	0x2C, 0x27,	/*  bit at 0x20 is cleared below  */
	0x30, 0x03,
	0x2C, 0x07,	/*  bit at 0x20 is cleared here   */
	0x2D, 0x87,
	0x2E, 0xAA,
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B1_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x11, 0x10,	/* New Enable AFCsd */
	0x19, 0x05,
	0x1A, 0x6C,
	0x1B, 0x24,
	0x1C, 0x28,
	0x1D, 0x8F,
	0x1E, 0x14,
	0x1F, 0x8F,
	0x20, 0x57,
	0x22, 0x21,	/* New - ver 1.03 */
	0x23, 0x3C,	/* New - ver 1.10 */
	0x24, 0x20,	/* New - ver 1.03 */
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2D, 0x87,	/*  FIFFQ=0  */
	0x2F, 0xF3,
	0x30, 0x0C,	/* New - ver 1.11 */
	0x31, 0x1B,	/* New - ver 1.11 */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
static const u8 MT2063B3_defaults[] = {
	/* Reg,  Value */
	0x05, 0xF0,
	0x19, 0x3D,
	0x2C, 0x24,	/*  bit at 0x20 is cleared below  */
	0x2C, 0x04,	/*  bit at 0x20 is cleared here  */
	0x28, 0xE1,	/*  Set the FIFCrst bit here      */
	0x28, 0xE0,	/*  Clear the FIFCrst bit here    */
	0x00
};

1788 1789
static int mt2063_init(struct dvb_frontend *fe)
{
1790
	u32 status;
1791
	struct mt2063_state *state = fe->tuner_priv;
1792 1793 1794 1795 1796 1797 1798
	u8 all_resets = 0xF0;	/* reset/load bits */
	const u8 *def = NULL;
	u32 FCRUN;
	s32 maxReads;
	u32 fcu_osc;
	u32 i;

1799 1800
	dprintk(2, "\n");

1801 1802 1803 1804
	state->rcvr_mode = MT2063_CABLE_QAM;

	/*  Read the Part/Rev code from the tuner */
	status = mt2063_read(state, MT2063_REG_PART_REV, state->reg, 1);
1805 1806
	if (status < 0) {
		printk(KERN_ERR "Can't read mt2063 part ID\n");
1807
		return status;
1808
	}
1809 1810 1811

	/* Check the part/rev code */
	if (((state->reg[MT2063_REG_PART_REV] != MT2063_B0)	/*  MT2063 B0  */
1812 1813
	    && (state->reg[MT2063_REG_PART_REV] != MT2063_B1)	/*  MT2063 B1  */
	    && (state->reg[MT2063_REG_PART_REV] != MT2063_B3)))	/*  MT2063 B3  */
1814
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1815

1816 1817 1818
	/*  Check the 2nd byte of the Part/Rev code from the tuner */
	status = mt2063_read(state, MT2063_REG_RSVD_3B,
			     &state->reg[MT2063_REG_RSVD_3B], 1);
1819

1820
	/* b7 != 0 ==> NOT MT2063 */
1821 1822
	if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
		printk(KERN_ERR "Can't read mt2063 2nd part ID\n");
1823
		return -ENODEV;	/*  Wrong tuner Part/Rev code */
1824
	}
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	/*  Reset the tuner  */
	status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
	if (status < 0)
		return status;

	/* change all of the default values that vary from the HW reset values */
	/*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
	switch (state->reg[MT2063_REG_PART_REV]) {
	case MT2063_B3:
		def = MT2063B3_defaults;
		break;

	case MT2063_B1:
		def = MT2063B1_defaults;
		break;

	case MT2063_B0:
		def = MT2063B0_defaults;
		break;

	default:
		return -ENODEV;
		break;
1849 1850
	}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	while (status >= 0 && *def) {
		u8 reg = *def++;
		u8 val = *def++;
		status = mt2063_write(state, reg, &val, 1);
	}
	if (status < 0)
		return status;

	/*  Wait for FIFF location to complete.  */
	FCRUN = 1;
	maxReads = 10;
	while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
		msleep(2);
		status = mt2063_read(state,
					 MT2063_REG_XO_STATUS,
					 &state->
					 reg[MT2063_REG_XO_STATUS], 1);
		FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
	}

	if (FCRUN != 0 || status < 0)
		return -ENODEV;

	status = mt2063_read(state,
			   MT2063_REG_FIFFC,
			   &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	/* Read back all the registers from the tuner */
	status = mt2063_read(state,
				MT2063_REG_PART_REV,
				state->reg, MT2063_REG_END_REGS);
	if (status < 0)
		return status;

	/*  Initialize the tuner state.  */
	state->tuner_id = state->reg[MT2063_REG_PART_REV];
	state->AS_Data.f_ref = MT2063_REF_FREQ;
	state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
				      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
	state->AS_Data.f_if1_bw = MT2063_IF1_BW;
	state->AS_Data.f_out = 43750000UL;
	state->AS_Data.f_out_bw = 6750000UL;
	state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
	state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
	state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
	state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
	state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
	state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
	state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
	state->AS_Data.f_LO1 = 2181000000UL;
	state->AS_Data.f_LO2 = 1486249786UL;
	state->f_IF1_actual = state->AS_Data.f_if1_Center;
	state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
	state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
	state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
	state->num_regs = MT2063_REG_END_REGS;
	state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
	state->ctfilt_sw = 0;

	state->CTFiltMax[0] = 69230000;
	state->CTFiltMax[1] = 105770000;
	state->CTFiltMax[2] = 140350000;
	state->CTFiltMax[3] = 177110000;
	state->CTFiltMax[4] = 212860000;
	state->CTFiltMax[5] = 241130000;
	state->CTFiltMax[6] = 274370000;
	state->CTFiltMax[7] = 309820000;
	state->CTFiltMax[8] = 342450000;
	state->CTFiltMax[9] = 378870000;
	state->CTFiltMax[10] = 416210000;
	state->CTFiltMax[11] = 456500000;
	state->CTFiltMax[12] = 495790000;
	state->CTFiltMax[13] = 534530000;
	state->CTFiltMax[14] = 572610000;
	state->CTFiltMax[15] = 598970000;
	state->CTFiltMax[16] = 635910000;
	state->CTFiltMax[17] = 672130000;
	state->CTFiltMax[18] = 714840000;
	state->CTFiltMax[19] = 739660000;
	state->CTFiltMax[20] = 770410000;
	state->CTFiltMax[21] = 814660000;
	state->CTFiltMax[22] = 846950000;
	state->CTFiltMax[23] = 867820000;
	state->CTFiltMax[24] = 915980000;
	state->CTFiltMax[25] = 947450000;
	state->CTFiltMax[26] = 983110000;
	state->CTFiltMax[27] = 1021630000;
	state->CTFiltMax[28] = 1061870000;
	state->CTFiltMax[29] = 1098330000;
	state->CTFiltMax[30] = 1138990000;

	/*
	 **   Fetch the FCU osc value and use it and the fRef value to
	 **   scale all of the Band Max values
	 */

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Read the ClearTune filter calibration value  */
	status = mt2063_read(state, MT2063_REG_FIFFC,
			     &state->reg[MT2063_REG_FIFFC], 1);
	if (status < 0)
		return status;

	fcu_osc = state->reg[MT2063_REG_FIFFC];

	state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
	status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
			      &state->reg[MT2063_REG_CTUNE_CTRL], 1);
	if (status < 0)
		return status;

	/*  Adjust each of the values in the ClearTune filter cross-over table  */
	for (i = 0; i < 31; i++)
1971
		state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
1972 1973 1974 1975 1976 1977 1978 1979

	status = MT2063_SoftwareShutdown(state, 1);
	if (status < 0)
		return status;
	status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (status < 0)
		return status;

1980 1981 1982
	return 0;
}

1983
static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
1984
{
1985 1986
	struct mt2063_state *state = fe->tuner_priv;
	int status;
1987

1988 1989
	dprintk(2, "\n");

1990 1991 1992 1993 1994
	*tuner_status = 0;
	status = mt2063_lockStatus(state);
	if (status < 0)
		return status;
	if (status)
1995
		*tuner_status = TUNER_STATUS_LOCKED;
1996

1997
	return 0;
1998
}
1999

2000
static int mt2063_release(struct dvb_frontend *fe)
2001
{
2002
	struct mt2063_state *state = fe->tuner_priv;
2003

2004 2005
	dprintk(2, "\n");

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	fe->tuner_priv = NULL;
	kfree(state);

	return 0;
}

static int mt2063_set_analog_params(struct dvb_frontend *fe,
				    struct analog_parameters *params)
{
	struct mt2063_state *state = fe->tuner_priv;
	s32 pict_car = 0;
	s32 pict2chanb_vsb = 0;
	s32 pict2chanb_snd = 0;
	s32 pict2snd1 = 0;
	s32 pict2snd2 = 0;
	s32 ch_bw = 0;
	s32 if_mid = 0;
	s32 rcvr_mode = 0;
	int status;

2026 2027
	dprintk(2, "\n");

2028 2029 2030 2031 2032 2033 2034 2035
	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		pict_car = 38900000;
		ch_bw = 8000000;
		pict2chanb_vsb = -(ch_bw / 2);
		pict2snd1 = 0;
		pict2snd2 = 0;
		rcvr_mode = MT2063_OFFAIR_ANALOG;
2036
		break;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	case V4L2_TUNER_ANALOG_TV:
		rcvr_mode = MT2063_CABLE_ANALOG;
		if (params->std & ~V4L2_STD_MN) {
			pict_car = 38900000;
			ch_bw = 6000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 4500000;
			pict2snd2 = 0;
		} else if (params->std & V4L2_STD_PAL_I) {
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 6000000;
			pict2snd2 = 0;
		} else if (params->std & V4L2_STD_PAL_B) {
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 5500000;
			pict2snd2 = 5742000;
		} else if (params->std & V4L2_STD_PAL_G) {
			pict_car = 38900000;
			ch_bw = 7000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 5500000;
			pict2snd2 = 0;
		} else if (params->std & V4L2_STD_PAL_DK) {
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 6500000;
			pict2snd2 = 0;
		} else {	/* PAL-L */
			pict_car = 38900000;
			ch_bw = 8000000;
			pict2chanb_vsb = -1250000;
			pict2snd1 = 6500000;
			pict2snd2 = 0;
		}
2076 2077
		break;
	}
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	pict2chanb_snd = pict2chanb_vsb - ch_bw;
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

	status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
	if (status < 0)
		return status;
2091

2092 2093
	state->frequency = params->frequency;
	return 0;
2094 2095
}

2096 2097 2098
/*
 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
 * So, the amount of the needed bandwith is given by:
2099
 *	Bw = Symbol_rate * (1 + 0.15)
2100 2101 2102 2103 2104
 * As such, the maximum symbol rate supported by 6 MHz is given by:
 *	max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
 */
#define MAX_SYMBOL_RATE_6MHz	5217391

2105
static int mt2063_set_params(struct dvb_frontend *fe)
2106
{
2107
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2108
	struct mt2063_state *state = fe->tuner_priv;
2109 2110 2111 2112 2113 2114 2115 2116 2117
	int status;
	s32 pict_car = 0;
	s32 pict2chanb_vsb = 0;
	s32 pict2chanb_snd = 0;
	s32 pict2snd1 = 0;
	s32 pict2snd2 = 0;
	s32 ch_bw = 0;
	s32 if_mid = 0;
	s32 rcvr_mode = 0;
2118

2119 2120
	dprintk(2, "\n");

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (c->bandwidth_hz == 0)
		return -EINVAL;
	if (c->bandwidth_hz <= 6000000)
		ch_bw = 6000000;
	else if (c->bandwidth_hz <= 7000000)
		ch_bw = 7000000;
	else
		ch_bw = 8000000;

	switch (c->delivery_system) {
	case SYS_DVBT:
2132 2133 2134 2135 2136
		rcvr_mode = MT2063_OFFAIR_COFDM;
		pict_car = 36125000;
		pict2chanb_vsb = -(ch_bw / 2);
		pict2snd1 = 0;
		pict2snd2 = 0;
2137
		break;
2138 2139
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
2140 2141 2142 2143 2144
		rcvr_mode = MT2063_CABLE_QAM;
		pict_car = 36125000;
		pict2snd1 = 0;
		pict2snd2 = 0;
		pict2chanb_vsb = -(ch_bw / 2);
2145
		break;
2146
	default:
2147
		return -EINVAL;
2148
	}
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	pict2chanb_snd = pict2chanb_vsb - ch_bw;
	if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));

	state->AS_Data.f_LO2_Step = 125000;	/* FIXME: probably 5000 for FM */
	state->AS_Data.f_out = if_mid;
	state->AS_Data.f_out_bw = ch_bw + 750000;
	status = MT2063_SetReceiverMode(state, rcvr_mode);
	if (status < 0)
		return status;

2159
	status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2160 2161

	if (status < 0)
2162
		return status;
2163

2164
	state->frequency = c->frequency;
2165
	return 0;
2166 2167
}

2168
static int mt2063_get_frequency(struct dvb_frontend *fe, u32 *freq)
2169
{
2170
	struct mt2063_state *state = fe->tuner_priv;
2171

2172 2173
	dprintk(2, "\n");

2174 2175 2176 2177 2178 2179 2180
	*freq = state->frequency;
	return 0;
}

static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct mt2063_state *state = fe->tuner_priv;
2181

2182 2183
	dprintk(2, "\n");

2184
	*bw = state->AS_Data.f_out_bw - 750000;
2185
	return 0;
2186 2187 2188
}

static struct dvb_tuner_ops mt2063_ops = {
2189
	.info = {
2190 2191 2192 2193 2194 2195 2196
		 .name = "MT2063 Silicon Tuner",
		 .frequency_min = 45000000,
		 .frequency_max = 850000000,
		 .frequency_step = 0,
		 },

	.init = mt2063_init,
2197
	.sleep = MT2063_Sleep,
2198
	.get_status = mt2063_get_status,
2199 2200 2201 2202 2203
	.set_analog_params = mt2063_set_analog_params,
	.set_params    = mt2063_set_params,
	.get_frequency = mt2063_get_frequency,
	.get_bandwidth = mt2063_get_bandwidth,
	.release = mt2063_release,
2204 2205
};

2206 2207 2208
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
				   struct mt2063_config *config,
				   struct i2c_adapter *i2c)
2209
{
2210
	struct mt2063_state *state = NULL;
2211

2212 2213
	dprintk(2, "\n");

2214
	state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2215 2216 2217
	if (state == NULL)
		goto error;

2218 2219 2220 2221 2222 2223
	state->config = config;
	state->i2c = i2c;
	state->frontend = fe;
	state->reference = config->refclock / 1000;	/* kHz */
	fe->tuner_priv = state;
	fe->ops.tuner_ops = mt2063_ops;
2224

2225
	printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2226 2227 2228 2229 2230 2231
	return fe;

error:
	kfree(state);
	return NULL;
}
2232
EXPORT_SYMBOL_GPL(mt2063_attach);
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242
/*
 * Ancillary routines visible outside mt2063
 * FIXME: Remove them in favor of using standard tuner callbacks
 */
unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2243 2244
	dprintk(2, "\n");

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	err = MT2063_SoftwareShutdown(state, 1);
	if (err < 0)
		printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);

	return err;
}
EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);

unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
{
	struct mt2063_state *state = fe->tuner_priv;
	int err = 0;

2258 2259
	dprintk(2, "\n");

2260 2261 2262 2263 2264 2265 2266 2267
	err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
	if (err < 0)
		printk(KERN_ERR "%s: Invalid parameter\n", __func__);

	return err;
}
EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);

2268
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2269 2270
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");