mcpm-exynos.c 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * arch/arm/mach-exynos/mcpm-exynos.c
 *
 * Based on arch/arm/mach-vexpress/dcscb.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/arm-cci.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of_address.h>
18
#include <linux/syscore_ops.h>
19 20 21 22

#include <asm/cputype.h>
#include <asm/cp15.h>
#include <asm/mcpm.h>
23
#include <asm/smp_plat.h>
24 25 26 27 28 29 30

#include "regs-pmu.h"
#include "common.h"

#define EXYNOS5420_CPUS_PER_CLUSTER	4
#define EXYNOS5420_NR_CLUSTERS		2

31 32 33 34
#define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN	BIT(9)
#define EXYNOS5420_USE_ARM_CORE_DOWN_STATE	BIT(29)
#define EXYNOS5420_USE_L2_COMMON_UP_STATE	BIT(30)

35 36
static void __iomem *ns_sram_base_addr;

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * The common v7_exit_coherency_flush API could not be used because of the
 * Erratum 799270 workaround. This macro is the same as the common one (in
 * arch/arm/include/asm/cacheflush.h) except for the erratum handling.
 */
#define exynos_v7_exit_coherency_flush(level) \
	asm volatile( \
	"stmfd	sp!, {fp, ip}\n\t"\
	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR\n\t" \
	"bic	r0, r0, #"__stringify(CR_C)"\n\t" \
	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR\n\t" \
	"isb\n\t"\
	"bl	v7_flush_dcache_"__stringify(level)"\n\t" \
	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR\n\t" \
	"bic	r0, r0, #(1 << 6)	@ disable local coherency\n\t" \
	/* Dummy Load of a device register to avoid Erratum 799270 */ \
	"ldr	r4, [%0]\n\t" \
	"and	r4, r4, #0\n\t" \
	"orr	r0, r0, r4\n\t" \
	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR\n\t" \
	"isb\n\t" \
	"dsb\n\t" \
	"ldmfd	sp!, {fp, ip}" \
	: \
61
	: "Ir" (pmu_base_addr + S5P_INFORM0) \
62 63 64
	: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
	  "r9", "r10", "lr", "memory")

65
static int exynos_cpu_powerup(unsigned int cpu, unsigned int cluster)
66 67 68 69 70 71 72 73
{
	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
		cluster >= EXYNOS5420_NR_CLUSTERS)
		return -EINVAL;

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	if (!exynos_cpu_power_state(cpunr)) {
		exynos_cpu_power_up(cpunr);

		/*
		 * This assumes the cluster number of the big cores(Cortex A15)
		 * is 0 and the Little cores(Cortex A7) is 1.
		 * When the system was booted from the Little core,
		 * they should be reset during power up cpu.
		 */
		if (cluster &&
		    cluster == MPIDR_AFFINITY_LEVEL(cpu_logical_map(0), 1)) {
			/*
			 * Before we reset the Little cores, we should wait
			 * the SPARE2 register is set to 1 because the init
			 * codes of the iROM will set the register after
			 * initialization.
			 */
			while (!pmu_raw_readl(S5P_PMU_SPARE2))
				udelay(10);

			pmu_raw_writel(EXYNOS5420_KFC_CORE_RESET(cpu),
					EXYNOS_SWRESET);
		}
	}

99 100
	return 0;
}
101

102 103 104 105 106
static int exynos_cluster_powerup(unsigned int cluster)
{
	pr_debug("%s: cluster %u\n", __func__, cluster);
	if (cluster >= EXYNOS5420_NR_CLUSTERS)
		return -EINVAL;
107

108
	exynos_cluster_power_up(cluster);
109
	return 0;
110 111
}

112
static void exynos_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster)
113
{
114
	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
115 116 117 118

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
			cluster >= EXYNOS5420_NR_CLUSTERS);
119 120
	exynos_cpu_power_down(cpunr);
}
121

122 123 124 125 126 127
static void exynos_cluster_powerdown_prepare(unsigned int cluster)
{
	pr_debug("%s: cluster %u\n", __func__, cluster);
	BUG_ON(cluster >= EXYNOS5420_NR_CLUSTERS);
	exynos_cluster_power_down(cluster);
}
128

129 130 131 132 133
static void exynos_cpu_cache_disable(void)
{
	/* Disable and flush the local CPU cache. */
	exynos_v7_exit_coherency_flush(louis);
}
134

135 136 137
static void exynos_cluster_cache_disable(void)
{
	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
138
		/*
139 140
		 * On the Cortex-A15 we need to disable
		 * L2 prefetching before flushing the cache.
141
		 */
142 143 144 145 146
		asm volatile(
		"mcr	p15, 1, %0, c15, c0, 3\n\t"
		"isb\n\t"
		"dsb"
		: : "r" (0x400));
147 148
	}

149 150
	/* Flush all cache levels for this cluster. */
	exynos_v7_exit_coherency_flush(all);
151

152 153 154 155 156
	/*
	 * Disable cluster-level coherency by masking
	 * incoming snoops and DVM messages:
	 */
	cci_disable_port_by_cpu(read_cpuid_mpidr());
157 158
}

159
static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
160 161 162 163 164 165 166 167 168 169
{
	unsigned int tries = 100;
	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);

	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
			cluster >= EXYNOS5420_NR_CLUSTERS);

	/* Wait for the core state to be OFF */
	while (tries--) {
170 171
		if ((exynos_cpu_power_state(cpunr) == 0))
			return 0; /* success: the CPU is halted */
172 173 174 175 176 177 178 179

		/* Otherwise, wait and retry: */
		msleep(1);
	}

	return -ETIMEDOUT; /* timeout */
}

180
static void exynos_cpu_is_up(unsigned int cpu, unsigned int cluster)
181
{
182 183
	/* especially when resuming: make sure power control is set */
	exynos_cpu_powerup(cpu, cluster);
184 185
}

186
static const struct mcpm_platform_ops exynos_power_ops = {
187 188 189 190 191 192
	.cpu_powerup		= exynos_cpu_powerup,
	.cluster_powerup	= exynos_cluster_powerup,
	.cpu_powerdown_prepare	= exynos_cpu_powerdown_prepare,
	.cluster_powerdown_prepare = exynos_cluster_powerdown_prepare,
	.cpu_cache_disable	= exynos_cpu_cache_disable,
	.cluster_cache_disable	= exynos_cluster_cache_disable,
193
	.wait_for_powerdown	= exynos_wait_for_powerdown,
194
	.cpu_is_up		= exynos_cpu_is_up,
195 196 197 198 199 200 201 202 203 204 205 206 207
};

/*
 * Enable cluster-level coherency, in preparation for turning on the MMU.
 */
static void __naked exynos_pm_power_up_setup(unsigned int affinity_level)
{
	asm volatile ("\n"
	"cmp	r0, #1\n"
	"bxne	lr\n"
	"b	cci_enable_port_for_self");
}

208 209 210 211 212 213
static const struct of_device_id exynos_dt_mcpm_match[] = {
	{ .compatible = "samsung,exynos5420" },
	{ .compatible = "samsung,exynos5800" },
	{},
};

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static void exynos_mcpm_setup_entry_point(void)
{
	/*
	 * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr
	 * as part of secondary_cpu_start().  Let's redirect it to the
	 * mcpm_entry_point(). This is done during both secondary boot-up as
	 * well as system resume.
	 */
	__raw_writel(0xe59f0000, ns_sram_base_addr);     /* ldr r0, [pc, #0] */
	__raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx  r0 */
	__raw_writel(virt_to_phys(mcpm_entry_point), ns_sram_base_addr + 8);
}

static struct syscore_ops exynos_mcpm_syscore_ops = {
	.resume	= exynos_mcpm_setup_entry_point,
};

231 232 233
static int __init exynos_mcpm_init(void)
{
	struct device_node *node;
234
	unsigned int value, i;
235 236
	int ret;

237
	node = of_find_matching_node(NULL, exynos_dt_mcpm_match);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	if (!node)
		return -ENODEV;
	of_node_put(node);

	if (!cci_probed())
		return -ENODEV;

	node = of_find_compatible_node(NULL, NULL,
			"samsung,exynos4210-sysram-ns");
	if (!node)
		return -ENODEV;

	ns_sram_base_addr = of_iomap(node, 0);
	of_node_put(node);
	if (!ns_sram_base_addr) {
		pr_err("failed to map non-secure iRAM base address\n");
		return -ENOMEM;
	}

	/*
	 * To increase the stability of KFC reset we need to program
	 * the PMU SPARE3 register
	 */
261
	pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3);
262 263 264 265

	ret = mcpm_platform_register(&exynos_power_ops);
	if (!ret)
		ret = mcpm_sync_init(exynos_pm_power_up_setup);
266
	if (!ret)
267
		ret = mcpm_loopback(exynos_cluster_cache_disable); /* turn on the CCI */
268 269 270 271 272 273 274 275 276
	if (ret) {
		iounmap(ns_sram_base_addr);
		return ret;
	}

	mcpm_smp_set_ops();

	pr_info("Exynos MCPM support installed\n");

277 278 279 280 281 282 283 284 285 286 287 288 289
	/*
	 * On Exynos5420/5800 for the A15 and A7 clusters:
	 *
	 * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores
	 * in a cluster are turned off before turning off the cluster L2.
	 *
	 * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered
	 * off before waking it up.
	 *
	 * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be
	 * turned on before the first man is powered up.
	 */
	for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) {
290
		value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i));
291 292 293
		value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN |
			 EXYNOS5420_USE_ARM_CORE_DOWN_STATE    |
			 EXYNOS5420_USE_L2_COMMON_UP_STATE;
294
		pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i));
295 296
	}

297
	exynos_mcpm_setup_entry_point();
298

299
	register_syscore_ops(&exynos_mcpm_syscore_ops);
300 301 302 303 304

	return ret;
}

early_initcall(exynos_mcpm_init);