tsc.c 24.6 KB
Newer Older
A
Alok Kataria 已提交
1
#include <linux/kernel.h>
A
Alok Kataria 已提交
2 3 4 5
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
6
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
7
#include <linux/cpufreq.h>
8 9 10 11
#include <linux/dmi.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
12
#include <linux/timex.h>
A
Alok Kataria 已提交
13 14

#include <asm/hpet.h>
15 16 17 18
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
19
#include <asm/hypervisor.h>
20
#include <asm/nmi.h>
21
#include <asm/x86_init.h>
A
Alok Kataria 已提交
22

23
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
24
EXPORT_SYMBOL(cpu_khz);
25 26

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
27 28 29 30 31
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
32
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
33 34 35 36

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
37
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
38

39
static int tsc_clocksource_reliable;
A
Alok Kataria 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
	 *   can achive it. )
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
I
Ingo Molnar 已提交
64
	return __cycles_2_ns(this_offset);
A
Alok Kataria 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
			"cannot disable TSC completely.\n");
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
106

107 108 109 110 111 112 113 114 115
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
116 117 118 119 120 121
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
122
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
123 124 125 126 127 128 129
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
130
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
131
		else
132
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
133 134 135 136 137 138 139
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

140 141
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
142
 */
143
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
144
{
145
	u64 tmp;
A
Alok Kataria 已提交
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

177
#define CAL_MS		10
178
#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
179 180 181 182 183 184
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
#define CAL2_PIT_LOOPS	5000

185

186 187 188 189 190 191 192
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
193
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
208 209
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
230
	 * If we were not able to read the PIT more than loopmin
231 232 233 234 235
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
236
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
237 238 239 240
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
241
	do_div(delta, ms);
242 243 244
	return delta;
}

L
Linus Torvalds 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
280 281 282 283 284 285 286
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

287
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
288
{
289 290
	int count;
	u64 tsc = 0;
A
Alok Kataria 已提交
291

L
Linus Torvalds 已提交
292
	for (count = 0; count < 50000; count++) {
293
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
294
			break;
295
		tsc = get_cycles();
L
Linus Torvalds 已提交
296
	}
297 298 299 300 301 302 303 304
	*deltap = get_cycles() - tsc;
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
305 306 307
}

/*
308 309 310 311
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
 * more than 25ms on it.
L
Linus Torvalds 已提交
312
 */
313 314
#define MAX_QUICK_PIT_MS 25
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
315

L
Linus Torvalds 已提交
316 317
static unsigned long quick_pit_calibrate(void)
{
318 319 320 321
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
322
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
323 324
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332 333
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
334 335
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
336 337 338 339
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

340 341 342 343 344 345
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
346
	pit_verify_msb(0);
347

348 349 350 351 352 353 354 355 356
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
357 358 359 360 361 362 363 364 365 366 367 368 369
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
370 371
		}
	}
372
	printk("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
373
	return 0;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
	 * reliable (within the error). We also adjust the
	 * delta to the middle of the error bars, just
	 * because it looks nicer.
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta += (long)(d2 - d1)/2;
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
	printk("Fast TSC calibration using PIT\n");
	return delta;
L
Linus Torvalds 已提交
396
}
397

A
Alok Kataria 已提交
398
/**
399
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
400
 */
401
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
402
{
403
	u64 tsc1, tsc2, delta, ref1, ref2;
404
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
405
	unsigned long flags, latch, ms, fast_calibrate;
406
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
407

L
Linus Torvalds 已提交
408 409
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
410
	local_irq_restore(flags);
L
Linus Torvalds 已提交
411 412
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
	 * SMI/SMM disturbance happend between the two reads. If the
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
438 439 440 441 442 443 444

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
445
		unsigned long tsc_pit_khz;
446 447 448

		/*
		 * Read the start value and the reference count of
449 450 451
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
452
		 */
453
		local_irq_save(flags);
454
		tsc1 = tsc_read_refs(&ref1, hpet);
455
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
456
		tsc2 = tsc_read_refs(&ref2, hpet);
457 458
		local_irq_restore(flags);

459 460
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
461 462

		/* hpet or pmtimer available ? */
463
		if (!hpet && !ref1 && !ref2)
464 465 466 467 468 469 470
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
471
		if (hpet)
472
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
473
		else
474
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
475 476

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
			printk(KERN_INFO
			       "TSC: PIT calibration matches %s. %d loops\n",
			       hpet ? "HPET" : "PMTIMER", i + 1);
			return tsc_ref_min;
493 494
		}

495 496 497 498 499 500 501 502 503 504 505
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
506
	}
A
Alok Kataria 已提交
507 508

	/*
509
	 * Now check the results.
A
Alok Kataria 已提交
510
	 */
511 512
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
513
		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
514 515

		/* We don't have an alternative source, disable TSC */
516
		if (!hpet && !ref1 && !ref2) {
517 518 519 520 521 522 523
			printk("TSC: No reference (HPET/PMTIMER) available\n");
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
524
			       "failed.\n");
525 526 527 528 529 530 531 532 533
			return 0;
		}

		/* Use the alternative source */
		printk(KERN_INFO "TSC: using %s reference calibration\n",
		       hpet ? "HPET" : "PMTIMER");

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
534

535
	/* We don't have an alternative source, use the PIT calibration value */
536
	if (!hpet && !ref1 && !ref2) {
537 538
		printk(KERN_INFO "TSC: Using PIT calibration value\n");
		return tsc_pit_min;
A
Alok Kataria 已提交
539 540
	}

541 542
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
543 544
		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
		       "Using PIT calibration\n");
545
		return tsc_pit_min;
A
Alok Kataria 已提交
546 547
	}

548 549 550
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
551
	 * running at double speed. At least we let the user know:
552
	 */
553 554
	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
555 556
	printk(KERN_INFO "TSC: Using PIT calibration value\n");
	return tsc_pit_min;
A
Alok Kataria 已提交
557 558 559 560 561 562 563 564
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
565
		tsc_khz = x86_platform.calibrate_tsc();
566
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);
604
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
A
Alok Kataria 已提交
605

606
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
A
Alok Kataria 已提交
607
{
608
	unsigned long long tsc_now, ns_now, *offset;
A
Alok Kataria 已提交
609 610 611 612 613 614
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);
615
	offset = &per_cpu(cyc2ns_offset, cpu);
A
Alok Kataria 已提交
616 617 618 619

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

620
	if (cpu_khz) {
A
Alok Kataria 已提交
621
		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
622 623
		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
	}
A
Alok Kataria 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
650
	unsigned long *lpj;
A
Alok Kataria 已提交
651 652 653 654

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

655
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
656
#ifdef CONFIG_SMP
657
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
658 659 660 661 662 663 664 665 666 667 668
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
669
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
670 671 672 673 674 675

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

676
	set_cyc2ns_scale(tsc_khz, freq->cpu);
A
Alok Kataria 已提交
677 678 679 680 681 682 683 684 685 686

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
687 688 689 690
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
691 692 693 694 695 696 697 698
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
716
static cycle_t read_tsc(struct clocksource *cs)
717 718 719 720 721 722 723
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

724
#ifdef CONFIG_X86_64
725 726
static cycle_t __vsyscall_fn vread_tsc(void)
{
727 728 729 730 731 732 733 734 735 736
	cycle_t ret;

	/*
	 * Surround the RDTSC by barriers, to make sure it's not
	 * speculated to outside the seqlock critical section and
	 * does not cause time warps:
	 */
	rdtsc_barrier();
	ret = (cycle_t)vget_cycles();
	rdtsc_barrier();
737 738 739 740

	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
		ret : __vsyscall_gtod_data.clock.cycle_last;
}
741
#endif
742

743
static void resume_tsc(struct clocksource *cs)
744 745 746 747
{
	clocksource_tsc.cycle_last = 0;
}

748 749 750 751
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
752
	.resume			= resume_tsc,
753 754 755 756 757 758 759 760 761 762 763 764 765
	.mask                   = CLOCKSOURCE_MASK(64),
	.shift                  = 22,
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
	.vread                  = vread_tsc,
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
766
		sched_clock_stable = 0;
767
		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
768 769
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
770 771 772
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
773
			clocksource_tsc.rating = 0;
774
		}
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
{
	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
			d->ident);
	tsc_unstable = 1;
	return 0;
}

/* List of systems that have known TSC problems */
static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
	{
		.callback = dmi_mark_tsc_unstable,
		.ident = "IBM Thinkpad 380XD",
		.matches = {
			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
		},
	},
	{}
};

801 802
static void __init check_system_tsc_reliable(void)
{
803
#ifdef CONFIG_MGEODE_LX
804
	/* RTSC counts during suspend */
805 806 807 808
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
809
	/* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
810
	if (res_low & RTSC_SUSP)
811
		tsc_clocksource_reliable = 1;
812
#endif
813 814 815
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
816 817 818 819 820 821 822 823 824 825

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

826
#ifdef CONFIG_SMP
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
			tsc_unstable = 1;
	}

	return tsc_unstable;
}

static void __init init_tsc_clocksource(void)
{
	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
			clocksource_tsc.shift);
850 851
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
852 853 854 855 856 857 858 859
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
	clocksource_register(&clocksource_tsc);
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
#ifdef CONFIG_X86_64
/*
 * calibrate_cpu is used on systems with fixed rate TSCs to determine
 * processor frequency
 */
#define TICK_COUNT 100000000
static unsigned long __init calibrate_cpu(void)
{
	int tsc_start, tsc_now;
	int i, no_ctr_free;
	unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
	unsigned long flags;

	for (i = 0; i < 4; i++)
		if (avail_to_resrv_perfctr_nmi_bit(i))
			break;
	no_ctr_free = (i == 4);
	if (no_ctr_free) {
		WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
		     "cpu_khz value may be incorrect.\n");
		i = 3;
		rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
		wrmsrl(MSR_K7_EVNTSEL3, 0);
		rdmsrl(MSR_K7_PERFCTR3, pmc3);
	} else {
		reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
		reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
	}
	local_irq_save(flags);
	/* start measuring cycles, incrementing from 0 */
	wrmsrl(MSR_K7_PERFCTR0 + i, 0);
	wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
	rdtscl(tsc_start);
	do {
		rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
		tsc_now = get_cycles();
	} while ((tsc_now - tsc_start) < TICK_COUNT);

	local_irq_restore(flags);
	if (no_ctr_free) {
		wrmsrl(MSR_K7_EVNTSEL3, 0);
		wrmsrl(MSR_K7_PERFCTR3, pmc3);
		wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
	} else {
		release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
		release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
	}

	return pmc_now * tsc_khz / (tsc_now - tsc_start);
}
#else
static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
#endif

914 915 916 917 918
void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

919 920
	x86_init.timers.tsc_pre_init();

921 922 923
	if (!cpu_has_tsc)
		return;

924
	tsc_khz = x86_platform.calibrate_tsc();
925
	cpu_khz = tsc_khz;
926

927
	if (!tsc_khz) {
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
		cpu_khz = calibrate_cpu();

	printk("Detected %lu.%03lu MHz processor.\n",
			(unsigned long)cpu_khz / 1000,
			(unsigned long)cpu_khz % 1000);

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

955 956 957 958
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

959 960 961 962 963 964 965
	use_tsc_delay();
	/* Check and install the TSC clocksource */
	dmi_check_system(bad_tsc_dmi_table);

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

966
	check_system_tsc_reliable();
967 968 969
	init_tsc_clocksource();
}