access.c 22.7 KB
Newer Older
1
#include <linux/delay.h>
L
Linus Torvalds 已提交
2 3
#include <linux/pci.h>
#include <linux/module.h>
4
#include <linux/sched/signal.h>
5
#include <linux/slab.h>
L
Linus Torvalds 已提交
6
#include <linux/ioport.h>
7
#include <linux/wait.h>
L
Linus Torvalds 已提交
8

9 10
#include "pci.h"

L
Linus Torvalds 已提交
11 12 13 14 15
/*
 * This interrupt-safe spinlock protects all accesses to PCI
 * configuration space.
 */

16
DEFINE_RAW_SPINLOCK(pci_lock);
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27

/*
 *  Wrappers for all PCI configuration access functions.  They just check
 *  alignment, do locking and call the low-level functions pointed to
 *  by pci_dev->ops.
 */

#define PCI_byte_BAD 0
#define PCI_word_BAD (pos & 1)
#define PCI_dword_BAD (pos & 3)

28 29 30 31 32 33 34 35
#ifdef CONFIG_PCI_LOCKLESS_CONFIG
# define pci_lock_config(f)	do { (void)(f); } while (0)
# define pci_unlock_config(f)	do { (void)(f); } while (0)
#else
# define pci_lock_config(f)	raw_spin_lock_irqsave(&pci_lock, f)
# define pci_unlock_config(f)	raw_spin_unlock_irqrestore(&pci_lock, f)
#endif

B
Bogicevic Sasa 已提交
36
#define PCI_OP_READ(size, type, len) \
L
Linus Torvalds 已提交
37 38 39 40 41 42 43
int pci_bus_read_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
{									\
	int res;							\
	unsigned long flags;						\
	u32 data = 0;							\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
44
	pci_lock_config(flags);						\
L
Linus Torvalds 已提交
45 46
	res = bus->ops->read(bus, devfn, pos, len, &data);		\
	*value = (type)data;						\
47
	pci_unlock_config(flags);					\
L
Linus Torvalds 已提交
48 49 50
	return res;							\
}

B
Bogicevic Sasa 已提交
51
#define PCI_OP_WRITE(size, type, len) \
L
Linus Torvalds 已提交
52 53 54 55 56 57
int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
58
	pci_lock_config(flags);						\
L
Linus Torvalds 已提交
59
	res = bus->ops->write(bus, devfn, pos, len, value);		\
60
	pci_unlock_config(flags);					\
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	return res;							\
}

PCI_OP_READ(byte, u8, 1)
PCI_OP_READ(word, u16, 2)
PCI_OP_READ(dword, u32, 4)
PCI_OP_WRITE(byte, u8, 1)
PCI_OP_WRITE(word, u16, 2)
PCI_OP_WRITE(dword, u32, 4)

EXPORT_SYMBOL(pci_bus_read_config_byte);
EXPORT_SYMBOL(pci_bus_read_config_word);
EXPORT_SYMBOL(pci_bus_read_config_dword);
EXPORT_SYMBOL(pci_bus_write_config_byte);
EXPORT_SYMBOL(pci_bus_write_config_word);
EXPORT_SYMBOL(pci_bus_write_config_dword);
77

R
Rob Herring 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
			    int where, int size, u32 *val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where);
	if (!addr) {
		*val = ~0;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	if (size == 1)
		*val = readb(addr);
	else if (size == 2)
		*val = readw(addr);
	else
		*val = readl(addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_read);

int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
			     int where, int size, u32 val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where);
	if (!addr)
		return PCIBIOS_DEVICE_NOT_FOUND;

	if (size == 1)
		writeb(val, addr);
	else if (size == 2)
		writew(val, addr);
	else
		writel(val, addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_write);

int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
			      int where, int size, u32 *val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
	if (!addr) {
		*val = ~0;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	*val = readl(addr);

	if (size <= 2)
		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_read32);

int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
			       int where, int size, u32 val)
{
	void __iomem *addr;
	u32 mask, tmp;

	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
	if (!addr)
		return PCIBIOS_DEVICE_NOT_FOUND;

	if (size == 4) {
		writel(val, addr);
		return PCIBIOS_SUCCESSFUL;
	}

155 156 157 158 159 160 161 162 163 164 165 166 167 168
	/*
	 * In general, hardware that supports only 32-bit writes on PCI is
	 * not spec-compliant.  For example, software may perform a 16-bit
	 * write.  If the hardware only supports 32-bit accesses, we must
	 * do a 32-bit read, merge in the 16 bits we intend to write,
	 * followed by a 32-bit write.  If the 16 bits we *don't* intend to
	 * write happen to have any RW1C (write-one-to-clear) bits set, we
	 * just inadvertently cleared something we shouldn't have.
	 */
	dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
			     size, pci_domain_nr(bus), bus->number,
			     PCI_SLOT(devfn), PCI_FUNC(devfn), where);

	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
R
Rob Herring 已提交
169 170 171 172 173 174 175 176
	tmp = readl(addr) & mask;
	tmp |= val << ((where & 0x3) * 8);
	writel(tmp, addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_write32);

H
Huang Ying 已提交
177 178 179 180 181 182 183 184 185 186 187 188
/**
 * pci_bus_set_ops - Set raw operations of pci bus
 * @bus:	pci bus struct
 * @ops:	new raw operations
 *
 * Return previous raw operations
 */
struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
{
	struct pci_ops *old_ops;
	unsigned long flags;

189
	raw_spin_lock_irqsave(&pci_lock, flags);
H
Huang Ying 已提交
190 191
	old_ops = bus->ops;
	bus->ops = ops;
192
	raw_spin_unlock_irqrestore(&pci_lock, flags);
H
Huang Ying 已提交
193 194 195
	return old_ops;
}
EXPORT_SYMBOL(pci_bus_set_ops);
196

197 198 199 200 201 202 203 204
/*
 * The following routines are to prevent the user from accessing PCI config
 * space when it's unsafe to do so.  Some devices require this during BIST and
 * we're required to prevent it during D-state transitions.
 *
 * We have a bit per device to indicate it's blocked and a global wait queue
 * for callers to sleep on until devices are unblocked.
 */
205
static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
206

207
static noinline void pci_wait_cfg(struct pci_dev *dev)
208 209 210
{
	DECLARE_WAITQUEUE(wait, current);

211
	__add_wait_queue(&pci_cfg_wait, &wait);
212 213
	do {
		set_current_state(TASK_UNINTERRUPTIBLE);
214
		raw_spin_unlock_irq(&pci_lock);
215
		schedule();
216
		raw_spin_lock_irq(&pci_lock);
217 218
	} while (dev->block_cfg_access);
	__remove_wait_queue(&pci_cfg_wait, &wait);
219 220
}

G
Greg Thelen 已提交
221
/* Returns 0 on success, negative values indicate error. */
B
Bogicevic Sasa 已提交
222
#define PCI_USER_READ_CONFIG(size, type)					\
223 224 225
int pci_user_read_config_##size						\
	(struct pci_dev *dev, int pos, type *val)			\
{									\
226
	int ret = PCIBIOS_SUCCESSFUL;					\
227
	u32 data = -1;							\
G
Greg Thelen 已提交
228 229
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
230
	raw_spin_lock_irq(&pci_lock);				\
231 232
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
233
	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
234
					pos, sizeof(type), &data);	\
235
	raw_spin_unlock_irq(&pci_lock);				\
236
	*val = (type)data;						\
237
	return pcibios_err_to_errno(ret);				\
238 239
}									\
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
240

G
Greg Thelen 已提交
241
/* Returns 0 on success, negative values indicate error. */
B
Bogicevic Sasa 已提交
242
#define PCI_USER_WRITE_CONFIG(size, type)				\
243 244 245
int pci_user_write_config_##size					\
	(struct pci_dev *dev, int pos, type val)			\
{									\
246
	int ret = PCIBIOS_SUCCESSFUL;					\
G
Greg Thelen 已提交
247 248
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
249
	raw_spin_lock_irq(&pci_lock);				\
250 251
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
252
	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
253
					pos, sizeof(type), val);	\
254
	raw_spin_unlock_irq(&pci_lock);				\
255
	return pcibios_err_to_errno(ret);				\
256 257
}									\
EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
258 259 260 261 262 263 264 265

PCI_USER_READ_CONFIG(byte, u8)
PCI_USER_READ_CONFIG(word, u16)
PCI_USER_READ_CONFIG(dword, u32)
PCI_USER_WRITE_CONFIG(byte, u8)
PCI_USER_WRITE_CONFIG(word, u16)
PCI_USER_WRITE_CONFIG(dword, u32)

266 267
/* VPD access through PCI 2.2+ VPD capability */

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/**
 * pci_read_vpd - Read one entry from Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to read
 * @buf:	pointer to where to store result
 */
ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->read(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_read_vpd);

/**
 * pci_write_vpd - Write entry to Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to write
 * @buf:	buffer containing write data
 */
ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->write(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_write_vpd);

298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * pci_set_vpd_size - Set size of Vital Product Data space
 * @dev:	pci device struct
 * @len:	size of vpd space
 */
int pci_set_vpd_size(struct pci_dev *dev, size_t len)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->set_size(dev, len);
}
EXPORT_SYMBOL(pci_set_vpd_size);

311
#define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
312

313 314 315 316 317
/**
 * pci_vpd_size - determine actual size of Vital Product Data
 * @dev:	pci device struct
 * @old_size:	current assumed size, also maximum allowed size
 */
318
static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	size_t off = 0;
	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */

	while (off < old_size &&
	       pci_read_vpd(dev, off, 1, header) == 1) {
		unsigned char tag;

		if (header[0] & PCI_VPD_LRDT) {
			/* Large Resource Data Type Tag */
			tag = pci_vpd_lrdt_tag(header);
			/* Only read length from known tag items */
			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
			    (tag == PCI_VPD_LTIN_RO_DATA) ||
			    (tag == PCI_VPD_LTIN_RW_DATA)) {
				if (pci_read_vpd(dev, off+1, 2,
						 &header[1]) != 2) {
					dev_warn(&dev->dev,
						 "invalid large VPD tag %02x size at offset %zu",
						 tag, off + 1);
					return 0;
				}
				off += PCI_VPD_LRDT_TAG_SIZE +
					pci_vpd_lrdt_size(header);
			}
		} else {
			/* Short Resource Data Type Tag */
			off += PCI_VPD_SRDT_TAG_SIZE +
				pci_vpd_srdt_size(header);
			tag = pci_vpd_srdt_tag(header);
		}

		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
			return off;

		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
		    (tag != PCI_VPD_LTIN_RO_DATA) &&
		    (tag != PCI_VPD_LTIN_RW_DATA)) {
			dev_warn(&dev->dev,
				 "invalid %s VPD tag %02x at offset %zu",
				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
				 tag, off);
			return 0;
		}
	}
	return 0;
}

367 368 369 370 371
/*
 * Wait for last operation to complete.
 * This code has to spin since there is no other notification from the PCI
 * hardware. Since the VPD is often implemented by serial attachment to an
 * EEPROM, it may take many milliseconds to complete.
G
Greg Thelen 已提交
372 373
 *
 * Returns 0 on success, negative values indicate error.
374
 */
375
static int pci_vpd_wait(struct pci_dev *dev)
376
{
377
	struct pci_vpd *vpd = dev->vpd;
378
	unsigned long timeout = jiffies + msecs_to_jiffies(125);
379
	unsigned long max_sleep = 16;
380
	u16 status;
381 382 383 384 385
	int ret;

	if (!vpd->busy)
		return 0;

386
	while (time_before(jiffies, timeout)) {
387
		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
388
						&status);
G
Greg Thelen 已提交
389
		if (ret < 0)
390
			return ret;
391 392

		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
393
			vpd->busy = 0;
394 395
			return 0;
		}
396 397 398

		if (fatal_signal_pending(current))
			return -EINTR;
399 400 401 402

		usleep_range(10, max_sleep);
		if (max_sleep < 1024)
			max_sleep *= 2;
403
	}
404 405 406

	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
	return -ETIMEDOUT;
407 408
}

409 410
static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
			    void *arg)
411
{
412
	struct pci_vpd *vpd = dev->vpd;
413 414 415
	int ret;
	loff_t end = pos + count;
	u8 *buf = arg;
416

417
	if (pos < 0)
418 419
		return -EINVAL;

420 421
	if (!vpd->valid) {
		vpd->valid = 1;
422
		vpd->len = pci_vpd_size(dev, vpd->len);
423 424
	}

425
	if (vpd->len == 0)
426 427
		return -EIO;

428
	if (pos > vpd->len)
429 430
		return 0;

431 432
	if (end > vpd->len) {
		end = vpd->len;
433 434 435
		count = end - pos;
	}

436 437 438
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;

439
	ret = pci_vpd_wait(dev);
440 441
	if (ret < 0)
		goto out;
442

443 444 445 446 447 448 449 450
	while (pos < end) {
		u32 val;
		unsigned int i, skip;

		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos & ~3);
		if (ret < 0)
			break;
451
		vpd->busy = 1;
452
		vpd->flag = PCI_VPD_ADDR_F;
453
		ret = pci_vpd_wait(dev);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
		if (ret < 0)
			break;

		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
		if (ret < 0)
			break;

		skip = pos & 3;
		for (i = 0;  i < sizeof(u32); i++) {
			if (i >= skip) {
				*buf++ = val;
				if (++pos == end)
					break;
			}
			val >>= 8;
		}
	}
471
out:
472
	mutex_unlock(&vpd->lock);
473
	return ret ? ret : count;
474 475
}

476 477
static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
			     const void *arg)
478
{
479
	struct pci_vpd *vpd = dev->vpd;
480 481
	const u8 *buf = arg;
	loff_t end = pos + count;
482
	int ret = 0;
483

484 485 486 487 488
	if (pos < 0 || (pos & 3) || (count & 3))
		return -EINVAL;

	if (!vpd->valid) {
		vpd->valid = 1;
489
		vpd->len = pci_vpd_size(dev, vpd->len);
490 491
	}

492
	if (vpd->len == 0)
493 494
		return -EIO;

495
	if (end > vpd->len)
496 497
		return -EINVAL;

498 499
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;
500

501
	ret = pci_vpd_wait(dev);
502 503
	if (ret < 0)
		goto out;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	while (pos < end) {
		u32 val;

		val = *buf++;
		val |= *buf++ << 8;
		val |= *buf++ << 16;
		val |= *buf++ << 24;

		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
		if (ret < 0)
			break;
		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos | PCI_VPD_ADDR_F);
		if (ret < 0)
			break;

521
		vpd->busy = 1;
522
		vpd->flag = 0;
523
		ret = pci_vpd_wait(dev);
524 525
		if (ret < 0)
			break;
526 527 528

		pos += sizeof(u32);
	}
529
out:
530
	mutex_unlock(&vpd->lock);
531
	return ret ? ret : count;
532 533
}

534 535 536 537 538 539 540 541 542 543 544 545 546
static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
{
	struct pci_vpd *vpd = dev->vpd;

	if (len == 0 || len > PCI_VPD_MAX_SIZE)
		return -EIO;

	vpd->valid = 1;
	vpd->len = len;

	return 0;
}

547 548 549
static const struct pci_vpd_ops pci_vpd_ops = {
	.read = pci_vpd_read,
	.write = pci_vpd_write,
550
	.set_size = pci_vpd_set_size,
551 552
};

553 554 555
static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
			       void *arg)
{
556 557
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
558 559 560 561 562 563 564 565 566 567 568 569 570
	ssize_t ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_read_vpd(tdev, pos, count, arg);
	pci_dev_put(tdev);
	return ret;
}

static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
				const void *arg)
{
571 572
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
573 574 575 576 577 578 579 580 581 582
	ssize_t ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_write_vpd(tdev, pos, count, arg);
	pci_dev_put(tdev);
	return ret;
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596
static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
{
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
	int ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_set_vpd_size(tdev, len);
	pci_dev_put(tdev);
	return ret;
}

597 598 599
static const struct pci_vpd_ops pci_vpd_f0_ops = {
	.read = pci_vpd_f0_read,
	.write = pci_vpd_f0_write,
600
	.set_size = pci_vpd_f0_set_size,
601 602
};

603
int pci_vpd_init(struct pci_dev *dev)
604
{
605
	struct pci_vpd *vpd;
606 607 608 609 610
	u8 cap;

	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
	if (!cap)
		return -ENODEV;
611

612 613 614 615
	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
	if (!vpd)
		return -ENOMEM;

616
	vpd->len = PCI_VPD_MAX_SIZE;
617
	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
618
		vpd->ops = &pci_vpd_f0_ops;
619
	else
620
		vpd->ops = &pci_vpd_ops;
621
	mutex_init(&vpd->lock);
622
	vpd->cap = cap;
623
	vpd->busy = 0;
624
	vpd->valid = 0;
625
	dev->vpd = vpd;
626 627 628
	return 0;
}

629 630
void pci_vpd_release(struct pci_dev *dev)
{
631
	kfree(dev->vpd);
632 633
}

634
/**
635
 * pci_cfg_access_lock - Lock PCI config reads/writes
636 637
 * @dev:	pci device struct
 *
638 639
 * When access is locked, any userspace reads or writes to config
 * space and concurrent lock requests will sleep until access is
640
 * allowed via pci_cfg_access_unlock() again.
641
 */
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
void pci_cfg_access_lock(struct pci_dev *dev)
{
	might_sleep();

	raw_spin_lock_irq(&pci_lock);
	if (dev->block_cfg_access)
		pci_wait_cfg(dev);
	dev->block_cfg_access = 1;
	raw_spin_unlock_irq(&pci_lock);
}
EXPORT_SYMBOL_GPL(pci_cfg_access_lock);

/**
 * pci_cfg_access_trylock - try to lock PCI config reads/writes
 * @dev:	pci device struct
 *
 * Same as pci_cfg_access_lock, but will return 0 if access is
 * already locked, 1 otherwise. This function can be used from
 * atomic contexts.
 */
bool pci_cfg_access_trylock(struct pci_dev *dev)
663 664
{
	unsigned long flags;
665
	bool locked = true;
666

667
	raw_spin_lock_irqsave(&pci_lock, flags);
668 669 670 671
	if (dev->block_cfg_access)
		locked = false;
	else
		dev->block_cfg_access = 1;
672
	raw_spin_unlock_irqrestore(&pci_lock, flags);
673

674
	return locked;
675
}
676
EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
677 678

/**
679
 * pci_cfg_access_unlock - Unlock PCI config reads/writes
680 681
 * @dev:	pci device struct
 *
682
 * This function allows PCI config accesses to resume.
683
 */
684
void pci_cfg_access_unlock(struct pci_dev *dev)
685 686 687
{
	unsigned long flags;

688
	raw_spin_lock_irqsave(&pci_lock, flags);
689 690 691

	/* This indicates a problem in the caller, but we don't need
	 * to kill them, unlike a double-block above. */
692
	WARN_ON(!dev->block_cfg_access);
693

694
	dev->block_cfg_access = 0;
695
	raw_spin_unlock_irqrestore(&pci_lock, flags);
696 697

	wake_up_all(&pci_cfg_wait);
698
}
699
EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
700 701 702

static inline int pcie_cap_version(const struct pci_dev *dev)
{
703
	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
704 705
}

706 707 708 709 710
static bool pcie_downstream_port(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

	return type == PCI_EXP_TYPE_ROOT_PORT ||
711 712
	       type == PCI_EXP_TYPE_DOWNSTREAM ||
	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
713 714
}

715
bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
716 717 718
{
	int type = pci_pcie_type(dev);

719
	return type == PCI_EXP_TYPE_ENDPOINT ||
720 721 722 723 724 725
	       type == PCI_EXP_TYPE_LEG_END ||
	       type == PCI_EXP_TYPE_ROOT_PORT ||
	       type == PCI_EXP_TYPE_UPSTREAM ||
	       type == PCI_EXP_TYPE_DOWNSTREAM ||
	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
726 727 728 729
}

static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
{
730
	return pcie_downstream_port(dev) &&
731
	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
732 733 734 735 736 737
}

static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

738
	return type == PCI_EXP_TYPE_ROOT_PORT ||
739 740 741 742 743 744 745 746 747
	       type == PCI_EXP_TYPE_RC_EC;
}

static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
{
	if (!pci_is_pcie(dev))
		return false;

	switch (pos) {
748
	case PCI_EXP_FLAGS:
749 750 751 752
		return true;
	case PCI_EXP_DEVCAP:
	case PCI_EXP_DEVCTL:
	case PCI_EXP_DEVSTA:
753
		return true;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	case PCI_EXP_LNKCAP:
	case PCI_EXP_LNKCTL:
	case PCI_EXP_LNKSTA:
		return pcie_cap_has_lnkctl(dev);
	case PCI_EXP_SLTCAP:
	case PCI_EXP_SLTCTL:
	case PCI_EXP_SLTSTA:
		return pcie_cap_has_sltctl(dev);
	case PCI_EXP_RTCTL:
	case PCI_EXP_RTCAP:
	case PCI_EXP_RTSTA:
		return pcie_cap_has_rtctl(dev);
	case PCI_EXP_DEVCAP2:
	case PCI_EXP_DEVCTL2:
	case PCI_EXP_LNKCAP2:
	case PCI_EXP_LNKCTL2:
	case PCI_EXP_LNKSTA2:
		return pcie_cap_version(dev) > 1;
	default:
		return false;
	}
}

/*
 * Note that these accessor functions are only for the "PCI Express
 * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
 */
int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
{
	int ret;

	*val = 0;
	if (pos & 1)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_word() fails, it may
		 * have been written as 0xFFFF if hardware error happens
		 * during pci_read_config_word().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

	/*
	 * For Functions that do not implement the Slot Capabilities,
	 * Slot Status, and Slot Control registers, these spaces must
	 * be hardwired to 0b, with the exception of the Presence Detect
	 * State bit in the Slot Status register of Downstream Ports,
	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
	 */
809 810
	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
	    pos == PCI_EXP_SLTSTA)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		*val = PCI_EXP_SLTSTA_PDS;

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_word);

int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
{
	int ret;

	*val = 0;
	if (pos & 3)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_dword() fails, it may
		 * have been written as 0xFFFFFFFF if hardware error happens
		 * during pci_read_config_dword().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

837 838
	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
	    pos == PCI_EXP_SLTSTA)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		*val = PCI_EXP_SLTSTA_PDS;

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_dword);

int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
{
	if (pos & 1)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_word);

int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
{
	if (pos & 3)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_dword);

int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
				       u16 clear, u16 set)
{
	int ret;
	u16 val;

	ret = pcie_capability_read_word(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_word(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_word);

int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
					u32 clear, u32 set)
{
	int ret;
	u32 val;

	ret = pcie_capability_read_dword(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_dword(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
902 903 904

int pci_read_config_byte(const struct pci_dev *dev, int where, u8 *val)
{
905 906
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
907
		return PCIBIOS_DEVICE_NOT_FOUND;
908
	}
909 910 911 912 913 914
	return pci_bus_read_config_byte(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_byte);

int pci_read_config_word(const struct pci_dev *dev, int where, u16 *val)
{
915 916
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
917
		return PCIBIOS_DEVICE_NOT_FOUND;
918
	}
919 920 921 922 923 924 925
	return pci_bus_read_config_word(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_word);

int pci_read_config_dword(const struct pci_dev *dev, int where,
					u32 *val)
{
926 927
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
928
		return PCIBIOS_DEVICE_NOT_FOUND;
929
	}
930 931 932 933 934 935
	return pci_bus_read_config_dword(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_dword);

int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val)
{
936
	if (pci_dev_is_disconnected(dev))
937
		return PCIBIOS_DEVICE_NOT_FOUND;
938 939 940 941 942 943
	return pci_bus_write_config_byte(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_byte);

int pci_write_config_word(const struct pci_dev *dev, int where, u16 val)
{
944
	if (pci_dev_is_disconnected(dev))
945
		return PCIBIOS_DEVICE_NOT_FOUND;
946 947 948 949 950 951 952
	return pci_bus_write_config_word(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_word);

int pci_write_config_dword(const struct pci_dev *dev, int where,
					 u32 val)
{
953
	if (pci_dev_is_disconnected(dev))
954
		return PCIBIOS_DEVICE_NOT_FOUND;
955 956 957
	return pci_bus_write_config_dword(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_dword);