access.c 22.5 KB
Newer Older
1
#include <linux/delay.h>
L
Linus Torvalds 已提交
2 3
#include <linux/pci.h>
#include <linux/module.h>
4
#include <linux/sched/signal.h>
5
#include <linux/slab.h>
L
Linus Torvalds 已提交
6
#include <linux/ioport.h>
7
#include <linux/wait.h>
L
Linus Torvalds 已提交
8

9 10
#include "pci.h"

L
Linus Torvalds 已提交
11 12 13 14 15
/*
 * This interrupt-safe spinlock protects all accesses to PCI
 * configuration space.
 */

16
DEFINE_RAW_SPINLOCK(pci_lock);
L
Linus Torvalds 已提交
17 18 19 20 21 22 23 24 25 26 27

/*
 *  Wrappers for all PCI configuration access functions.  They just check
 *  alignment, do locking and call the low-level functions pointed to
 *  by pci_dev->ops.
 */

#define PCI_byte_BAD 0
#define PCI_word_BAD (pos & 1)
#define PCI_dword_BAD (pos & 3)

B
Bogicevic Sasa 已提交
28
#define PCI_OP_READ(size, type, len) \
L
Linus Torvalds 已提交
29 30 31 32 33 34 35
int pci_bus_read_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
{									\
	int res;							\
	unsigned long flags;						\
	u32 data = 0;							\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36
	raw_spin_lock_irqsave(&pci_lock, flags);			\
L
Linus Torvalds 已提交
37 38
	res = bus->ops->read(bus, devfn, pos, len, &data);		\
	*value = (type)data;						\
39
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
L
Linus Torvalds 已提交
40 41 42
	return res;							\
}

B
Bogicevic Sasa 已提交
43
#define PCI_OP_WRITE(size, type, len) \
L
Linus Torvalds 已提交
44 45 46 47 48 49
int pci_bus_write_config_##size \
	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
{									\
	int res;							\
	unsigned long flags;						\
	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50
	raw_spin_lock_irqsave(&pci_lock, flags);			\
L
Linus Torvalds 已提交
51
	res = bus->ops->write(bus, devfn, pos, len, value);		\
52
	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
	return res;							\
}

PCI_OP_READ(byte, u8, 1)
PCI_OP_READ(word, u16, 2)
PCI_OP_READ(dword, u32, 4)
PCI_OP_WRITE(byte, u8, 1)
PCI_OP_WRITE(word, u16, 2)
PCI_OP_WRITE(dword, u32, 4)

EXPORT_SYMBOL(pci_bus_read_config_byte);
EXPORT_SYMBOL(pci_bus_read_config_word);
EXPORT_SYMBOL(pci_bus_read_config_dword);
EXPORT_SYMBOL(pci_bus_write_config_byte);
EXPORT_SYMBOL(pci_bus_write_config_word);
EXPORT_SYMBOL(pci_bus_write_config_dword);
69

R
Rob Herring 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
			    int where, int size, u32 *val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where);
	if (!addr) {
		*val = ~0;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	if (size == 1)
		*val = readb(addr);
	else if (size == 2)
		*val = readw(addr);
	else
		*val = readl(addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_read);

int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
			     int where, int size, u32 val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where);
	if (!addr)
		return PCIBIOS_DEVICE_NOT_FOUND;

	if (size == 1)
		writeb(val, addr);
	else if (size == 2)
		writew(val, addr);
	else
		writel(val, addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_write);

int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
			      int where, int size, u32 *val)
{
	void __iomem *addr;

	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
	if (!addr) {
		*val = ~0;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	*val = readl(addr);

	if (size <= 2)
		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_read32);

int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
			       int where, int size, u32 val)
{
	void __iomem *addr;
	u32 mask, tmp;

	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
	if (!addr)
		return PCIBIOS_DEVICE_NOT_FOUND;

	if (size == 4) {
		writel(val, addr);
		return PCIBIOS_SUCCESSFUL;
	}

147 148 149 150 151 152 153 154 155 156 157 158 159 160
	/*
	 * In general, hardware that supports only 32-bit writes on PCI is
	 * not spec-compliant.  For example, software may perform a 16-bit
	 * write.  If the hardware only supports 32-bit accesses, we must
	 * do a 32-bit read, merge in the 16 bits we intend to write,
	 * followed by a 32-bit write.  If the 16 bits we *don't* intend to
	 * write happen to have any RW1C (write-one-to-clear) bits set, we
	 * just inadvertently cleared something we shouldn't have.
	 */
	dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
			     size, pci_domain_nr(bus), bus->number,
			     PCI_SLOT(devfn), PCI_FUNC(devfn), where);

	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
R
Rob Herring 已提交
161 162 163 164 165 166 167 168
	tmp = readl(addr) & mask;
	tmp |= val << ((where & 0x3) * 8);
	writel(tmp, addr);

	return PCIBIOS_SUCCESSFUL;
}
EXPORT_SYMBOL_GPL(pci_generic_config_write32);

H
Huang Ying 已提交
169 170 171 172 173 174 175 176 177 178 179 180
/**
 * pci_bus_set_ops - Set raw operations of pci bus
 * @bus:	pci bus struct
 * @ops:	new raw operations
 *
 * Return previous raw operations
 */
struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
{
	struct pci_ops *old_ops;
	unsigned long flags;

181
	raw_spin_lock_irqsave(&pci_lock, flags);
H
Huang Ying 已提交
182 183
	old_ops = bus->ops;
	bus->ops = ops;
184
	raw_spin_unlock_irqrestore(&pci_lock, flags);
H
Huang Ying 已提交
185 186 187
	return old_ops;
}
EXPORT_SYMBOL(pci_bus_set_ops);
188

189 190 191 192 193 194 195 196
/*
 * The following routines are to prevent the user from accessing PCI config
 * space when it's unsafe to do so.  Some devices require this during BIST and
 * we're required to prevent it during D-state transitions.
 *
 * We have a bit per device to indicate it's blocked and a global wait queue
 * for callers to sleep on until devices are unblocked.
 */
197
static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
198

199
static noinline void pci_wait_cfg(struct pci_dev *dev)
200 201 202
{
	DECLARE_WAITQUEUE(wait, current);

203
	__add_wait_queue(&pci_cfg_wait, &wait);
204 205
	do {
		set_current_state(TASK_UNINTERRUPTIBLE);
206
		raw_spin_unlock_irq(&pci_lock);
207
		schedule();
208
		raw_spin_lock_irq(&pci_lock);
209 210
	} while (dev->block_cfg_access);
	__remove_wait_queue(&pci_cfg_wait, &wait);
211 212
}

G
Greg Thelen 已提交
213
/* Returns 0 on success, negative values indicate error. */
B
Bogicevic Sasa 已提交
214
#define PCI_USER_READ_CONFIG(size, type)					\
215 216 217
int pci_user_read_config_##size						\
	(struct pci_dev *dev, int pos, type *val)			\
{									\
218
	int ret = PCIBIOS_SUCCESSFUL;					\
219
	u32 data = -1;							\
G
Greg Thelen 已提交
220 221
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
222
	raw_spin_lock_irq(&pci_lock);				\
223 224
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
225
	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
226
					pos, sizeof(type), &data);	\
227
	raw_spin_unlock_irq(&pci_lock);				\
228
	*val = (type)data;						\
229
	return pcibios_err_to_errno(ret);				\
230 231
}									\
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
232

G
Greg Thelen 已提交
233
/* Returns 0 on success, negative values indicate error. */
B
Bogicevic Sasa 已提交
234
#define PCI_USER_WRITE_CONFIG(size, type)				\
235 236 237
int pci_user_write_config_##size					\
	(struct pci_dev *dev, int pos, type val)			\
{									\
238
	int ret = PCIBIOS_SUCCESSFUL;					\
G
Greg Thelen 已提交
239 240
	if (PCI_##size##_BAD)						\
		return -EINVAL;						\
241
	raw_spin_lock_irq(&pci_lock);				\
242 243
	if (unlikely(dev->block_cfg_access))				\
		pci_wait_cfg(dev);					\
244
	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
245
					pos, sizeof(type), val);	\
246
	raw_spin_unlock_irq(&pci_lock);				\
247
	return pcibios_err_to_errno(ret);				\
248 249
}									\
EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
250 251 252 253 254 255 256 257

PCI_USER_READ_CONFIG(byte, u8)
PCI_USER_READ_CONFIG(word, u16)
PCI_USER_READ_CONFIG(dword, u32)
PCI_USER_WRITE_CONFIG(byte, u8)
PCI_USER_WRITE_CONFIG(word, u16)
PCI_USER_WRITE_CONFIG(dword, u32)

258 259
/* VPD access through PCI 2.2+ VPD capability */

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/**
 * pci_read_vpd - Read one entry from Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to read
 * @buf:	pointer to where to store result
 */
ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->read(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_read_vpd);

/**
 * pci_write_vpd - Write entry to Vital Product Data
 * @dev:	pci device struct
 * @pos:	offset in vpd space
 * @count:	number of bytes to write
 * @buf:	buffer containing write data
 */
ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->write(dev, pos, count, buf);
}
EXPORT_SYMBOL(pci_write_vpd);

290 291 292 293 294 295 296 297 298 299 300 301 302
/**
 * pci_set_vpd_size - Set size of Vital Product Data space
 * @dev:	pci device struct
 * @len:	size of vpd space
 */
int pci_set_vpd_size(struct pci_dev *dev, size_t len)
{
	if (!dev->vpd || !dev->vpd->ops)
		return -ENODEV;
	return dev->vpd->ops->set_size(dev, len);
}
EXPORT_SYMBOL(pci_set_vpd_size);

303
#define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
304

305 306 307 308 309
/**
 * pci_vpd_size - determine actual size of Vital Product Data
 * @dev:	pci device struct
 * @old_size:	current assumed size, also maximum allowed size
 */
310
static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
{
	size_t off = 0;
	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */

	while (off < old_size &&
	       pci_read_vpd(dev, off, 1, header) == 1) {
		unsigned char tag;

		if (header[0] & PCI_VPD_LRDT) {
			/* Large Resource Data Type Tag */
			tag = pci_vpd_lrdt_tag(header);
			/* Only read length from known tag items */
			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
			    (tag == PCI_VPD_LTIN_RO_DATA) ||
			    (tag == PCI_VPD_LTIN_RW_DATA)) {
				if (pci_read_vpd(dev, off+1, 2,
						 &header[1]) != 2) {
					dev_warn(&dev->dev,
						 "invalid large VPD tag %02x size at offset %zu",
						 tag, off + 1);
					return 0;
				}
				off += PCI_VPD_LRDT_TAG_SIZE +
					pci_vpd_lrdt_size(header);
			}
		} else {
			/* Short Resource Data Type Tag */
			off += PCI_VPD_SRDT_TAG_SIZE +
				pci_vpd_srdt_size(header);
			tag = pci_vpd_srdt_tag(header);
		}

		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
			return off;

		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
		    (tag != PCI_VPD_LTIN_RO_DATA) &&
		    (tag != PCI_VPD_LTIN_RW_DATA)) {
			dev_warn(&dev->dev,
				 "invalid %s VPD tag %02x at offset %zu",
				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
				 tag, off);
			return 0;
		}
	}
	return 0;
}

359 360 361 362 363
/*
 * Wait for last operation to complete.
 * This code has to spin since there is no other notification from the PCI
 * hardware. Since the VPD is often implemented by serial attachment to an
 * EEPROM, it may take many milliseconds to complete.
G
Greg Thelen 已提交
364 365
 *
 * Returns 0 on success, negative values indicate error.
366
 */
367
static int pci_vpd_wait(struct pci_dev *dev)
368
{
369
	struct pci_vpd *vpd = dev->vpd;
370
	unsigned long timeout = jiffies + msecs_to_jiffies(125);
371
	unsigned long max_sleep = 16;
372
	u16 status;
373 374 375 376 377
	int ret;

	if (!vpd->busy)
		return 0;

378
	while (time_before(jiffies, timeout)) {
379
		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
380
						&status);
G
Greg Thelen 已提交
381
		if (ret < 0)
382
			return ret;
383 384

		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
385
			vpd->busy = 0;
386 387
			return 0;
		}
388 389 390

		if (fatal_signal_pending(current))
			return -EINTR;
391 392 393 394

		usleep_range(10, max_sleep);
		if (max_sleep < 1024)
			max_sleep *= 2;
395
	}
396 397 398

	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
	return -ETIMEDOUT;
399 400
}

401 402
static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
			    void *arg)
403
{
404
	struct pci_vpd *vpd = dev->vpd;
405 406 407
	int ret;
	loff_t end = pos + count;
	u8 *buf = arg;
408

409
	if (pos < 0)
410 411
		return -EINVAL;

412 413
	if (!vpd->valid) {
		vpd->valid = 1;
414
		vpd->len = pci_vpd_size(dev, vpd->len);
415 416
	}

417
	if (vpd->len == 0)
418 419
		return -EIO;

420
	if (pos > vpd->len)
421 422
		return 0;

423 424
	if (end > vpd->len) {
		end = vpd->len;
425 426 427
		count = end - pos;
	}

428 429 430
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;

431
	ret = pci_vpd_wait(dev);
432 433
	if (ret < 0)
		goto out;
434

435 436 437 438 439 440 441 442
	while (pos < end) {
		u32 val;
		unsigned int i, skip;

		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos & ~3);
		if (ret < 0)
			break;
443
		vpd->busy = 1;
444
		vpd->flag = PCI_VPD_ADDR_F;
445
		ret = pci_vpd_wait(dev);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		if (ret < 0)
			break;

		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
		if (ret < 0)
			break;

		skip = pos & 3;
		for (i = 0;  i < sizeof(u32); i++) {
			if (i >= skip) {
				*buf++ = val;
				if (++pos == end)
					break;
			}
			val >>= 8;
		}
	}
463
out:
464
	mutex_unlock(&vpd->lock);
465
	return ret ? ret : count;
466 467
}

468 469
static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
			     const void *arg)
470
{
471
	struct pci_vpd *vpd = dev->vpd;
472 473
	const u8 *buf = arg;
	loff_t end = pos + count;
474
	int ret = 0;
475

476 477 478 479 480
	if (pos < 0 || (pos & 3) || (count & 3))
		return -EINVAL;

	if (!vpd->valid) {
		vpd->valid = 1;
481
		vpd->len = pci_vpd_size(dev, vpd->len);
482 483
	}

484
	if (vpd->len == 0)
485 486
		return -EIO;

487
	if (end > vpd->len)
488 489
		return -EINVAL;

490 491
	if (mutex_lock_killable(&vpd->lock))
		return -EINTR;
492

493
	ret = pci_vpd_wait(dev);
494 495
	if (ret < 0)
		goto out;
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

	while (pos < end) {
		u32 val;

		val = *buf++;
		val |= *buf++ << 8;
		val |= *buf++ << 16;
		val |= *buf++ << 24;

		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
		if (ret < 0)
			break;
		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
						 pos | PCI_VPD_ADDR_F);
		if (ret < 0)
			break;

513
		vpd->busy = 1;
514
		vpd->flag = 0;
515
		ret = pci_vpd_wait(dev);
516 517
		if (ret < 0)
			break;
518 519 520

		pos += sizeof(u32);
	}
521
out:
522
	mutex_unlock(&vpd->lock);
523
	return ret ? ret : count;
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537 538
static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
{
	struct pci_vpd *vpd = dev->vpd;

	if (len == 0 || len > PCI_VPD_MAX_SIZE)
		return -EIO;

	vpd->valid = 1;
	vpd->len = len;

	return 0;
}

539 540 541
static const struct pci_vpd_ops pci_vpd_ops = {
	.read = pci_vpd_read,
	.write = pci_vpd_write,
542
	.set_size = pci_vpd_set_size,
543 544
};

545 546 547
static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
			       void *arg)
{
548 549
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
550 551 552 553 554 555 556 557 558 559 560 561 562
	ssize_t ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_read_vpd(tdev, pos, count, arg);
	pci_dev_put(tdev);
	return ret;
}

static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
				const void *arg)
{
563 564
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
565 566 567 568 569 570 571 572 573 574
	ssize_t ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_write_vpd(tdev, pos, count, arg);
	pci_dev_put(tdev);
	return ret;
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
{
	struct pci_dev *tdev = pci_get_slot(dev->bus,
					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
	int ret;

	if (!tdev)
		return -ENODEV;

	ret = pci_set_vpd_size(tdev, len);
	pci_dev_put(tdev);
	return ret;
}

589 590 591
static const struct pci_vpd_ops pci_vpd_f0_ops = {
	.read = pci_vpd_f0_read,
	.write = pci_vpd_f0_write,
592
	.set_size = pci_vpd_f0_set_size,
593 594
};

595
int pci_vpd_init(struct pci_dev *dev)
596
{
597
	struct pci_vpd *vpd;
598 599 600 601 602
	u8 cap;

	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
	if (!cap)
		return -ENODEV;
603

604 605 606 607
	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
	if (!vpd)
		return -ENOMEM;

608
	vpd->len = PCI_VPD_MAX_SIZE;
609
	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
610
		vpd->ops = &pci_vpd_f0_ops;
611
	else
612
		vpd->ops = &pci_vpd_ops;
613
	mutex_init(&vpd->lock);
614
	vpd->cap = cap;
615
	vpd->busy = 0;
616
	vpd->valid = 0;
617
	dev->vpd = vpd;
618 619 620
	return 0;
}

621 622
void pci_vpd_release(struct pci_dev *dev)
{
623
	kfree(dev->vpd);
624 625
}

626
/**
627
 * pci_cfg_access_lock - Lock PCI config reads/writes
628 629
 * @dev:	pci device struct
 *
630 631
 * When access is locked, any userspace reads or writes to config
 * space and concurrent lock requests will sleep until access is
632
 * allowed via pci_cfg_access_unlock() again.
633
 */
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
void pci_cfg_access_lock(struct pci_dev *dev)
{
	might_sleep();

	raw_spin_lock_irq(&pci_lock);
	if (dev->block_cfg_access)
		pci_wait_cfg(dev);
	dev->block_cfg_access = 1;
	raw_spin_unlock_irq(&pci_lock);
}
EXPORT_SYMBOL_GPL(pci_cfg_access_lock);

/**
 * pci_cfg_access_trylock - try to lock PCI config reads/writes
 * @dev:	pci device struct
 *
 * Same as pci_cfg_access_lock, but will return 0 if access is
 * already locked, 1 otherwise. This function can be used from
 * atomic contexts.
 */
bool pci_cfg_access_trylock(struct pci_dev *dev)
655 656
{
	unsigned long flags;
657
	bool locked = true;
658

659
	raw_spin_lock_irqsave(&pci_lock, flags);
660 661 662 663
	if (dev->block_cfg_access)
		locked = false;
	else
		dev->block_cfg_access = 1;
664
	raw_spin_unlock_irqrestore(&pci_lock, flags);
665

666
	return locked;
667
}
668
EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
669 670

/**
671
 * pci_cfg_access_unlock - Unlock PCI config reads/writes
672 673
 * @dev:	pci device struct
 *
674
 * This function allows PCI config accesses to resume.
675
 */
676
void pci_cfg_access_unlock(struct pci_dev *dev)
677 678 679
{
	unsigned long flags;

680
	raw_spin_lock_irqsave(&pci_lock, flags);
681 682 683

	/* This indicates a problem in the caller, but we don't need
	 * to kill them, unlike a double-block above. */
684
	WARN_ON(!dev->block_cfg_access);
685

686
	dev->block_cfg_access = 0;
687
	raw_spin_unlock_irqrestore(&pci_lock, flags);
688 689

	wake_up_all(&pci_cfg_wait);
690
}
691
EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
692 693 694

static inline int pcie_cap_version(const struct pci_dev *dev)
{
695
	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
696 697
}

698 699 700 701 702
static bool pcie_downstream_port(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

	return type == PCI_EXP_TYPE_ROOT_PORT ||
703 704
	       type == PCI_EXP_TYPE_DOWNSTREAM ||
	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
705 706
}

707
bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
708 709 710
{
	int type = pci_pcie_type(dev);

711
	return type == PCI_EXP_TYPE_ENDPOINT ||
712 713 714 715 716 717
	       type == PCI_EXP_TYPE_LEG_END ||
	       type == PCI_EXP_TYPE_ROOT_PORT ||
	       type == PCI_EXP_TYPE_UPSTREAM ||
	       type == PCI_EXP_TYPE_DOWNSTREAM ||
	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
718 719 720 721
}

static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
{
722
	return pcie_downstream_port(dev) &&
723
	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
724 725 726 727 728 729
}

static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
{
	int type = pci_pcie_type(dev);

730
	return type == PCI_EXP_TYPE_ROOT_PORT ||
731 732 733 734 735 736 737 738 739
	       type == PCI_EXP_TYPE_RC_EC;
}

static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
{
	if (!pci_is_pcie(dev))
		return false;

	switch (pos) {
740
	case PCI_EXP_FLAGS:
741 742 743 744
		return true;
	case PCI_EXP_DEVCAP:
	case PCI_EXP_DEVCTL:
	case PCI_EXP_DEVSTA:
745
		return true;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	case PCI_EXP_LNKCAP:
	case PCI_EXP_LNKCTL:
	case PCI_EXP_LNKSTA:
		return pcie_cap_has_lnkctl(dev);
	case PCI_EXP_SLTCAP:
	case PCI_EXP_SLTCTL:
	case PCI_EXP_SLTSTA:
		return pcie_cap_has_sltctl(dev);
	case PCI_EXP_RTCTL:
	case PCI_EXP_RTCAP:
	case PCI_EXP_RTSTA:
		return pcie_cap_has_rtctl(dev);
	case PCI_EXP_DEVCAP2:
	case PCI_EXP_DEVCTL2:
	case PCI_EXP_LNKCAP2:
	case PCI_EXP_LNKCTL2:
	case PCI_EXP_LNKSTA2:
		return pcie_cap_version(dev) > 1;
	default:
		return false;
	}
}

/*
 * Note that these accessor functions are only for the "PCI Express
 * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
 */
int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
{
	int ret;

	*val = 0;
	if (pos & 1)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_word() fails, it may
		 * have been written as 0xFFFF if hardware error happens
		 * during pci_read_config_word().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

	/*
	 * For Functions that do not implement the Slot Capabilities,
	 * Slot Status, and Slot Control registers, these spaces must
	 * be hardwired to 0b, with the exception of the Presence Detect
	 * State bit in the Slot Status register of Downstream Ports,
	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
	 */
801 802
	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
	    pos == PCI_EXP_SLTSTA)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		*val = PCI_EXP_SLTSTA_PDS;

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_word);

int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
{
	int ret;

	*val = 0;
	if (pos & 3)
		return -EINVAL;

	if (pcie_capability_reg_implemented(dev, pos)) {
		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
		/*
		 * Reset *val to 0 if pci_read_config_dword() fails, it may
		 * have been written as 0xFFFFFFFF if hardware error happens
		 * during pci_read_config_dword().
		 */
		if (ret)
			*val = 0;
		return ret;
	}

829 830
	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
	    pos == PCI_EXP_SLTSTA)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		*val = PCI_EXP_SLTSTA_PDS;

	return 0;
}
EXPORT_SYMBOL(pcie_capability_read_dword);

int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
{
	if (pos & 1)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_word);

int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
{
	if (pos & 3)
		return -EINVAL;

	if (!pcie_capability_reg_implemented(dev, pos))
		return 0;

	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
}
EXPORT_SYMBOL(pcie_capability_write_dword);

int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
				       u16 clear, u16 set)
{
	int ret;
	u16 val;

	ret = pcie_capability_read_word(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_word(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_word);

int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
					u32 clear, u32 set)
{
	int ret;
	u32 val;

	ret = pcie_capability_read_dword(dev, pos, &val);
	if (!ret) {
		val &= ~clear;
		val |= set;
		ret = pcie_capability_write_dword(dev, pos, val);
	}

	return ret;
}
EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
894 895 896

int pci_read_config_byte(const struct pci_dev *dev, int where, u8 *val)
{
897 898
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
899
		return PCIBIOS_DEVICE_NOT_FOUND;
900
	}
901 902 903 904 905 906
	return pci_bus_read_config_byte(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_byte);

int pci_read_config_word(const struct pci_dev *dev, int where, u16 *val)
{
907 908
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
909
		return PCIBIOS_DEVICE_NOT_FOUND;
910
	}
911 912 913 914 915 916 917
	return pci_bus_read_config_word(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_word);

int pci_read_config_dword(const struct pci_dev *dev, int where,
					u32 *val)
{
918 919
	if (pci_dev_is_disconnected(dev)) {
		*val = ~0;
920
		return PCIBIOS_DEVICE_NOT_FOUND;
921
	}
922 923 924 925 926 927
	return pci_bus_read_config_dword(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_read_config_dword);

int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val)
{
928
	if (pci_dev_is_disconnected(dev))
929
		return PCIBIOS_DEVICE_NOT_FOUND;
930 931 932 933 934 935
	return pci_bus_write_config_byte(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_byte);

int pci_write_config_word(const struct pci_dev *dev, int where, u16 val)
{
936
	if (pci_dev_is_disconnected(dev))
937
		return PCIBIOS_DEVICE_NOT_FOUND;
938 939 940 941 942 943 944
	return pci_bus_write_config_word(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_word);

int pci_write_config_dword(const struct pci_dev *dev, int where,
					 u32 val)
{
945
	if (pci_dev_is_disconnected(dev))
946
		return PCIBIOS_DEVICE_NOT_FOUND;
947 948 949
	return pci_bus_write_config_dword(dev->bus, dev->devfn, where, val);
}
EXPORT_SYMBOL(pci_write_config_dword);