tick-sched.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21 22
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/tick.h>
23
#include <linux/module.h>
24

25 26
#include <asm/irq_regs.h>

27 28 29 30 31 32 33 34 35 36 37 38
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49 50 51
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

52 53 54 55 56 57 58
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
79 80 81

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
137
static void tick_nohz_update_jiffies(ktime_t now)
138 139 140 141 142
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

143
	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144
	ts->idle_waketime = now;
145 146 147 148

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
149 150

	touch_softlockup_watchdog();
151 152
}

153 154 155
/*
 * Updates the per cpu time idle statistics counters
 */
156
static void
157
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158
{
159
	ktime_t delta;
160

161 162 163
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164
		if (nr_iowait_cpu(cpu) > 0)
165
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166
		ts->idle_entrytime = now;
167
	}
168

169
	if (last_update_time)
170 171
		*last_update_time = ktime_to_us(now);

172 173 174 175 176 177
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

178
	update_ts_time_stats(cpu, ts, now, NULL);
179
	ts->idle_active = 0;
180

181
	sched_clock_idle_wakeup_event(0);
182 183
}

184
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
185
{
186
	ktime_t now;
187 188

	now = ktime_get();
189

190
	update_ts_time_stats(cpu, ts, now, NULL);
191

192 193
	ts->idle_entrytime = now;
	ts->idle_active = 1;
194
	sched_clock_idle_sleep_event();
195 196 197
	return now;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in
 *
 * Return the cummulative idle time (since boot) for a given
 * CPU, in microseconds. The idle time returned includes
 * the iowait time (unlike what "top" and co report).
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
212 213 214 215
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

216 217 218
	if (!tick_nohz_enabled)
		return -1;

219
	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
220

221 222
	return ktime_to_us(ts->idle_sleeptime);
}
223
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

	if (!tick_nohz_enabled)
		return -1;

245
	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
246 247 248 249 250

	return ktime_to_us(ts->iowait_sleeptime);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

251 252 253 254 255 256 257
/**
 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called either from the idle loop or from irq_exit() when an idle period was
 * just interrupted by an interrupt which did not cause a reschedule.
 */
258
void tick_nohz_stop_sched_tick(int inidle)
259 260 261
{
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
	struct tick_sched *ts;
262
	ktime_t last_update, expires, now;
263
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
264
	u64 time_delta;
265 266 267 268 269 270
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
271 272 273 274 275 276 277 278 279

	/*
	 * Call to tick_nohz_start_idle stops the last_update_time from being
	 * updated. Thus, it must not be called in the event we are called from
	 * irq_exit() with the prior state different than idle.
	 */
	if (!inidle && !ts->inidle)
		goto end;

280 281 282 283 284 285 286
	/*
	 * Set ts->inidle unconditionally. Even if the system did not
	 * switch to NOHZ mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;

287
	now = tick_nohz_start_idle(cpu, ts);
288

289 290 291 292 293 294 295 296 297
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
298
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
299 300
	}

301 302 303 304 305 306
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		goto end;

	if (need_resched())
		goto end;

307
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308 309 310 311
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
312
			       (unsigned int) local_softirq_pending());
313 314
			ratelimit++;
		}
315
		goto end;
316
	}
317 318 319 320 321 322 323

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
324
		time_delta = timekeeping_max_deferment();
325 326
	} while (read_seqretry(&xtime_lock, seq));

327
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
P
Peter Zijlstra 已提交
328
	    arch_needs_cpu(cpu) || nohz_ratelimit(cpu)) {
329
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
330
		delta_jiffies = 1;
331 332 333 334 335
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
336 337 338 339
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
340
	if (!ts->tick_stopped && delta_jiffies == 1)
341 342 343 344 345
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

346 347 348 349 350 351
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
352 353 354 355 356 357
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
358
		 */
T
Thomas Gleixner 已提交
359
		if (cpu == tick_do_timer_cpu) {
360
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
361 362 363 364 365 366 367 368
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

369
		/*
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
387

T
Thomas Gleixner 已提交
388 389 390 391
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
392

I
Ingo Molnar 已提交
393
		if (delta_jiffies > 1)
394
			cpumask_set_cpu(cpu, nohz_cpu_mask);
395 396 397 398 399

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

400 401 402 403 404 405 406 407
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
408 409 410 411
			if (select_nohz_load_balancer(1)) {
				/*
				 * sched tick not stopped!
				 */
412
				cpumask_clear_cpu(cpu, nohz_cpu_mask);
413 414 415
				goto out;
			}

416
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
417 418
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
419
			rcu_enter_nohz();
420
		}
421

422 423
		ts->idle_sleeps++;

424 425 426
		/* Mark expires */
		ts->idle_expires = expires;

427
		/*
428 429
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
430
		 */
431
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
432 433 434 435 436
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

437 438
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
439
				      HRTIMER_MODE_ABS_PINNED);
440 441 442
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
443
		} else if (!tick_program_event(expires, 0))
444 445 446 447 448 449 450
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
451
		cpumask_clear_cpu(cpu, nohz_cpu_mask);
452 453 454 455 456
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
457
	ts->sleep_length = ktime_sub(dev->next_event, now);
458 459 460 461
end:
	local_irq_restore(flags);
}

462 463 464 465 466 467 468 469 470 471 472 473
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

474 475 476
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
477
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
478 479 480 481 482 483

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
484
			hrtimer_start_expires(&ts->sched_timer,
485
					      HRTIMER_MODE_ABS_PINNED);
486 487 488 489
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
490 491
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
492 493 494 495 496 497 498 499
				break;
		}
		/* Update jiffies and reread time */
		tick_do_update_jiffies64(now);
		now = ktime_get();
	}
}

500
/**
501
 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
502 503 504 505 506 507 508
 *
 * Restart the idle tick when the CPU is woken up from idle
 */
void tick_nohz_restart_sched_tick(void)
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
509
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
510
	unsigned long ticks;
511
#endif
512
	ktime_t now;
513

514
	local_irq_disable();
515 516 517 518 519
	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
520

521 522
	if (!ts->inidle || !ts->tick_stopped) {
		ts->inidle = 0;
523
		local_irq_enable();
524
		return;
525
	}
526

527 528
	ts->inidle = 0;

529 530
	rcu_exit_nohz();

531
	/* Update jiffies first */
532
	select_nohz_load_balancer(0);
533
	tick_do_update_jiffies64(now);
534
	cpumask_clear_cpu(cpu, nohz_cpu_mask);
535

536
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
537 538 539 540 541 542 543 544 545
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
546 547 548
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
549

I
Ingo Molnar 已提交
550
	touch_softlockup_watchdog();
551 552 553 554
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
555
	ts->idle_exittime = now;
556

557
	tick_nohz_restart(ts, now);
558 559 560 561 562 563 564

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
565
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
566 567 568 569 570 571 572 573 574
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
575
	int cpu = smp_processor_id();
576 577 578 579
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

580 581 582 583 584 585 586
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
587
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
588 589
		tick_do_timer_cpu = cpu;

590
	/* Check, if the jiffies need an update */
591 592
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
644
		hrtimer_set_expires(&ts->sched_timer, next);
645 646 647 648 649 650 651 652 653 654
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();

	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
	       smp_processor_id());
}

655 656 657 658 659 660 661 662 663 664 665
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
666
static void tick_nohz_kick_tick(int cpu, ktime_t now)
667
{
668 669 670
#if 0
	/* Switch back to 2.6.27 behaviour */

671
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
672
	ktime_t delta;
673

674 675 676 677
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
678
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
679 680 681 682
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
683
#endif
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

702 703 704
#else

static inline void tick_nohz_switch_to_nohz(void) { }
705
static inline void tick_check_nohz(int cpu) { }
706 707 708

#endif /* NO_HZ */

709 710 711 712 713
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
714
	tick_check_oneshot_broadcast(cpu);
715
	tick_check_nohz(cpu);
716 717
}

718 719 720 721 722
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
723
 * We rearm the timer until we get disabled by the idle code.
724 725 726 727 728 729 730 731
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
732 733 734 735 736 737 738 739 740 741
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
742
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
743 744
		tick_do_timer_cpu = cpu;
#endif
745 746

	/* Check, if the jiffies need an update */
747 748
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();
783
	u64 offset;
784 785 786 787 788 789 790

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

791
	/* Get the next period (per cpu) */
792
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
793
	offset = ktime_to_ns(tick_period) >> 1;
794
	do_div(offset, num_possible_cpus());
795
	offset *= smp_processor_id();
796
	hrtimer_add_expires_ns(&ts->sched_timer, offset);
797 798 799

	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
800 801
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
802 803 804 805 806 807 808 809 810 811 812
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
	if (tick_nohz_enabled)
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
813
#endif /* HIGH_RES_TIMERS */
814

815
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
816 817 818 819
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

820
# ifdef CONFIG_HIGH_RES_TIMERS
821 822
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
823
# endif
824

825 826
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
827
#endif
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

868
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
869 870 871 872 873 874 875 876
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}