bitops.h 13.4 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H
3 4 5

/*
 * Copyright 1992, Linus Torvalds.
6 7 8
 *
 * Note: inlines with more than a single statement should be marked
 * __always_inline to avoid problems with older gcc's inlining heuristics.
9 10 11 12 13 14 15 16
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>
17
#include <asm/rmwcc.h>
P
Peter Zijlstra 已提交
18
#include <asm/barrier.h>
19

20 21 22 23 24 25 26 27
#if BITS_PER_LONG == 32
# define _BITOPS_LONG_SHIFT 5
#elif BITS_PER_LONG == 64
# define _BITOPS_LONG_SHIFT 6
#else
# error "Unexpected BITS_PER_LONG"
#endif

28 29
#define BIT_64(n)			(U64_C(1) << (n))

30 31 32 33 34 35 36 37 38 39 40
/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
/* Technically wrong, but this avoids compilation errors on some gcc
   versions. */
41
#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
42
#else
43
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
44 45
#endif

46
#define ADDR				BITOP_ADDR(addr)
47 48 49 50 51

/*
 * We do the locked ops that don't return the old value as
 * a mask operation on a byte.
 */
52 53 54
#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
#define CONST_MASK(nr)			(1 << ((nr) & 7))
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 *
 * Note: there are no guarantees that this function will not be reordered
 * on non x86 architectures, so if you are writing portable code,
 * make sure not to rely on its reordering guarantees.
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
71
static __always_inline void
72
set_bit(long nr, volatile unsigned long *addr)
73
{
74 75 76
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "orb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
77
			: "iq" ((u8)CONST_MASK(nr))
78 79 80 81 82
			: "memory");
	} else {
		asm volatile(LOCK_PREFIX "bts %1,%0"
			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
	}
83 84 85 86 87 88 89 90 91 92 93
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
94
static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
95
{
96
	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
97 98 99 100 101 102 103 104 105
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
P
Peter Zijlstra 已提交
106
 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
107 108
 * in order to ensure changes are visible on other processors.
 */
109
static __always_inline void
110
clear_bit(long nr, volatile unsigned long *addr)
111
{
112 113 114
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "andb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
115
			: "iq" ((u8)~CONST_MASK(nr)));
116 117 118 119 120
	} else {
		asm volatile(LOCK_PREFIX "btr %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
121 122 123 124 125 126 127 128 129 130
}

/*
 * clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and implies release semantics before the memory
 * operation. It can be used for an unlock.
 */
131
static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
132 133 134 135 136
{
	barrier();
	clear_bit(nr, addr);
}

137
static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
138
{
139
	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

/*
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * __clear_bit() is non-atomic and implies release semantics before the memory
 * operation. It can be used for an unlock if no other CPUs can concurrently
 * modify other bits in the word.
 *
 * No memory barrier is required here, because x86 cannot reorder stores past
 * older loads. Same principle as spin_unlock.
 */
154
static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	barrier();
	__clear_bit(nr, addr);
}

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
169
static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
170
{
171
	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
172 173 174 175 176 177 178 179 180 181 182
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
183
static __always_inline void change_bit(long nr, volatile unsigned long *addr)
184
{
185 186 187 188 189 190 191 192 193
	if (IS_IMMEDIATE(nr)) {
		asm volatile(LOCK_PREFIX "xorb %1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" ((u8)CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX "btc %1,%0"
			: BITOP_ADDR(addr)
			: "Ir" (nr));
	}
194 195 196 197 198 199 200 201 202 203
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
204
static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
205
{
206
	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", "c");
207 208 209 210 211 212 213 214 215
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on x86.
 */
216
static __always_inline bool
217
test_and_set_bit_lock(long nr, volatile unsigned long *addr)
218 219 220 221 222 223 224 225 226 227 228 229 230
{
	return test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
231
static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
232
{
233
	bool oldbit;
234

235
	asm("bts %2,%1\n\t"
236 237
	    "setc %0"
	    : "=qm" (oldbit), ADDR
238
	    : "Ir" (nr));
239 240 241 242 243 244 245 246 247 248 249
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
250
static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
251
{
252
	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", "c");
253 254 255 256 257 258 259 260 261 262
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
263 264 265 266 267 268 269
 *
 * Note: the operation is performed atomically with respect to
 * the local CPU, but not other CPUs. Portable code should not
 * rely on this behaviour.
 * KVM relies on this behaviour on x86 for modifying memory that is also
 * accessed from a hypervisor on the same CPU if running in a VM: don't change
 * this without also updating arch/x86/kernel/kvm.c
270
 */
271
static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
272
{
273
	bool oldbit;
274

275
	asm volatile("btr %2,%1\n\t"
276 277
		     "setc %0"
		     : "=qm" (oldbit), ADDR
278
		     : "Ir" (nr));
279 280 281 282
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
283
static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
284
{
285
	bool oldbit;
286

287
	asm volatile("btc %2,%1\n\t"
288 289
		     "setc %0"
		     : "=qm" (oldbit), ADDR
290
		     : "Ir" (nr) : "memory");
291 292 293 294 295 296 297 298 299 300 301 302

	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
303
static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
304
{
305
	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", "c");
306 307
}

308
static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
309
{
310 311
	return ((1UL << (nr & (BITS_PER_LONG-1))) &
		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
312 313
}

314
static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
315
{
316
	bool oldbit;
317

318
	asm volatile("bt %2,%1\n\t"
319 320
		     "setc %0"
		     : "=qm" (oldbit)
321
		     : "m" (*(unsigned long *)addr), "Ir" (nr));
322 323 324 325 326 327 328 329 330 331

	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
332
static bool test_bit(int nr, const volatile unsigned long *addr);
333 334
#endif

335 336 337 338
#define test_bit(nr, addr)			\
	(__builtin_constant_p((nr))		\
	 ? constant_test_bit((nr), (addr))	\
	 : variable_test_bit((nr), (addr)))
339

340 341 342 343 344 345
/**
 * __ffs - find first set bit in word
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
346
static __always_inline unsigned long __ffs(unsigned long word)
347
{
J
Jan Beulich 已提交
348
	asm("rep; bsf %1,%0"
349 350
		: "=r" (word)
		: "rm" (word));
351 352 353 354 355 356 357 358 359
	return word;
}

/**
 * ffz - find first zero bit in word
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
360
static __always_inline unsigned long ffz(unsigned long word)
361
{
J
Jan Beulich 已提交
362
	asm("rep; bsf %1,%0"
363 364
		: "=r" (word)
		: "r" (~word));
365 366 367 368 369 370 371
	return word;
}

/*
 * __fls: find last set bit in word
 * @word: The word to search
 *
372
 * Undefined if no set bit exists, so code should check against 0 first.
373
 */
374
static __always_inline unsigned long __fls(unsigned long word)
375
{
376 377 378
	asm("bsr %1,%0"
	    : "=r" (word)
	    : "rm" (word));
379 380 381
	return word;
}

382 383
#undef ADDR

384 385 386 387 388 389 390 391 392 393 394 395
#ifdef __KERNEL__
/**
 * ffs - find first set bit in word
 * @x: the word to search
 *
 * This is defined the same way as the libc and compiler builtin ffs
 * routines, therefore differs in spirit from the other bitops.
 *
 * ffs(value) returns 0 if value is 0 or the position of the first
 * set bit if value is nonzero. The first (least significant) bit
 * is at position 1.
 */
396
static __always_inline int ffs(int x)
397 398
{
	int r;
399 400 401 402 403 404 405 406 407 408 409 410 411

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsfl %1,%0"
	    : "=r" (r)
412
	    : "rm" (x), "0" (-1));
413
#elif defined(CONFIG_X86_CMOV)
414 415
	asm("bsfl %1,%0\n\t"
	    "cmovzl %2,%0"
416
	    : "=&r" (r) : "rm" (x), "r" (-1));
417
#else
418 419 420 421
	asm("bsfl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
#endif
	return r + 1;
}

/**
 * fls - find last set bit in word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffs, but returns the position of the most significant set bit.
 *
 * fls(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 32.
 */
437
static __always_inline int fls(int x)
438 439
{
	int r;
440 441 442 443 444 445 446 447 448 449 450 451 452

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsrl %1,%0"
	    : "=r" (r)
453
	    : "rm" (x), "0" (-1));
454
#elif defined(CONFIG_X86_CMOV)
455 456 457
	asm("bsrl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "rm" (-1));
458
#else
459 460 461 462
	asm("bsrl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
463 464 465
#endif
	return r + 1;
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * fls64 - find last set bit in a 64-bit word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffsll, but returns the position of the most significant set bit.
 *
 * fls64(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 64.
 */
#ifdef CONFIG_X86_64
static __always_inline int fls64(__u64 x)
{
481
	int bitpos = -1;
482 483 484 485 486
	/*
	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before.
	 */
487
	asm("bsrq %1,%q0"
488 489 490 491 492 493 494 495
	    : "+r" (bitpos)
	    : "rm" (x));
	return bitpos + 1;
}
#else
#include <asm-generic/bitops/fls64.h>
#endif

496 497
#include <asm-generic/bitops/find.h>

498 499
#include <asm-generic/bitops/sched.h>

500 501 502
#include <asm/arch_hweight.h>

#include <asm-generic/bitops/const_hweight.h>
503

504
#include <asm-generic/bitops/le.h>
505

506
#include <asm-generic/bitops/ext2-atomic-setbit.h>
507 508

#endif /* __KERNEL__ */
H
H. Peter Anvin 已提交
509
#endif /* _ASM_X86_BITOPS_H */