timekeeping.c 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
21
#include <linux/stop_machine.h>
22

23 24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
27 28
	/* The shift value of the current clocksource. */
	int	shift;
29 30 31 32 33 34 35 36 37 38 39 40 41

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
42 43 44
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
45 46
	/* NTP adjusted clock multiplier */
	u32	mult;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
};

struct timekeeper timekeeper;

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
	u64 tmp;

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
72 73
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
74 75 76 77 78 79 80 81 82
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
	timekeeper.raw_interval =
83
		((u64) interval * clock->mult) >> clock->shift;
84 85

	timekeeper.xtime_nsec = 0;
86
	timekeeper.shift = clock->shift;
87 88

	timekeeper.ntp_error = 0;
89
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
90 91 92 93 94 95 96

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
97
}
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

133 134
/*
 * This read-write spinlock protects us from races in SMP while
135
 * playing with xtime.
136
 */
A
Adrian Bunk 已提交
137
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
138 139 140 141 142 143 144 145 146


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
147 148 149 150 151 152 153
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
154 155 156
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
157
static struct timespec total_sleep_time;
158

159 160 161 162 163
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
struct timespec raw_time;

164 165 166
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

167
static struct timespec xtime_cache __attribute__ ((aligned (16)));
168
void update_xtime_cache(u64 nsec)
169 170 171 172 173
{
	xtime_cache = xtime;
	timespec_add_ns(&xtime_cache, nsec);
}

174 175 176 177 178
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
179
	update_vsyscall(&xtime, timekeeper.clock);
180
}
181 182

#ifdef CONFIG_GENERIC_TIME
183

184
/**
185
 * timekeeping_forward_now - update clock to the current time
186
 *
187 188 189
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
190
 */
191
static void timekeeping_forward_now(void)
192 193
{
	cycle_t cycle_now, cycle_delta;
194
	struct clocksource *clock;
195
	s64 nsec;
196

197
	clock = timekeeper.clock;
198
	cycle_now = clock->read(clock);
199
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200
	clock->cycle_last = cycle_now;
201

202 203
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
204 205 206 207

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

208
	timespec_add_ns(&xtime, nsec);
209

210
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211
	timespec_add_ns(&raw_time, nsec);
212 213 214
}

/**
215
 * getnstimeofday - Returns the time of day in a timespec
216 217
 * @ts:		pointer to the timespec to be set
 *
218
 * Returns the time of day in a timespec.
219
 */
220
void getnstimeofday(struct timespec *ts)
221 222 223 224
{
	unsigned long seq;
	s64 nsecs;

225 226
	WARN_ON(timekeeping_suspended);

227 228 229 230
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
231
		nsecs = timekeeping_get_ns();
232

233 234 235
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

236 237 238 239 240 241 242
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

243 244 245 246 247 248 249 250 251 252 253
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
254
		nsecs += timekeeping_get_ns();
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
285
		nsecs = timekeeping_get_ns();
286 287 288 289 290 291 292 293

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

294 295 296 297
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
298
 * NOTE: Users should be converted to using getnstimeofday()
299 300 301 302 303
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

304
	getnstimeofday(&now);
305 306 307 308 309 310 311 312 313 314 315 316 317
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
318
	struct timespec ts_delta;
319 320 321 322 323 324 325
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

326
	timekeeping_forward_now();
327 328 329 330

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
331

332
	xtime = *tv;
333

334
	update_xtime_cache(0);
335

336
	timekeeper.ntp_error = 0;
337 338
	ntp_clear();

339
	update_vsyscall(&xtime, timekeeper.clock);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
356
static int change_clocksource(void *data)
357
{
358
	struct clocksource *new, *old;
359

360
	new = (struct clocksource *) data;
361

362
	timekeeping_forward_now();
363 364 365 366 367 368 369 370
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
371

372 373 374 375 376 377 378 379 380 381
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
382
		return;
383
	stop_machine(change_clocksource, clock, NULL);
384 385
	tick_clock_notify();
}
386

387
#else /* GENERIC_TIME */
388

389
static inline void timekeeping_forward_now(void) { }
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get(void)
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#endif /* !GENERIC_TIME */

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
447

448 449 450 451 452 453 454 455 456 457 458 459 460
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
461
		nsecs = timekeeping_get_ns_raw();
462
		*ts = raw_time;
463 464 465 466 467 468 469 470

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


471
/**
472
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
473
 */
474
int timekeeping_valid_for_hres(void)
475 476 477 478 479 480 481
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

482
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
483 484 485 486 487 488 489

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

/**
490
 * read_persistent_clock -  Return time from the persistent clock.
491 492
 *
 * Weak dummy function for arches that do not yet support it.
493 494
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
495 496 497
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
498
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
499
{
500 501
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

519 520 521 522 523
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
524
	struct clocksource *clock;
525
	unsigned long flags;
526
	struct timespec now, boot;
527 528

	read_persistent_clock(&now);
529
	read_boot_clock(&boot);
530 531 532

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
533
	ntp_init();
534

535
	clock = clocksource_default_clock();
536 537
	if (clock->enable)
		clock->enable(clock);
538
	timekeeper_setup_internals(clock);
539

540 541
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
542 543
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
544 545 546 547
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
548
	set_normalized_timespec(&wall_to_monotonic,
549
				-boot.tv_sec, -boot.tv_nsec);
550
	update_xtime_cache(0);
551 552
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
553 554 555 556
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
557
static struct timespec timekeeping_suspend_time;
558 559 560 561 562 563 564 565 566 567 568 569

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
570 571 572
	struct timespec ts;

	read_persistent_clock(&ts);
573

574 575
	clocksource_resume();

576 577
	write_seqlock_irqsave(&xtime_lock, flags);

578 579 580 581 582
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
		xtime = timespec_add_safe(xtime, ts);
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
583
	}
584
	update_xtime_cache(0);
585
	/* re-base the last cycle value */
586 587
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

605
	read_persistent_clock(&timekeeping_suspend_time);
606

607
	write_seqlock_irqsave(&xtime_lock, flags);
608
	timekeeping_forward_now();
609 610 611 612 613 614 615 616 617 618
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
619
	.name		= "timekeeping",
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
643
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
644 645 646 647 648 649 650 651 652 653 654 655
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
656
	 * here.  This is tuned so that an error of about 1 msec is adjusted
657 658
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
659
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
660 661 662 663 664 665 666 667
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
668
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
669
	tick_error -= timekeeper.xtime_interval >> 1;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
694
static void timekeeping_adjust(s64 offset)
695
{
696
	s64 error, interval = timekeeper.cycle_interval;
697 698
	int adj;

699
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
700 701 702 703 704
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
705
			adj = timekeeping_bigadjust(error, &interval, &offset);
706 707 708 709 710 711 712
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
713
			adj = timekeeping_bigadjust(error, &interval, &offset);
714 715 716
	} else
		return;

717
	timekeeper.mult += adj;
718 719 720
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
721
				timekeeper.ntp_error_shift;
722 723
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

	/* Accumulate into raw time */
	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
		raw_time.tv_nsec -= NSEC_PER_SEC;
		raw_time.tv_sec++;
	}

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
	timekeeper.ntp_error -= timekeeper.xtime_interval <<
				(timekeeper.ntp_error_shift + shift);

	return offset;
}


769 770 771 772 773 774 775
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
void update_wall_time(void)
{
776
	struct clocksource *clock;
777
	cycle_t offset;
778
	u64 nsecs;
779
	int shift = 0, maxshift;
780 781 782 783 784

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

785
	clock = timekeeper.clock;
786
#ifdef CONFIG_GENERIC_TIME
787
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
788
#else
789
	offset = timekeeper.cycle_interval;
790
#endif
791
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
792

793 794 795 796 797 798 799
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
800
	 */
801 802 803 804 805
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
806
	while (offset >= timekeeper.cycle_interval) {
807 808
		offset = logarithmic_accumulation(offset, shift);
		shift--;
809 810 811
	}

	/* correct the clock when NTP error is too big */
812
	timekeeping_adjust(offset);
813

814 815 816 817
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
818
	 * slightly speeding the clocksource up in timekeeping_adjust(),
819 820 821 822 823 824 825 826 827 828 829
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
830 831 832
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
833
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
834 835
	}

836 837 838
	/* store full nanoseconds into xtime after rounding it up and
	 * add the remainder to the error difference.
	 */
839 840 841 842
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
843

844
	nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
845
	update_xtime_cache(nsecs);
846

847
	/* check to see if there is a new clocksource to use */
848
	update_vsyscall(&xtime, timekeeper.clock);
849
}
T
Tomas Janousek 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
864 865 866 867
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
868 869

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
870 871 872 873 874 875 876 877
}

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
878
	*ts = timespec_add_safe(*ts, total_sleep_time);
T
Tomas Janousek 已提交
879
}
880

881 882 883 884 885 886
unsigned long get_seconds(void)
{
	return xtime_cache.tv_sec;
}
EXPORT_SYMBOL(get_seconds);

887 888 889 890
struct timespec __current_kernel_time(void)
{
	return xtime_cache;
}
891

892 893 894 895 896 897 898 899
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);

900
		now = xtime_cache;
901 902 903 904 905
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);

		now = xtime_cache;
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}