crypto.c 63.7 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39
#include "ecryptfs_kernel.h"

40 41 42
#define DECRYPT		0
#define ENCRYPT		1

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
92 93 94 95 96
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
97

98
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99
	sg_init_one(&sg, (u8 *)src, len);
100 101 102 103 104
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
105
			ecryptfs_printk(KERN_ERR, "Error attempting to "
106 107
					"allocate crypto context; rc = [%d]\n",
					rc);
108 109
			goto out;
		}
110
		crypt_stat->hash_tfm = desc.tfm;
111
	}
112 113 114 115
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
116
		       __func__, rc);
117 118 119 120 121 122
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
123
		       __func__, rc);
124 125 126 127 128 129
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130
		       __func__, rc);
131 132
		goto out;
	}
133
out:
134
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 136 137
	return rc;
}

138 139 140
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
141 142 143 144 145 146 147 148
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149
	if (!(*algified_name)) {
150 151 152 153 154 155 156 157 158 159
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

160 161 162 163
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
164
 * @offset: Offset of the extent whose IV we are to derive
165 166 167 168 169 170
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
171 172
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
188
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 220
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
221 222
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
223
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 226 227
}

/**
228
 * ecryptfs_destroy_crypt_stat
229 230 231 232
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
233
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234
{
235 236
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

237
	if (crypt_stat->tfm)
238
		crypto_free_ablkcipher(crypt_stat->tfm);
239 240
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
241 242 243 244 245
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
246 247 248
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

249
void ecryptfs_destroy_mount_crypt_stat(
250 251
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

291 292
	sg_init_table(sg, sg_size);

293 294 295
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
296
		sg_set_page(&sg[i], pg, 0, offset);
297 298
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
299
			sg[i].length = remainder_of_page;
300 301 302
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
303
			sg[i].length = size;
304 305 306 307 308 309 310 311 312 313
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
struct extent_crypt_result {
	struct completion completion;
	int rc;
};

static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
	struct extent_crypt_result *ecr = req->data;

	if (rc == -EINPROGRESS)
		return;

	ecr->rc = rc;
	complete(&ecr->completion);
}

330
/**
331
 * crypt_scatterlist
332
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333
 * @dst_sg: Destination of the data after performing the crypto operation
334 335 336 337
 * @src_sg: Data to be encrypted or decrypted
 * @size: Length of data
 * @iv: IV to use
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
338
 *
339
 * Returns the number of bytes encrypted or decrypted; negative value on error
340
 */
341
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342
			     struct scatterlist *dst_sg,
343 344
			     struct scatterlist *src_sg, int size,
			     unsigned char *iv, int op)
345
{
346 347
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
348 349 350
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
351
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352
	if (unlikely(ecryptfs_verbosity > 0)) {
353
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354 355 356 357
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
358 359 360

	init_completion(&ecr.completion);

361
	mutex_lock(&crypt_stat->cs_tfm_mutex);
362 363
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
364
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
365
		rc = -ENOMEM;
366 367
		goto out;
	}
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
386
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
387
	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388 389
	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
			     crypto_ablkcipher_decrypt(req);
390 391 392 393 394 395 396
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
	}
397
out:
398
	ablkcipher_request_free(req);
399 400 401
	return rc;
}

402
/**
403
 * lower_offset_for_page
404 405 406
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
407 408
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
				    struct page *page)
409
{
410 411
	return ecryptfs_lower_header_size(crypt_stat) +
	       (page->index << PAGE_CACHE_SHIFT);
412 413 414
}

/**
415
 * crypt_extent
416 417
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
418
 * @dst_page: The page to write the result into
419
 * @src_page: The page to read from
420
 * @extent_offset: Page extent offset for use in generating IV
421
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
422
 *
423
 * Encrypts or decrypts one extent of data.
424 425 426
 *
 * Return zero on success; non-zero otherwise
 */
427 428
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
			struct page *dst_page,
429 430
			struct page *src_page,
			unsigned long extent_offset, int op)
431
{
432
	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
M
Michael Halcrow 已提交
433
	loff_t extent_base;
434
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435 436
	struct scatterlist src_sg, dst_sg;
	size_t extent_size = crypt_stat->extent_size;
437 438
	int rc;

439
	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440 441 442
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
443 444 445
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
446 447
		goto out;
	}
448 449 450 451 452 453 454 455 456 457 458

	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

	sg_set_page(&src_sg, src_page, extent_size,
		    extent_offset * extent_size);
	sg_set_page(&dst_sg, dst_page, extent_size,
		    extent_offset * extent_size);

	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
			       extent_iv, op);
459
	if (rc < 0) {
460 461 462
		printk(KERN_ERR "%s: Error attempting to crypt page with "
		       "page_index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463 464 465 466 467 468 469
		goto out;
	}
	rc = 0;
out:
	return rc;
}

470 471
/**
 * ecryptfs_encrypt_page
472 473 474
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
475 476 477 478 479 480 481 482 483 484 485
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
486
int ecryptfs_encrypt_page(struct page *page)
487
{
488
	struct inode *ecryptfs_inode;
489
	struct ecryptfs_crypt_stat *crypt_stat;
490 491
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
492
	loff_t extent_offset;
493
	loff_t lower_offset;
494
	int rc = 0;
495 496 497 498

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500 501
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
502 503 504 505 506
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
507

508 509 510
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
511
		rc = crypt_extent(crypt_stat, enc_extent_page, page,
512
				  extent_offset, ENCRYPT);
513
		if (rc) {
514
			printk(KERN_ERR "%s: Error encrypting extent; "
515
			       "rc = [%d]\n", __func__, rc);
516 517
			goto out;
		}
518 519
	}

520
	lower_offset = lower_offset_for_page(crypt_stat, page);
521 522 523 524 525 526 527 528 529
	enc_extent_virt = kmap(enc_extent_page);
	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
				  PAGE_CACHE_SIZE);
	kunmap(enc_extent_page);
	if (rc < 0) {
		ecryptfs_printk(KERN_ERR,
			"Error attempting to write lower page; rc = [%d]\n",
			rc);
		goto out;
530
	}
531
	rc = 0;
532
out:
533 534 535
	if (enc_extent_page) {
		__free_page(enc_extent_page);
	}
536 537 538
	return rc;
}

539 540
/**
 * ecryptfs_decrypt_page
541 542 543
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
544 545 546 547 548 549 550 551 552 553 554
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
555
int ecryptfs_decrypt_page(struct page *page)
556
{
557
	struct inode *ecryptfs_inode;
558
	struct ecryptfs_crypt_stat *crypt_stat;
T
Tyler Hicks 已提交
559
	char *page_virt;
560
	unsigned long extent_offset;
561
	loff_t lower_offset;
562 563
	int rc = 0;

564 565 566
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568

569
	lower_offset = lower_offset_for_page(crypt_stat, page);
T
Tyler Hicks 已提交
570 571
	page_virt = kmap(page);
	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572
				 ecryptfs_inode);
T
Tyler Hicks 已提交
573
	kunmap(page);
574 575 576 577 578 579 580
	if (rc < 0) {
		ecryptfs_printk(KERN_ERR,
			"Error attempting to read lower page; rc = [%d]\n",
			rc);
		goto out;
	}

581 582 583
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
584
		rc = crypt_extent(crypt_stat, page, page,
585
				  extent_offset, DECRYPT);
586 587
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
588
			       "rc = [%d]\n", __func__, rc);
589
			goto out;
590 591 592 593 594 595 596 597 598 599
		}
	}
out:
	return rc;
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
600
 * @crypt_stat: Uninitialized crypt stats structure
601 602 603 604 605 606 607 608
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
609
	char *full_alg_name;
610 611 612 613 614 615 616 617
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
618
			"key_size_bits = [%zd]\n",
619 620 621 622 623 624 625
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
626 627 628
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
629
		goto out_unlock;
630
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
631
	kfree(full_alg_name);
632 633
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
634
		crypt_stat->tfm = NULL;
635 636 637
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
638
		goto out_unlock;
639
	}
640
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
641
	rc = 0;
642 643
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
671
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
672
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673 674
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
675
			crypt_stat->metadata_size =
676
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
677
		else
678
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
679
	}
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
695
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
712
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
713 714 715 716 717 718 719
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
720
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
721 722 723 724 725 726 727 728
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

729 730
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
731 732
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
733 734 735 736 737 738 739 740 741 742 743 744
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
745 746 747 748 749 750 751 752 753
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
754 755
}

756 757 758 759 760 761 762
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

763
	mutex_lock(&crypt_stat->keysig_list_mutex);
764
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
765

766 767 768
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
769 770
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
771 772 773 774 775 776
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
777

778
out:
779 780
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
781 782 783
	return rc;
}

784 785
/**
 * ecryptfs_set_default_crypt_stat_vals
786 787
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
788 789 790 791 792 793 794
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
795 796
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
797 798 799
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
800
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
801 802 803 804 805 806
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
807
 * @ecryptfs_inode: The eCryptfs inode
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
824
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
825 826
{
	struct ecryptfs_crypt_stat *crypt_stat =
827
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
828 829
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
830
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
831
	int cipher_name_len;
832
	int rc = 0;
833 834

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
835
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
854 855 856 857 858
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
859
out:
860 861 862 863
	return rc;
}

/**
864
 * ecryptfs_validate_marker - check for the ecryptfs marker
865 866
 * @data: The data block in which to check
 *
867
 * Returns zero if marker found; -EINVAL if not found
868
 */
869
static int ecryptfs_validate_marker(char *data)
870 871 872
{
	u32 m_1, m_2;

873 874
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
875
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
876
		return 0;
877 878 879 880 881
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
882
	return -EINVAL;
883 884 885 886 887 888 889 890 891 892
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
893
	{0x00000002, ECRYPTFS_ENCRYPTED},
894 895
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
896 897 898 899
};

/**
 * ecryptfs_process_flags
900
 * @crypt_stat: The cryptographic context
901 902 903 904 905 906 907 908 909 910 911 912
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

913
	flags = get_unaligned_be32(page_virt);
914 915 916
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
917
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
918
		} else
919
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
939 940 941
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
942 943 944
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

945 946 947
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
948 949 950 951 952 953
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
954
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
955 956 957
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
958
	put_unaligned_be32(flags, page_virt);
959 960 961 962 963
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
964
	u8 cipher_code;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
984 985
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
986 987 988
 *
 * Returns zero on no match, or the cipher code on match
 */
989
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
990 991
{
	int i;
992
	u8 code = 0;
993 994 995
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

996 997
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1009
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1024
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1041
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1042
{
1043 1044
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1045 1046
	int rc;

1047 1048 1049 1050 1051 1052 1053
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1054 1055 1056
	return rc;
}

1057 1058 1059 1060
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1061 1062 1063 1064
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1065
	header_extent_size = (u32)crypt_stat->extent_size;
1066
	num_header_extents_at_front =
1067
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1068
	put_unaligned_be32(header_extent_size, virt);
1069
	virt += 4;
1070
	put_unaligned_be16(num_header_extents_at_front, virt);
1071 1072 1073
	(*written) = 6;
}

1074
struct kmem_cache *ecryptfs_header_cache;
1075 1076 1077

/**
 * ecryptfs_write_headers_virt
1078
 * @page_virt: The virtual address to write the headers to
1079
 * @max: The size of memory allocated at page_virt
1080 1081 1082
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1107 1108
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1109 1110
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1111 1112 1113 1114 1115 1116 1117 1118
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1119 1120
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1121
	offset += written;
1122 1123
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1124 1125 1126
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1127
					      max - offset);
1128 1129 1130
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1131 1132 1133 1134 1135 1136 1137
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1138
static int
1139
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1140
				    char *virt, size_t virt_len)
1141
{
1142
	int rc;
1143

1144
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1145
				  0, virt_len);
1146
	if (rc < 0)
1147
		printk(KERN_ERR "%s: Error attempting to write header "
1148 1149 1150
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1151
	return rc;
1152 1153
}

1154 1155 1156
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1157 1158 1159 1160 1161
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1162 1163 1164
	return rc;
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1176
/**
1177
 * ecryptfs_write_metadata
1178 1179
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 * @ecryptfs_inode: The newly created eCryptfs inode
1180 1181 1182 1183 1184 1185 1186 1187 1188
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1189 1190
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
			    struct inode *ecryptfs_inode)
1191
{
1192
	struct ecryptfs_crypt_stat *crypt_stat =
1193
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1194
	unsigned int order;
1195
	char *virt;
1196
	size_t virt_len;
1197
	size_t size = 0;
1198 1199
	int rc = 0;

1200 1201
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1202
			printk(KERN_ERR "Key is invalid; bailing out\n");
1203 1204 1205 1206
			rc = -EINVAL;
			goto out;
		}
	} else {
1207
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1208
		       __func__);
1209 1210 1211
		rc = -EINVAL;
		goto out;
	}
1212
	virt_len = crypt_stat->metadata_size;
1213
	order = get_order(virt_len);
1214
	/* Released in this function */
1215
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1216
	if (!virt) {
1217
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1218 1219 1220
		rc = -ENOMEM;
		goto out;
	}
1221
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1222 1223
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1224
	if (unlikely(rc)) {
1225
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1226
		       __func__, rc);
1227 1228
		goto out_free;
	}
1229
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1230 1231
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1232
	else
1233
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1234
							 virt_len);
1235
	if (rc) {
1236
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1237
		       "rc = [%d]\n", __func__, rc);
1238
		goto out_free;
1239 1240
	}
out_free:
1241
	free_pages((unsigned long)virt, order);
1242 1243 1244 1245
out:
	return rc;
}

1246 1247
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1248
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1249 1250
				 char *virt, int *bytes_read,
				 int validate_header_size)
1251 1252 1253 1254 1255
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1256 1257 1258
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1259 1260
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1261
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1262
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1263
	    && (crypt_stat->metadata_size
1264
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1265
		rc = -EINVAL;
1266
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1267
		       crypt_stat->metadata_size);
1268 1269 1270 1271 1272 1273
	}
	return rc;
}

/**
 * set_default_header_data
1274
 * @crypt_stat: The cryptographic context
1275 1276 1277 1278 1279 1280 1281
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1282
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1304 1305
/**
 * ecryptfs_read_headers_virt
1306 1307 1308 1309
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1310 1311 1312 1313 1314 1315 1316 1317
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1318 1319
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1329 1330
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1331
		goto out;
1332 1333
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1353
					   &bytes_read, validate_header_size);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1368
 * ecryptfs_read_xattr_region
1369
 * @page_virt: The vitual address into which to read the xattr data
1370
 * @ecryptfs_inode: The eCryptfs inode
1371 1372 1373
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1374 1375
 *
 * Returns zero on success; non-zero on error
1376
 */
1377
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1378
{
1379 1380
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1381 1382 1383
	ssize_t size;
	int rc = 0;

1384 1385
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1386
	if (size < 0) {
1387 1388 1389 1390
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1391 1392 1393 1394 1395 1396 1397
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1398
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1399
					    struct inode *inode)
1400
{
1401 1402
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1403 1404
	int rc;

1405 1406 1407 1408 1409 1410 1411 1412
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1425 1426 1427
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1428
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1429
{
1430 1431
	int rc;
	char *page_virt;
1432
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1433
	struct ecryptfs_crypt_stat *crypt_stat =
1434
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1435 1436 1437
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1438

1439 1440
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1441
	/* Read the first page from the underlying file */
1442
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1443 1444
	if (!page_virt) {
		rc = -ENOMEM;
1445
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1446
		       __func__);
1447 1448
		goto out;
	}
1449 1450
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1451
	if (rc >= 0)
1452 1453 1454
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1455
	if (rc) {
1456
		/* metadata is not in the file header, so try xattrs */
1457
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1458
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1459 1460
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1461 1462
			       "file header region or xattr region, inode %lu\n",
				ecryptfs_inode->i_ino);
1463 1464 1465 1466 1467 1468 1469 1470
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1471 1472
			       "file xattr region either, inode %lu\n",
				ecryptfs_inode->i_ino);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
1483 1484
			       "this like an encrypted file, inode %lu\n",
				ecryptfs_inode->i_ino);
1485 1486
			rc = -EINVAL;
		}
1487 1488 1489 1490
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1491
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1492 1493 1494 1495
	}
	return rc;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1536
			       "to kmalloc [%zd] bytes\n", __func__,
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1561
		rc = -EOPNOTSUPP;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1573
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1574 1575 1576 1577 1578 1579 1580 1581 1582
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1583
	(*copied_name_size) = name_size;
1584 1585 1586 1587
out:
	return rc;
}

1588
/**
1589
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1590
 * @key_tfm: Crypto context for key material, set by this function
1591 1592
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1593 1594 1595 1596 1597
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1598
static int
1599 1600
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1601 1602
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1603
	char *full_alg_name = NULL;
1604 1605
	int rc;

1606 1607
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1608
		rc = -EINVAL;
M
Michael Halcrow 已提交
1609
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1610
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1611 1612
		goto out;
	}
1613 1614 1615 1616 1617 1618 1619
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1620
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1621
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1622 1623
		goto out;
	}
1624 1625 1626 1627 1628 1629
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1630
	get_random_bytes(dummy_key, *key_size);
1631
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1632
	if (rc) {
M
Michael Halcrow 已提交
1633
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1634 1635
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1636 1637 1638 1639
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1640
	kfree(full_alg_name);
1641 1642
	return rc;
}
1643 1644

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1645
static struct list_head key_tfm_list;
1646
struct mutex key_tfm_list_mutex;
1647

1648
int __init ecryptfs_init_crypto(void)
1649 1650 1651 1652 1653 1654
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1655 1656 1657 1658 1659
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1660
int ecryptfs_destroy_crypto(void)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1683 1684
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1697
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1698
	tmp_tfm->key_size = key_size;
1699 1700 1701 1702
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1755 1756 1757 1758 1759 1760 1761 1762 1763
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1764

1765
	mutex_lock(&key_tfm_list_mutex);
1766 1767 1768 1769 1770
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1771 1772 1773 1774 1775 1776
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1777
	mutex_unlock(&key_tfm_list_mutex);
1778 1779
	return rc;
}
1780 1781 1782 1783 1784 1785 1786 1787 1788

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1789
static const unsigned char filename_rev_map[256] = {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1805
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1806 1807 1808 1809 1810 1811 1812 1813 1814
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
1815
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

T
Tyler Hicks 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
	/* Not exact; conservatively long. Every block of 4
	 * encoded characters decodes into a block of 3
	 * decoded characters. This segment of code provides
	 * the caller with the maximum amount of allocated
	 * space that @dst will need to point to in a
	 * subsequent call. */
	return ((encoded_size + 1) * 3) / 4;
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
1893 1894 1895 1896 1897 1898
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
T
Tyler Hicks 已提交
1899
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
1932
	return;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
1970
			       "to kzalloc [%zd] bytes\n", __func__,
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2004
			       "to kzalloc [%zd] bytes\n", __func__,
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2030
			rc = -EOPNOTSUPP;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
					 struct dentry *ecryptfs_dir_dentry,
					 const char *name, size_t name_size)
{
2068 2069 2070
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2071 2072 2073 2074 2075
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2076 2077 2078
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2079 2080 2081 2082 2083 2084 2085
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2086 2087
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2088 2089 2090
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2091
			       "to kmalloc [%zd] bytes\n", __func__,
2092 2093 2094 2095
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2096 2097
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}
T
Tyler Hicks 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143

int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct blkcipher_desc desc;
	struct mutex *tfm_mutex;
	size_t cipher_blocksize;
	int rc;

	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
		(*namelen) = lower_namelen;
		return 0;
	}

	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
			mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		(*namelen) = 0;
		return rc;
	}

	mutex_lock(tfm_mutex);
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
	mutex_unlock(tfm_mutex);

	/* Return an exact amount for the common cases */
	if (lower_namelen == NAME_MAX
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
		return 0;
	}

	/* Return a safe estimate for the uncommon cases */
	(*namelen) = lower_namelen;
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
	/* Worst case is that the filename is padded nearly a full block size */
	(*namelen) -= cipher_blocksize - 1;

	if ((*namelen) < 0)
		(*namelen) = 0;

	return 0;
}