kaslr.c 21.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * kaslr.c
 *
 * This contains the routines needed to generate a reasonable level of
 * entropy to choose a randomized kernel base address offset in support
 * of Kernel Address Space Layout Randomization (KASLR). Additionally
 * handles walking the physical memory maps (and tracking memory regions
 * to avoid) in order to select a physical memory location that can
 * contain the entire properly aligned running kernel image.
 *
 */
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

/*
 * isspace() in linux/ctype.h is expected by next_args() to filter
 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 * since isdigit() is implemented in both of them. Hence disable it
 * here.
 */
#define BOOT_CTYPE_H

/*
 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
 * which is meaningless and will cause compiling error in some cases.
 * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
 * as empty.
 */
#define _LINUX_EXPORT_H
#define EXPORT_SYMBOL(sym)

32
#include "misc.h"
33
#include "error.h"
34
#include "../string.h"
35

36 37 38 39
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
40
#include <linux/ctype.h>
41
#include <linux/efi.h>
42
#include <generated/utsrelease.h>
43
#include <asm/efi.h>
44

45 46 47 48
/* Macros used by the included decompressor code below. */
#define STATIC
#include <linux/decompress/mm.h>

49 50
#ifdef CONFIG_X86_5LEVEL
unsigned int pgtable_l5_enabled __ro_after_init = 1;
51 52
unsigned int pgdir_shift __ro_after_init = 48;
unsigned int ptrs_per_p4d __ro_after_init = 512;
53 54
#endif

55 56
extern unsigned long get_cmd_line_ptr(void);

57
/* Simplified build-specific string for starting entropy. */
58
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;

static unsigned long rotate_xor(unsigned long hash, const void *area,
				size_t size)
{
	size_t i;
	unsigned long *ptr = (unsigned long *)area;

	for (i = 0; i < size / sizeof(hash); i++) {
		/* Rotate by odd number of bits and XOR. */
		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
		hash ^= ptr[i];
	}

	return hash;
}

/* Attempt to create a simple but unpredictable starting entropy. */
77
static unsigned long get_boot_seed(void)
78 79 80 81
{
	unsigned long hash = 0;

	hash = rotate_xor(hash, build_str, sizeof(build_str));
82
	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
83 84 85 86

	return hash;
}

87 88
#define KASLR_COMPRESSED_BOOT
#include "../../lib/kaslr.c"
89

90
struct mem_vector {
91 92
	unsigned long long start;
	unsigned long long size;
93 94
};

95 96 97 98 99
/* Only supporting at most 4 unusable memmap regions with kaslr */
#define MAX_MEMMAP_REGIONS	4

static bool memmap_too_large;

100

101 102 103 104
/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
unsigned long long mem_limit = ULLONG_MAX;


105 106 107 108 109
enum mem_avoid_index {
	MEM_AVOID_ZO_RANGE = 0,
	MEM_AVOID_INITRD,
	MEM_AVOID_CMDLINE,
	MEM_AVOID_BOOTPARAMS,
110 111
	MEM_AVOID_MEMMAP_BEGIN,
	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
112 113 114
	MEM_AVOID_MAX,
};

115
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
116 117 118 119 120 121 122 123 124 125 126 127

static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
	/* Item one is entirely before item two. */
	if (one->start + one->size <= two->start)
		return false;
	/* Item one is entirely after item two. */
	if (one->start >= two->start + two->size)
		return false;
	return true;
}

128
char *skip_spaces(const char *str)
129
{
130 131 132
	while (isspace(*str))
		++str;
	return (char *)str;
133
}
134 135
#include "../../../../lib/ctype.c"
#include "../../../../lib/cmdline.c"
136 137 138 139 140 141 142 143 144 145 146 147 148 149

static int
parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
{
	char *oldp;

	if (!p)
		return -EINVAL;

	/* We don't care about this option here */
	if (!strncmp(p, "exactmap", 8))
		return -EINVAL;

	oldp = p;
150
	*size = memparse(p, &p);
151 152 153 154 155 156 157
	if (p == oldp)
		return -EINVAL;

	switch (*p) {
	case '#':
	case '$':
	case '!':
158
		*start = memparse(p + 1, &p);
159
		return 0;
160 161 162 163 164 165 166 167 168 169 170
	case '@':
		/* memmap=nn@ss specifies usable region, should be skipped */
		*size = 0;
		/* Fall through */
	default:
		/*
		 * If w/o offset, only size specified, memmap=nn[KMG] has the
		 * same behaviour as mem=nn[KMG]. It limits the max address
		 * system can use. Region above the limit should be avoided.
		 */
		*start = 0;
171 172 173 174 175 176
		return 0;
	}

	return -EINVAL;
}

177
static void mem_avoid_memmap(char *str)
178
{
179
	static int i;
180

181
	if (i >= MAX_MEMMAP_REGIONS)
182 183 184 185 186 187 188 189 190 191 192 193 194 195
		return;

	while (str && (i < MAX_MEMMAP_REGIONS)) {
		int rc;
		unsigned long long start, size;
		char *k = strchr(str, ',');

		if (k)
			*k++ = 0;

		rc = parse_memmap(str, &start, &size);
		if (rc < 0)
			break;
		str = k;
196 197 198 199 200 201

		if (start == 0) {
			/* Store the specified memory limit if size > 0 */
			if (size > 0)
				mem_limit = size;

202
			continue;
203
		}
204 205 206 207 208 209 210 211 212 213 214

		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
		i++;
	}

	/* More than 4 memmaps, fail kaslr */
	if ((i >= MAX_MEMMAP_REGIONS) && str)
		memmap_too_large = true;
}

215 216 217 218 219 220
static int handle_mem_memmap(void)
{
	char *args = (char *)get_cmd_line_ptr();
	size_t len = strlen((char *)args);
	char *tmp_cmdline;
	char *param, *val;
221
	u64 mem_size;
222

223
	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
224 225 226
		return 0;

	tmp_cmdline = malloc(len + 1);
C
Chao Fan 已提交
227
	if (!tmp_cmdline)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		error("Failed to allocate space for tmp_cmdline");

	memcpy(tmp_cmdline, args, len);
	tmp_cmdline[len] = 0;
	args = tmp_cmdline;

	/* Chew leading spaces */
	args = skip_spaces(args);

	while (*args) {
		args = next_arg(args, &param, &val);
		/* Stop at -- */
		if (!val && strcmp(param, "--") == 0) {
			warn("Only '--' specified in cmdline");
			free(tmp_cmdline);
			return -1;
		}

246
		if (!strcmp(param, "memmap")) {
247
			mem_avoid_memmap(val);
248 249 250 251 252 253 254 255 256 257 258 259
		} else if (!strcmp(param, "mem")) {
			char *p = val;

			if (!strcmp(p, "nopentium"))
				continue;
			mem_size = memparse(p, &p);
			if (mem_size == 0) {
				free(tmp_cmdline);
				return -EINVAL;
			}
			mem_limit = mem_size;
		}
260 261 262 263 264 265
	}

	free(tmp_cmdline);
	return 0;
}

266
/*
267 268 269
 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 * The mem_avoid array is used to store the ranges that need to be avoided
 * when KASLR searches for an appropriate random address. We must avoid any
270
 * regions that are unsafe to overlap with during decompression, and other
271 272 273 274 275
 * things like the initrd, cmdline and boot_params. This comment seeks to
 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 * memory ranges lead to really hard to debug boot failures.
 *
 * The initrd, cmdline, and boot_params are trivial to identify for
276
 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
 * MEM_AVOID_BOOTPARAMS respectively below.
 *
 * What is not obvious how to avoid is the range of memory that is used
 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 * the compressed kernel (ZO) and its run space, which is used to extract
 * the uncompressed kernel (VO) and relocs.
 *
 * ZO's full run size sits against the end of the decompression buffer, so
 * we can calculate where text, data, bss, etc of ZO are positioned more
 * easily.
 *
 * For additional background, the decompression calculations can be found
 * in header.S, and the memory diagram is based on the one found in misc.c.
 *
 * The following conditions are already enforced by the image layouts and
 * associated code:
 *  - input + input_size >= output + output_size
 *  - kernel_total_size <= init_size
 *  - kernel_total_size <= output_size (see Note below)
 *  - output + init_size >= output + output_size
297
 *
298 299 300 301 302
 * (Note that kernel_total_size and output_size have no fundamental
 * relationship, but output_size is passed to choose_random_location
 * as a maximum of the two. The diagram is showing a case where
 * kernel_total_size is larger than output_size, but this case is
 * handled by bumping output_size.)
303
 *
304
 * The above conditions can be illustrated by a diagram:
305
 *
306 307 308 309 310 311 312
 * 0   output            input            input+input_size    output+init_size
 * |     |                 |                             |             |
 * |     |                 |                             |             |
 * |-----|--------|--------|--------------|-----------|--|-------------|
 *                |                       |           |
 *                |                       |           |
 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
313
 *
314 315
 * [output, output+init_size) is the entire memory range used for
 * extracting the compressed image.
316
 *
317 318
 * [output, output+kernel_total_size) is the range needed for the
 * uncompressed kernel (VO) and its run size (bss, brk, etc).
319
 *
320 321 322
 * [output, output+output_size) is VO plus relocs (i.e. the entire
 * uncompressed payload contained by ZO). This is the area of the buffer
 * written to during decompression.
323
 *
324 325 326
 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 * range of the copied ZO and decompression code. (i.e. the range
 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
327
 *
328 329 330
 * [input, input+input_size) is the original copied compressed image (ZO)
 * (i.e. it does not include its run size). This range must be avoided
 * because it contains the data used for decompression.
331
 *
332 333 334
 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 * range includes ZO's heap and stack, and must be avoided since it
 * performs the decompression.
335
 *
336 337 338
 * Since the above two ranges need to be avoided and they are adjacent,
 * they can be merged, resulting in: [input, output+init_size) which
 * becomes the MEM_AVOID_ZO_RANGE below.
339
 */
340
static void mem_avoid_init(unsigned long input, unsigned long input_size,
341
			   unsigned long output)
342
{
343
	unsigned long init_size = boot_params->hdr.init_size;
344 345 346 347 348 349
	u64 initrd_start, initrd_size;
	u64 cmd_line, cmd_line_size;
	char *ptr;

	/*
	 * Avoid the region that is unsafe to overlap during
350
	 * decompression.
351
	 */
352 353
	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
354 355
	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
356 357

	/* Avoid initrd. */
358 359 360 361
	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
	initrd_start |= boot_params->hdr.ramdisk_image;
	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
	initrd_size |= boot_params->hdr.ramdisk_size;
362 363
	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
364
	/* No need to set mapping for initrd, it will be handled in VO. */
365 366

	/* Avoid kernel command line. */
367 368
	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
	cmd_line |= boot_params->hdr.cmd_line_ptr;
369 370
	/* Calculate size of cmd_line. */
	ptr = (char *)(unsigned long)cmd_line;
C
Chao Fan 已提交
371
	for (cmd_line_size = 0; ptr[cmd_line_size++];)
372
		;
373 374
	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
375 376
	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
			 mem_avoid[MEM_AVOID_CMDLINE].size);
377

378 379 380
	/* Avoid boot parameters. */
	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
381 382 383 384 385
	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);

	/* We don't need to set a mapping for setup_data. */

386
	/* Mark the memmap regions we need to avoid */
387
	handle_mem_memmap();
388

389 390 391 392
#ifdef CONFIG_X86_VERBOSE_BOOTUP
	/* Make sure video RAM can be used. */
	add_identity_map(0, PMD_SIZE);
#endif
393 394
}

395 396 397 398 399 400
/*
 * Does this memory vector overlap a known avoided area? If so, record the
 * overlap region with the lowest address.
 */
static bool mem_avoid_overlap(struct mem_vector *img,
			      struct mem_vector *overlap)
401 402
{
	int i;
403
	struct setup_data *ptr;
404 405
	unsigned long earliest = img->start + img->size;
	bool is_overlapping = false;
406 407

	for (i = 0; i < MEM_AVOID_MAX; i++) {
408 409 410
		if (mem_overlaps(img, &mem_avoid[i]) &&
		    mem_avoid[i].start < earliest) {
			*overlap = mem_avoid[i];
411
			earliest = overlap->start;
412 413
			is_overlapping = true;
		}
414 415
	}

416
	/* Avoid all entries in the setup_data linked list. */
417
	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
418 419 420
	while (ptr) {
		struct mem_vector avoid;

421
		avoid.start = (unsigned long)ptr;
422 423
		avoid.size = sizeof(*ptr) + ptr->len;

424 425
		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
			*overlap = avoid;
426
			earliest = overlap->start;
427 428
			is_overlapping = true;
		}
429 430 431 432

		ptr = (struct setup_data *)(unsigned long)ptr->next;
	}

433
	return is_overlapping;
434 435
}

436 437 438 439 440 441 442 443 444
struct slot_area {
	unsigned long addr;
	int num;
};

#define MAX_SLOT_AREA 100

static struct slot_area slot_areas[MAX_SLOT_AREA];

445
static unsigned long slot_max;
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static unsigned long slot_area_index;

static void store_slot_info(struct mem_vector *region, unsigned long image_size)
{
	struct slot_area slot_area;

	if (slot_area_index == MAX_SLOT_AREA)
		return;

	slot_area.addr = region->start;
	slot_area.num = (region->size - image_size) /
			CONFIG_PHYSICAL_ALIGN + 1;

	if (slot_area.num > 0) {
		slot_areas[slot_area_index++] = slot_area;
		slot_max += slot_area.num;
	}
}

466 467
static unsigned long slots_fetch_random(void)
{
468 469 470
	unsigned long slot;
	int i;

471 472 473 474
	/* Handle case of no slots stored. */
	if (slot_max == 0)
		return 0;

475
	slot = kaslr_get_random_long("Physical") % slot_max;
476 477 478 479 480 481 482 483 484 485 486 487

	for (i = 0; i < slot_area_index; i++) {
		if (slot >= slot_areas[i].num) {
			slot -= slot_areas[i].num;
			continue;
		}
		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
	}

	if (i == slot_area_index)
		debug_putstr("slots_fetch_random() failed!?\n");
	return 0;
488 489
}

490
static void process_mem_region(struct mem_vector *entry,
491 492 493
			       unsigned long minimum,
			       unsigned long image_size)
{
494 495
	struct mem_vector region, overlap;
	struct slot_area slot_area;
496
	unsigned long start_orig, end;
497
	struct mem_vector cur_entry;
498

499
	/* On 32-bit, ignore entries entirely above our maximum. */
500
	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
501 502 503
		return;

	/* Ignore entries entirely below our minimum. */
504
	if (entry->start + entry->size < minimum)
505 506
		return;

507
	/* Ignore entries above memory limit */
508 509
	end = min(entry->size + entry->start, mem_limit);
	if (entry->start >= end)
510
		return;
511 512
	cur_entry.start = entry->start;
	cur_entry.size = end - entry->start;
513

514
	region.start = cur_entry.start;
515
	region.size = cur_entry.size;
516

517 518 519
	/* Give up if slot area array is full. */
	while (slot_area_index < MAX_SLOT_AREA) {
		start_orig = region.start;
520

521 522 523
		/* Potentially raise address to minimum location. */
		if (region.start < minimum)
			region.start = minimum;
524

525 526
		/* Potentially raise address to meet alignment needs. */
		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
527

528
		/* Did we raise the address above the passed in memory entry? */
529
		if (region.start > cur_entry.start + cur_entry.size)
530
			return;
531

532 533
		/* Reduce size by any delta from the original address. */
		region.size -= region.start - start_orig;
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		/* On 32-bit, reduce region size to fit within max size. */
		if (IS_ENABLED(CONFIG_X86_32) &&
		    region.start + region.size > KERNEL_IMAGE_SIZE)
			region.size = KERNEL_IMAGE_SIZE - region.start;

		/* Return if region can't contain decompressed kernel */
		if (region.size < image_size)
			return;

		/* If nothing overlaps, store the region and return. */
		if (!mem_avoid_overlap(&region, &overlap)) {
			store_slot_info(&region, image_size);
			return;
		}

		/* Store beginning of region if holds at least image_size. */
		if (overlap.start > region.start + image_size) {
			struct mem_vector beginning;

			beginning.start = region.start;
			beginning.size = overlap.start - region.start;
			store_slot_info(&beginning, image_size);
		}

		/* Return if overlap extends to or past end of region. */
		if (overlap.start + overlap.size >= region.start + region.size)
			return;

		/* Clip off the overlapping region and start over. */
		region.size -= overlap.start - region.start + overlap.size;
		region.start = overlap.start + overlap.size;
566 567 568
	}
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
#ifdef CONFIG_EFI
/*
 * Returns true if mirror region found (and must have been processed
 * for slots adding)
 */
static bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	struct efi_info *e = &boot_params->efi_info;
	bool efi_mirror_found = false;
	struct mem_vector region;
	efi_memory_desc_t *md;
	unsigned long pmap;
	char *signature;
	u32 nr_desc;
	int i;

	signature = (char *)&e->efi_loader_signature;
	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
		return false;

#ifdef CONFIG_X86_32
	/* Can't handle data above 4GB at this time */
	if (e->efi_memmap_hi) {
		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
		return false;
	}
	pmap =  e->efi_memmap;
#else
	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
#endif

	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			efi_mirror_found = true;
607
			break;
608 609 610
		}
	}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);

		/*
		 * Here we are more conservative in picking free memory than
		 * the EFI spec allows:
		 *
		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
		 * free memory and thus available to place the kernel image into,
		 * but in practice there's firmware where using that memory leads
		 * to crashes.
		 *
		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
		 */
		if (md->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (efi_mirror_found &&
		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
			continue;

		region.start = md->phys_addr;
		region.size = md->num_pages << EFI_PAGE_SHIFT;
		process_mem_region(&region, minimum, image_size);
		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
			break;
		}
	}
	return true;
641 642 643 644 645 646 647 648 649
}
#else
static inline bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	return false;
}
#endif

650 651
static void process_e820_entries(unsigned long minimum,
				 unsigned long image_size)
652 653
{
	int i;
654
	struct mem_vector region;
655 656 657 658 659 660 661 662
	struct boot_e820_entry *entry;

	/* Verify potential e820 positions, appending to slots list. */
	for (i = 0; i < boot_params->e820_entries; i++) {
		entry = &boot_params->e820_table[i];
		/* Skip non-RAM entries. */
		if (entry->type != E820_TYPE_RAM)
			continue;
663 664
		region.start = entry->addr;
		region.size = entry->size;
665
		process_mem_region(&region, minimum, image_size);
666 667 668 669 670 671
		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
			break;
		}
	}
}
672

673 674 675
static unsigned long find_random_phys_addr(unsigned long minimum,
					   unsigned long image_size)
{
676 677
	/* Check if we had too many memmaps. */
	if (memmap_too_large) {
678
		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
679 680 681
		return 0;
	}

682 683 684
	/* Make sure minimum is aligned. */
	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);

685 686 687
	if (process_efi_entries(minimum, image_size))
		return slots_fetch_random();

688
	process_e820_entries(minimum, image_size);
689 690 691
	return slots_fetch_random();
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static unsigned long find_random_virt_addr(unsigned long minimum,
					   unsigned long image_size)
{
	unsigned long slots, random_addr;

	/* Make sure minimum is aligned. */
	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
	/* Align image_size for easy slot calculations. */
	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);

	/*
	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
	 * that can hold image_size within the range of minimum to
	 * KERNEL_IMAGE_SIZE?
	 */
	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
		 CONFIG_PHYSICAL_ALIGN + 1;

710
	random_addr = kaslr_get_random_long("Virtual") % slots;
711 712 713 714

	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
}

715 716 717 718
/*
 * Since this function examines addresses much more numerically,
 * it takes the input and output pointers as 'unsigned long'.
 */
719 720 721 722 723
void choose_random_location(unsigned long input,
			    unsigned long input_size,
			    unsigned long *output,
			    unsigned long output_size,
			    unsigned long *virt_addr)
724
{
725
	unsigned long random_addr, min_addr;
726 727

	if (cmdline_find_option_bool("nokaslr")) {
728
		warn("KASLR disabled: 'nokaslr' on cmdline.");
729
		return;
730 731
	}

732
	boot_params->hdr.loadflags |= KASLR_FLAG;
733

734 735 736
	/* Prepare to add new identity pagetables on demand. */
	initialize_identity_maps();

737
	/* Record the various known unsafe memory ranges. */
738
	mem_avoid_init(input, input_size, *output);
739

740 741 742 743 744 745 746
	/*
	 * Low end of the randomization range should be the
	 * smaller of 512M or the initial kernel image
	 * location:
	 */
	min_addr = min(*output, 512UL << 20);

747
	/* Walk available memory entries to find a random address. */
748
	random_addr = find_random_phys_addr(min_addr, output_size);
749
	if (!random_addr) {
750
		warn("Physical KASLR disabled: no suitable memory region!");
751 752 753 754 755 756
	} else {
		/* Update the new physical address location. */
		if (*output != random_addr) {
			add_identity_map(random_addr, output_size);
			*output = random_addr;
		}
757 758 759 760 761 762 763 764 765

		/*
		 * This loads the identity mapping page table.
		 * This should only be done if a new physical address
		 * is found for the kernel, otherwise we should keep
		 * the old page table to make it be like the "nokaslr"
		 * case.
		 */
		finalize_identity_maps();
766 767
	}

768 769 770 771 772

	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
	if (IS_ENABLED(CONFIG_X86_64))
		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
	*virt_addr = random_addr;
773
}