kaslr.c 21.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * kaslr.c
 *
 * This contains the routines needed to generate a reasonable level of
 * entropy to choose a randomized kernel base address offset in support
 * of Kernel Address Space Layout Randomization (KASLR). Additionally
 * handles walking the physical memory maps (and tracking memory regions
 * to avoid) in order to select a physical memory location that can
 * contain the entire properly aligned running kernel image.
 *
 */
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

/*
 * isspace() in linux/ctype.h is expected by next_args() to filter
 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 * since isdigit() is implemented in both of them. Hence disable it
 * here.
 */
#define BOOT_CTYPE_H

/*
 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
 * which is meaningless and will cause compiling error in some cases.
 * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
 * as empty.
 */
#define _LINUX_EXPORT_H
#define EXPORT_SYMBOL(sym)

32
#include "misc.h"
33
#include "error.h"
34
#include "../string.h"
35

36 37 38 39
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
40
#include <linux/ctype.h>
41
#include <linux/efi.h>
42
#include <generated/utsrelease.h>
43
#include <asm/efi.h>
44

45 46 47 48 49 50
/* Macros used by the included decompressor code below. */
#define STATIC
#include <linux/decompress/mm.h>

extern unsigned long get_cmd_line_ptr(void);

51
/* Simplified build-specific string for starting entropy. */
52
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;

static unsigned long rotate_xor(unsigned long hash, const void *area,
				size_t size)
{
	size_t i;
	unsigned long *ptr = (unsigned long *)area;

	for (i = 0; i < size / sizeof(hash); i++) {
		/* Rotate by odd number of bits and XOR. */
		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
		hash ^= ptr[i];
	}

	return hash;
}

/* Attempt to create a simple but unpredictable starting entropy. */
71
static unsigned long get_boot_seed(void)
72 73 74 75
{
	unsigned long hash = 0;

	hash = rotate_xor(hash, build_str, sizeof(build_str));
76
	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
77 78 79 80

	return hash;
}

81 82
#define KASLR_COMPRESSED_BOOT
#include "../../lib/kaslr.c"
83

84
struct mem_vector {
85 86
	unsigned long long start;
	unsigned long long size;
87 88
};

89 90 91 92 93
/* Only supporting at most 4 unusable memmap regions with kaslr */
#define MAX_MEMMAP_REGIONS	4

static bool memmap_too_large;

94

95 96 97 98
/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
unsigned long long mem_limit = ULLONG_MAX;


99 100 101 102 103
enum mem_avoid_index {
	MEM_AVOID_ZO_RANGE = 0,
	MEM_AVOID_INITRD,
	MEM_AVOID_CMDLINE,
	MEM_AVOID_BOOTPARAMS,
104 105
	MEM_AVOID_MEMMAP_BEGIN,
	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
106 107 108
	MEM_AVOID_MAX,
};

109
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
110 111 112 113 114 115 116 117 118 119 120 121

static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
	/* Item one is entirely before item two. */
	if (one->start + one->size <= two->start)
		return false;
	/* Item one is entirely after item two. */
	if (one->start >= two->start + two->size)
		return false;
	return true;
}

122
char *skip_spaces(const char *str)
123
{
124 125 126
	while (isspace(*str))
		++str;
	return (char *)str;
127
}
128 129
#include "../../../../lib/ctype.c"
#include "../../../../lib/cmdline.c"
130 131 132 133 134 135 136 137 138 139 140 141 142 143

static int
parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
{
	char *oldp;

	if (!p)
		return -EINVAL;

	/* We don't care about this option here */
	if (!strncmp(p, "exactmap", 8))
		return -EINVAL;

	oldp = p;
144
	*size = memparse(p, &p);
145 146 147 148 149 150 151
	if (p == oldp)
		return -EINVAL;

	switch (*p) {
	case '#':
	case '$':
	case '!':
152
		*start = memparse(p + 1, &p);
153
		return 0;
154 155 156 157 158 159 160 161 162 163 164
	case '@':
		/* memmap=nn@ss specifies usable region, should be skipped */
		*size = 0;
		/* Fall through */
	default:
		/*
		 * If w/o offset, only size specified, memmap=nn[KMG] has the
		 * same behaviour as mem=nn[KMG]. It limits the max address
		 * system can use. Region above the limit should be avoided.
		 */
		*start = 0;
165 166 167 168 169 170
		return 0;
	}

	return -EINVAL;
}

171
static void mem_avoid_memmap(char *str)
172
{
173
	static int i;
174 175
	int rc;

176
	if (i >= MAX_MEMMAP_REGIONS)
177 178 179 180 181 182 183 184 185 186 187 188 189 190
		return;

	while (str && (i < MAX_MEMMAP_REGIONS)) {
		int rc;
		unsigned long long start, size;
		char *k = strchr(str, ',');

		if (k)
			*k++ = 0;

		rc = parse_memmap(str, &start, &size);
		if (rc < 0)
			break;
		str = k;
191 192 193 194 195 196

		if (start == 0) {
			/* Store the specified memory limit if size > 0 */
			if (size > 0)
				mem_limit = size;

197
			continue;
198
		}
199 200 201 202 203 204 205 206 207 208 209

		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
		i++;
	}

	/* More than 4 memmaps, fail kaslr */
	if ((i >= MAX_MEMMAP_REGIONS) && str)
		memmap_too_large = true;
}

210 211 212 213 214 215
static int handle_mem_memmap(void)
{
	char *args = (char *)get_cmd_line_ptr();
	size_t len = strlen((char *)args);
	char *tmp_cmdline;
	char *param, *val;
216
	u64 mem_size;
217

218
	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return 0;

	tmp_cmdline = malloc(len + 1);
	if (!tmp_cmdline )
		error("Failed to allocate space for tmp_cmdline");

	memcpy(tmp_cmdline, args, len);
	tmp_cmdline[len] = 0;
	args = tmp_cmdline;

	/* Chew leading spaces */
	args = skip_spaces(args);

	while (*args) {
		args = next_arg(args, &param, &val);
		/* Stop at -- */
		if (!val && strcmp(param, "--") == 0) {
			warn("Only '--' specified in cmdline");
			free(tmp_cmdline);
			return -1;
		}

241
		if (!strcmp(param, "memmap")) {
242
			mem_avoid_memmap(val);
243 244 245 246 247 248 249 250 251 252 253 254
		} else if (!strcmp(param, "mem")) {
			char *p = val;

			if (!strcmp(p, "nopentium"))
				continue;
			mem_size = memparse(p, &p);
			if (mem_size == 0) {
				free(tmp_cmdline);
				return -EINVAL;
			}
			mem_limit = mem_size;
		}
255 256 257 258 259 260
	}

	free(tmp_cmdline);
	return 0;
}

261
/*
262 263 264
 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 * The mem_avoid array is used to store the ranges that need to be avoided
 * when KASLR searches for an appropriate random address. We must avoid any
265
 * regions that are unsafe to overlap with during decompression, and other
266 267 268 269 270
 * things like the initrd, cmdline and boot_params. This comment seeks to
 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 * memory ranges lead to really hard to debug boot failures.
 *
 * The initrd, cmdline, and boot_params are trivial to identify for
271
 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 * MEM_AVOID_BOOTPARAMS respectively below.
 *
 * What is not obvious how to avoid is the range of memory that is used
 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 * the compressed kernel (ZO) and its run space, which is used to extract
 * the uncompressed kernel (VO) and relocs.
 *
 * ZO's full run size sits against the end of the decompression buffer, so
 * we can calculate where text, data, bss, etc of ZO are positioned more
 * easily.
 *
 * For additional background, the decompression calculations can be found
 * in header.S, and the memory diagram is based on the one found in misc.c.
 *
 * The following conditions are already enforced by the image layouts and
 * associated code:
 *  - input + input_size >= output + output_size
 *  - kernel_total_size <= init_size
 *  - kernel_total_size <= output_size (see Note below)
 *  - output + init_size >= output + output_size
292
 *
293 294 295 296 297
 * (Note that kernel_total_size and output_size have no fundamental
 * relationship, but output_size is passed to choose_random_location
 * as a maximum of the two. The diagram is showing a case where
 * kernel_total_size is larger than output_size, but this case is
 * handled by bumping output_size.)
298
 *
299
 * The above conditions can be illustrated by a diagram:
300
 *
301 302 303 304 305 306 307
 * 0   output            input            input+input_size    output+init_size
 * |     |                 |                             |             |
 * |     |                 |                             |             |
 * |-----|--------|--------|--------------|-----------|--|-------------|
 *                |                       |           |
 *                |                       |           |
 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
308
 *
309 310
 * [output, output+init_size) is the entire memory range used for
 * extracting the compressed image.
311
 *
312 313
 * [output, output+kernel_total_size) is the range needed for the
 * uncompressed kernel (VO) and its run size (bss, brk, etc).
314
 *
315 316 317
 * [output, output+output_size) is VO plus relocs (i.e. the entire
 * uncompressed payload contained by ZO). This is the area of the buffer
 * written to during decompression.
318
 *
319 320 321
 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 * range of the copied ZO and decompression code. (i.e. the range
 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
322
 *
323 324 325
 * [input, input+input_size) is the original copied compressed image (ZO)
 * (i.e. it does not include its run size). This range must be avoided
 * because it contains the data used for decompression.
326
 *
327 328 329
 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 * range includes ZO's heap and stack, and must be avoided since it
 * performs the decompression.
330
 *
331 332 333
 * Since the above two ranges need to be avoided and they are adjacent,
 * they can be merged, resulting in: [input, output+init_size) which
 * becomes the MEM_AVOID_ZO_RANGE below.
334
 */
335
static void mem_avoid_init(unsigned long input, unsigned long input_size,
336
			   unsigned long output)
337
{
338
	unsigned long init_size = boot_params->hdr.init_size;
339 340 341 342 343 344
	u64 initrd_start, initrd_size;
	u64 cmd_line, cmd_line_size;
	char *ptr;

	/*
	 * Avoid the region that is unsafe to overlap during
345
	 * decompression.
346
	 */
347 348
	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
349 350
	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
351 352

	/* Avoid initrd. */
353 354 355 356
	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
	initrd_start |= boot_params->hdr.ramdisk_image;
	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
	initrd_size |= boot_params->hdr.ramdisk_size;
357 358
	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
359
	/* No need to set mapping for initrd, it will be handled in VO. */
360 361

	/* Avoid kernel command line. */
362 363
	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
	cmd_line |= boot_params->hdr.cmd_line_ptr;
364 365 366 367
	/* Calculate size of cmd_line. */
	ptr = (char *)(unsigned long)cmd_line;
	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
		;
368 369
	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
370 371
	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
			 mem_avoid[MEM_AVOID_CMDLINE].size);
372

373 374 375
	/* Avoid boot parameters. */
	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
376 377 378 379 380
	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);

	/* We don't need to set a mapping for setup_data. */

381
	/* Mark the memmap regions we need to avoid */
382
	handle_mem_memmap();
383

384 385 386 387
#ifdef CONFIG_X86_VERBOSE_BOOTUP
	/* Make sure video RAM can be used. */
	add_identity_map(0, PMD_SIZE);
#endif
388 389
}

390 391 392 393 394 395
/*
 * Does this memory vector overlap a known avoided area? If so, record the
 * overlap region with the lowest address.
 */
static bool mem_avoid_overlap(struct mem_vector *img,
			      struct mem_vector *overlap)
396 397
{
	int i;
398
	struct setup_data *ptr;
399 400
	unsigned long earliest = img->start + img->size;
	bool is_overlapping = false;
401 402

	for (i = 0; i < MEM_AVOID_MAX; i++) {
403 404 405
		if (mem_overlaps(img, &mem_avoid[i]) &&
		    mem_avoid[i].start < earliest) {
			*overlap = mem_avoid[i];
406
			earliest = overlap->start;
407 408
			is_overlapping = true;
		}
409 410
	}

411
	/* Avoid all entries in the setup_data linked list. */
412
	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
413 414 415
	while (ptr) {
		struct mem_vector avoid;

416
		avoid.start = (unsigned long)ptr;
417 418
		avoid.size = sizeof(*ptr) + ptr->len;

419 420
		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
			*overlap = avoid;
421
			earliest = overlap->start;
422 423
			is_overlapping = true;
		}
424 425 426 427

		ptr = (struct setup_data *)(unsigned long)ptr->next;
	}

428
	return is_overlapping;
429 430
}

431 432 433 434 435 436 437 438 439
struct slot_area {
	unsigned long addr;
	int num;
};

#define MAX_SLOT_AREA 100

static struct slot_area slot_areas[MAX_SLOT_AREA];

440
static unsigned long slot_max;
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static unsigned long slot_area_index;

static void store_slot_info(struct mem_vector *region, unsigned long image_size)
{
	struct slot_area slot_area;

	if (slot_area_index == MAX_SLOT_AREA)
		return;

	slot_area.addr = region->start;
	slot_area.num = (region->size - image_size) /
			CONFIG_PHYSICAL_ALIGN + 1;

	if (slot_area.num > 0) {
		slot_areas[slot_area_index++] = slot_area;
		slot_max += slot_area.num;
	}
}

461 462
static unsigned long slots_fetch_random(void)
{
463 464 465
	unsigned long slot;
	int i;

466 467 468 469
	/* Handle case of no slots stored. */
	if (slot_max == 0)
		return 0;

470
	slot = kaslr_get_random_long("Physical") % slot_max;
471 472 473 474 475 476 477 478 479 480 481 482

	for (i = 0; i < slot_area_index; i++) {
		if (slot >= slot_areas[i].num) {
			slot -= slot_areas[i].num;
			continue;
		}
		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
	}

	if (i == slot_area_index)
		debug_putstr("slots_fetch_random() failed!?\n");
	return 0;
483 484
}

485
static void process_mem_region(struct mem_vector *entry,
486 487 488
			       unsigned long minimum,
			       unsigned long image_size)
{
489 490
	struct mem_vector region, overlap;
	struct slot_area slot_area;
491
	unsigned long start_orig, end;
492
	struct mem_vector cur_entry;
493

494
	/* On 32-bit, ignore entries entirely above our maximum. */
495
	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
496 497 498
		return;

	/* Ignore entries entirely below our minimum. */
499
	if (entry->start + entry->size < minimum)
500 501
		return;

502
	/* Ignore entries above memory limit */
503 504
	end = min(entry->size + entry->start, mem_limit);
	if (entry->start >= end)
505
		return;
506 507
	cur_entry.start = entry->start;
	cur_entry.size = end - entry->start;
508

509
	region.start = cur_entry.start;
510
	region.size = cur_entry.size;
511

512 513 514
	/* Give up if slot area array is full. */
	while (slot_area_index < MAX_SLOT_AREA) {
		start_orig = region.start;
515

516 517 518
		/* Potentially raise address to minimum location. */
		if (region.start < minimum)
			region.start = minimum;
519

520 521
		/* Potentially raise address to meet alignment needs. */
		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
522

523
		/* Did we raise the address above the passed in memory entry? */
524
		if (region.start > cur_entry.start + cur_entry.size)
525
			return;
526

527 528
		/* Reduce size by any delta from the original address. */
		region.size -= region.start - start_orig;
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		/* On 32-bit, reduce region size to fit within max size. */
		if (IS_ENABLED(CONFIG_X86_32) &&
		    region.start + region.size > KERNEL_IMAGE_SIZE)
			region.size = KERNEL_IMAGE_SIZE - region.start;

		/* Return if region can't contain decompressed kernel */
		if (region.size < image_size)
			return;

		/* If nothing overlaps, store the region and return. */
		if (!mem_avoid_overlap(&region, &overlap)) {
			store_slot_info(&region, image_size);
			return;
		}

		/* Store beginning of region if holds at least image_size. */
		if (overlap.start > region.start + image_size) {
			struct mem_vector beginning;

			beginning.start = region.start;
			beginning.size = overlap.start - region.start;
			store_slot_info(&beginning, image_size);
		}

		/* Return if overlap extends to or past end of region. */
		if (overlap.start + overlap.size >= region.start + region.size)
			return;

		/* Clip off the overlapping region and start over. */
		region.size -= overlap.start - region.start + overlap.size;
		region.start = overlap.start + overlap.size;
561 562 563
	}
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
#ifdef CONFIG_EFI
/*
 * Returns true if mirror region found (and must have been processed
 * for slots adding)
 */
static bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	struct efi_info *e = &boot_params->efi_info;
	bool efi_mirror_found = false;
	struct mem_vector region;
	efi_memory_desc_t *md;
	unsigned long pmap;
	char *signature;
	u32 nr_desc;
	int i;

	signature = (char *)&e->efi_loader_signature;
	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
		return false;

#ifdef CONFIG_X86_32
	/* Can't handle data above 4GB at this time */
	if (e->efi_memmap_hi) {
		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
		return false;
	}
	pmap =  e->efi_memmap;
#else
	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
#endif

	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			efi_mirror_found = true;
602
			break;
603 604 605
		}
	}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);

		/*
		 * Here we are more conservative in picking free memory than
		 * the EFI spec allows:
		 *
		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
		 * free memory and thus available to place the kernel image into,
		 * but in practice there's firmware where using that memory leads
		 * to crashes.
		 *
		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
		 */
		if (md->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (efi_mirror_found &&
		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
			continue;

		region.start = md->phys_addr;
		region.size = md->num_pages << EFI_PAGE_SHIFT;
		process_mem_region(&region, minimum, image_size);
		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
			break;
		}
	}
	return true;
636 637 638 639 640 641 642 643 644
}
#else
static inline bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	return false;
}
#endif

645 646
static void process_e820_entries(unsigned long minimum,
				 unsigned long image_size)
647 648
{
	int i;
649
	struct mem_vector region;
650 651 652 653 654 655 656 657
	struct boot_e820_entry *entry;

	/* Verify potential e820 positions, appending to slots list. */
	for (i = 0; i < boot_params->e820_entries; i++) {
		entry = &boot_params->e820_table[i];
		/* Skip non-RAM entries. */
		if (entry->type != E820_TYPE_RAM)
			continue;
658 659
		region.start = entry->addr;
		region.size = entry->size;
660
		process_mem_region(&region, minimum, image_size);
661 662 663 664 665 666
		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
			break;
		}
	}
}
667

668 669 670
static unsigned long find_random_phys_addr(unsigned long minimum,
					   unsigned long image_size)
{
671 672
	/* Check if we had too many memmaps. */
	if (memmap_too_large) {
673
		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
674 675 676
		return 0;
	}

677 678 679
	/* Make sure minimum is aligned. */
	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);

680 681 682
	if (process_efi_entries(minimum, image_size))
		return slots_fetch_random();

683
	process_e820_entries(minimum, image_size);
684 685 686
	return slots_fetch_random();
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static unsigned long find_random_virt_addr(unsigned long minimum,
					   unsigned long image_size)
{
	unsigned long slots, random_addr;

	/* Make sure minimum is aligned. */
	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
	/* Align image_size for easy slot calculations. */
	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);

	/*
	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
	 * that can hold image_size within the range of minimum to
	 * KERNEL_IMAGE_SIZE?
	 */
	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
		 CONFIG_PHYSICAL_ALIGN + 1;

705
	random_addr = kaslr_get_random_long("Virtual") % slots;
706 707 708 709

	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
}

710 711 712 713
/*
 * Since this function examines addresses much more numerically,
 * it takes the input and output pointers as 'unsigned long'.
 */
714 715 716 717 718
void choose_random_location(unsigned long input,
			    unsigned long input_size,
			    unsigned long *output,
			    unsigned long output_size,
			    unsigned long *virt_addr)
719
{
720
	unsigned long random_addr, min_addr;
721 722

	if (cmdline_find_option_bool("nokaslr")) {
723
		warn("KASLR disabled: 'nokaslr' on cmdline.");
724
		return;
725 726
	}

727
	boot_params->hdr.loadflags |= KASLR_FLAG;
728

729 730 731
	/* Prepare to add new identity pagetables on demand. */
	initialize_identity_maps();

732
	/* Record the various known unsafe memory ranges. */
733
	mem_avoid_init(input, input_size, *output);
734

735 736 737 738 739 740 741
	/*
	 * Low end of the randomization range should be the
	 * smaller of 512M or the initial kernel image
	 * location:
	 */
	min_addr = min(*output, 512UL << 20);

742
	/* Walk available memory entries to find a random address. */
743
	random_addr = find_random_phys_addr(min_addr, output_size);
744
	if (!random_addr) {
745
		warn("Physical KASLR disabled: no suitable memory region!");
746 747 748 749 750 751
	} else {
		/* Update the new physical address location. */
		if (*output != random_addr) {
			add_identity_map(random_addr, output_size);
			*output = random_addr;
		}
752 753 754 755 756 757 758 759 760

		/*
		 * This loads the identity mapping page table.
		 * This should only be done if a new physical address
		 * is found for the kernel, otherwise we should keep
		 * the old page table to make it be like the "nokaslr"
		 * case.
		 */
		finalize_identity_maps();
761 762
	}

763 764 765 766 767

	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
	if (IS_ENABLED(CONFIG_X86_64))
		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
	*virt_addr = random_addr;
768
}