ks8851.c 43.7 KB
Newer Older
1
/* drivers/net/ks8851.c
2 3 4 5 6 7 8 9 10 11
 *
 * Copyright 2009 Simtec Electronics
 *	http://www.simtec.co.uk/
 *	Ben Dooks <ben@simtec.co.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

14 15
#define DEBUG

16
#include <linux/interrupt.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>

#include <linux/spi/spi.h>

#include "ks8851.h"

/**
 * struct ks8851_rxctrl - KS8851 driver rx control
 * @mchash: Multicast hash-table data.
 * @rxcr1: KS_RXCR1 register setting
 * @rxcr2: KS_RXCR2 register setting
 *
 * Representation of the settings needs to control the receive filtering
 * such as the multicast hash-filter and the receive register settings. This
 * is used to make the job of working out if the receive settings change and
 * then issuing the new settings to the worker that will send the necessary
 * commands.
 */
struct ks8851_rxctrl {
	u16	mchash[4];
	u16	rxcr1;
	u16	rxcr2;
};

/**
 * union ks8851_tx_hdr - tx header data
 * @txb: The header as bytes
 * @txw: The header as 16bit, little-endian words
 *
 * A dual representation of the tx header data to allow
 * access to individual bytes, and to allow 16bit accesses
 * with 16bit alignment.
 */
union ks8851_tx_hdr {
	u8	txb[6];
	__le16	txw[3];
};

/**
 * struct ks8851_net - KS8851 driver private data
 * @netdev: The network device we're bound to
 * @spidev: The spi device we're bound to.
 * @lock: Lock to ensure that the device is not accessed when busy.
 * @statelock: Lock on this structure for tx list.
 * @mii: The MII state information for the mii calls.
 * @rxctrl: RX settings for @rxctrl_work.
 * @tx_work: Work queue for tx packets
 * @irq_work: Work queue for servicing interrupts
 * @rxctrl_work: Work queue for updating RX mode and multicast lists
 * @txq: Queue of packets for transmission.
 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
 * @txh: Space for generating packet TX header in DMA-able data
 * @rxd: Space for receiving SPI data, in DMA-able space.
 * @txd: Space for transmitting SPI data, in DMA-able space.
 * @msg_enable: The message flags controlling driver output (see ethtool).
 * @fid: Incrementing frame id tag.
 * @rc_ier: Cached copy of KS_IER.
82
 * @rc_ccr: Cached copy of KS_CCR.
83
 * @rc_rxqcr: Cached copy of KS_RXQCR.
84
 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * The @lock ensures that the chip is protected when certain operations are
 * in progress. When the read or write packet transfer is in progress, most
 * of the chip registers are not ccessible until the transfer is finished and
 * the DMA has been de-asserted.
 *
 * The @statelock is used to protect information in the structure which may
 * need to be accessed via several sources, such as the network driver layer
 * or one of the work queues.
 *
 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 * wants to DMA map them, it will not have any problems with data the driver
 * modifies.
 */
struct ks8851_net {
	struct net_device	*netdev;
	struct spi_device	*spidev;
	struct mutex		lock;
	spinlock_t		statelock;

	union ks8851_tx_hdr	txh ____cacheline_aligned;
	u8			rxd[8];
	u8			txd[8];

	u32			msg_enable ____cacheline_aligned;
	u16			tx_space;
	u8			fid;

	u16			rc_ier;
	u16			rc_rxqcr;
115 116
	u16			rc_ccr;
	u16			eeprom_size;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

	struct mii_if_info	mii;
	struct ks8851_rxctrl	rxctrl;

	struct work_struct	tx_work;
	struct work_struct	irq_work;
	struct work_struct	rxctrl_work;

	struct sk_buff_head	txq;

	struct spi_message	spi_msg1;
	struct spi_message	spi_msg2;
	struct spi_transfer	spi_xfer1;
	struct spi_transfer	spi_xfer2[2];
};

static int msg_enable;

/* shift for byte-enable data */
#define BYTE_EN(_x)	((_x) << 2)

/* turn register number and byte-enable mask into data for start of packet */
#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)

/* SPI register read/write calls.
 *
 * All these calls issue SPI transactions to access the chip's registers. They
 * all require that the necessary lock is held to prevent accesses when the
L
Lucas De Marchi 已提交
145
 * chip is busy transferring packet data (RX/TX FIFO accesses).
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 */

/**
 * ks8851_wrreg16 - write 16bit register value to chip
 * @ks: The chip state
 * @reg: The register address
 * @val: The value to write
 *
 * Issue a write to put the value @val into the register specified in @reg.
 */
static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
{
	struct spi_transfer *xfer = &ks->spi_xfer1;
	struct spi_message *msg = &ks->spi_msg1;
	__le16 txb[2];
	int ret;

	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
	txb[1] = cpu_to_le16(val);

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 4;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
172
		netdev_err(ks->netdev, "spi_sync() failed\n");
173 174
}

B
Ben Dooks 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/**
 * ks8851_wrreg8 - write 8bit register value to chip
 * @ks: The chip state
 * @reg: The register address
 * @val: The value to write
 *
 * Issue a write to put the value @val into the register specified in @reg.
 */
static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
{
	struct spi_transfer *xfer = &ks->spi_xfer1;
	struct spi_message *msg = &ks->spi_msg1;
	__le16 txb[2];
	int ret;
	int bit;

	bit = 1 << (reg & 3);

	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
	txb[1] = val;

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 3;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
202
		netdev_err(ks->netdev, "spi_sync() failed\n");
B
Ben Dooks 已提交
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/**
 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 * @ks: The device structure
 *
 * Return whether to generate a single message with a tx and rx buffer
 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 * as separate messages.
 *
 * Depending on the hardware in use, a single message may be more efficient
 * on interrupts or work done by the driver.
 *
 * This currently always returns true until we add some per-device data passed
 * from the platform code to specify which mode is better.
 */
static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
{
	return true;
}

/**
 * ks8851_rdreg - issue read register command and return the data
 * @ks: The device state
 * @op: The register address and byte enables in message format.
 * @rxb: The RX buffer to return the result into
 * @rxl: The length of data expected.
 *
 * This is the low level read call that issues the necessary spi message(s)
 * to read data from the register specified in @op.
 */
static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
			 u8 *rxb, unsigned rxl)
{
	struct spi_transfer *xfer;
	struct spi_message *msg;
	__le16 *txb = (__le16 *)ks->txd;
	u8 *trx = ks->rxd;
	int ret;

	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);

	if (ks8851_rx_1msg(ks)) {
		msg = &ks->spi_msg1;
		xfer = &ks->spi_xfer1;

		xfer->tx_buf = txb;
		xfer->rx_buf = trx;
		xfer->len = rxl + 2;
	} else {
		msg = &ks->spi_msg2;
		xfer = ks->spi_xfer2;

		xfer->tx_buf = txb;
		xfer->rx_buf = NULL;
		xfer->len = 2;

		xfer++;
		xfer->tx_buf = NULL;
		xfer->rx_buf = trx;
		xfer->len = rxl;
	}

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
268
		netdev_err(ks->netdev, "read: spi_sync() failed\n");
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	else if (ks8851_rx_1msg(ks))
		memcpy(rxb, trx + 2, rxl);
	else
		memcpy(rxb, trx, rxl);
}

/**
 * ks8851_rdreg8 - read 8 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 8bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
{
	u8 rxb[1];

	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
	return rxb[0];
}

/**
 * ks8851_rdreg16 - read 16 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 16bit register from the chip, returning the result
*/
static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
{
	__le16 rx = 0;

	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
	return le16_to_cpu(rx);
}

/**
 * ks8851_rdreg32 - read 32 bit register from device
 * @ks: The chip information
 * @reg: The register address
 *
 * Read a 32bit register from the chip.
 *
 * Note, this read requires the address be aligned to 4 bytes.
*/
static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
{
	__le32 rx = 0;

	WARN_ON(reg & 3);

	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
	return le32_to_cpu(rx);
}

/**
 * ks8851_soft_reset - issue one of the soft reset to the device
 * @ks: The device state.
 * @op: The bit(s) to set in the GRR
 *
 * Issue the relevant soft-reset command to the device's GRR register
 * specified by @op.
 *
 * Note, the delays are in there as a caution to ensure that the reset
 * has time to take effect and then complete. Since the datasheet does
 * not currently specify the exact sequence, we have chosen something
 * that seems to work with our device.
 */
static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
{
	ks8851_wrreg16(ks, KS_GRR, op);
	mdelay(1);	/* wait a short time to effect reset */
	ks8851_wrreg16(ks, KS_GRR, 0);
	mdelay(1);	/* wait for condition to clear */
}

/**
 * ks8851_write_mac_addr - write mac address to device registers
 * @dev: The network device
 *
 * Update the KS8851 MAC address registers from the address in @dev.
 *
 * This call assumes that the chip is not running, so there is no need to
 * shutdown the RXQ process whilst setting this.
*/
static int ks8851_write_mac_addr(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
B
Ben Dooks 已提交
357
	int i;
358 359 360

	mutex_lock(&ks->lock);

B
Ben Dooks 已提交
361 362
	for (i = 0; i < ETH_ALEN; i++)
		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

	mutex_unlock(&ks->lock);

	return 0;
}

/**
 * ks8851_init_mac - initialise the mac address
 * @ks: The device structure
 *
 * Get or create the initial mac address for the device and then set that
 * into the station address register. Currently we assume that the device
 * does not have a valid mac address in it, and so we use random_ether_addr()
 * to create a new one.
 *
 * In future, the driver should check to see if the device has an EEPROM
 * attached and whether that has a valid ethernet address in it.
 */
static void ks8851_init_mac(struct ks8851_net *ks)
{
	struct net_device *dev = ks->netdev;

	random_ether_addr(dev->dev_addr);
	ks8851_write_mac_addr(dev);
}

/**
 * ks8851_irq - device interrupt handler
 * @irq: Interrupt number passed from the IRQ hnalder.
 * @pw: The private word passed to register_irq(), our struct ks8851_net.
 *
 * Disable the interrupt from happening again until we've processed the
 * current status by scheduling ks8851_irq_work().
 */
static irqreturn_t ks8851_irq(int irq, void *pw)
{
	struct ks8851_net *ks = pw;

	disable_irq_nosync(irq);
	schedule_work(&ks->irq_work);
	return IRQ_HANDLED;
}

/**
 * ks8851_rdfifo - read data from the receive fifo
 * @ks: The device state.
 * @buff: The buffer address
 * @len: The length of the data to read
 *
412
 * Issue an RXQ FIFO read command and read the @len amount of data from
413 414 415 416 417 418 419 420 421
 * the FIFO into the buffer specified by @buff.
 */
static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
{
	struct spi_transfer *xfer = ks->spi_xfer2;
	struct spi_message *msg = &ks->spi_msg2;
	u8 txb[1];
	int ret;

422 423
	netif_dbg(ks, rx_status, ks->netdev,
		  "%s: %d@%p\n", __func__, len, buff);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	/* set the operation we're issuing */
	txb[0] = KS_SPIOP_RXFIFO;

	xfer->tx_buf = txb;
	xfer->rx_buf = NULL;
	xfer->len = 1;

	xfer++;
	xfer->rx_buf = buff;
	xfer->tx_buf = NULL;
	xfer->len = len;

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
439
		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
440 441 442 443 444 445 446 447 448 449 450
}

/**
 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 * @ks: The device state
 * @rxpkt: The data for the received packet
 *
 * Dump the initial data from the packet to dev_dbg().
*/
static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
{
451 452 453 454 455
	netdev_dbg(ks->netdev,
		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
}

/**
 * ks8851_rx_pkts - receive packets from the host
 * @ks: The device information.
 *
 * This is called from the IRQ work queue when the system detects that there
 * are packets in the receive queue. Find out how many packets there are and
 * read them from the FIFO.
 */
static void ks8851_rx_pkts(struct ks8851_net *ks)
{
	struct sk_buff *skb;
	unsigned rxfc;
	unsigned rxlen;
	unsigned rxstat;
	u32 rxh;
	u8 *rxpkt;

	rxfc = ks8851_rdreg8(ks, KS_RXFC);

477 478
	netif_dbg(ks, rx_status, ks->netdev,
		  "%s: %d packets\n", __func__, rxfc);
479 480 481 482 483 484 485 486

	/* Currently we're issuing a read per packet, but we could possibly
	 * improve the code by issuing a single read, getting the receive
	 * header, allocating the packet and then reading the packet data
	 * out in one go.
	 *
	 * This form of operation would require us to hold the SPI bus'
	 * chipselect low during the entie transaction to avoid any
L
Lucas De Marchi 已提交
487
	 * reset to the data stream coming from the chip.
488 489 490 491 492 493 494
	 */

	for (; rxfc != 0; rxfc--) {
		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
		rxstat = rxh & 0xffff;
		rxlen = rxh >> 16;

495 496
		netif_dbg(ks, rx_status, ks->netdev,
			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
497 498 499 500 501 502 503 504 505 506

		/* the length of the packet includes the 32bit CRC */

		/* set dma read address */
		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);

		/* start the packet dma process, and set auto-dequeue rx */
		ks8851_wrreg16(ks, KS_RXQCR,
			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);

507 508 509 510 511 512 513
		if (rxlen > 4) {
			unsigned int rxalign;

			rxlen -= 4;
			rxalign = ALIGN(rxlen, 4);
			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
			if (skb) {
514

515 516 517 518 519
				/* 4 bytes of status header + 4 bytes of
				 * garbage: we put them before ethernet
				 * header, so that they are copied,
				 * but ignored.
				 */
520

521
				rxpkt = skb_put(skb, rxlen) - 8;
522

523
				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
524

525 526
				if (netif_msg_pktdata(ks))
					ks8851_dbg_dumpkkt(ks, rxpkt);
527

528 529
				skb->protocol = eth_type_trans(skb, ks->netdev);
				netif_rx(skb);
530

531 532 533
				ks->netdev->stats.rx_packets++;
				ks->netdev->stats.rx_bytes += rxlen;
			}
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		}

		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
	}
}

/**
 * ks8851_irq_work - work queue handler for dealing with interrupt requests
 * @work: The work structure that was scheduled by schedule_work()
 *
 * This is the handler invoked when the ks8851_irq() is called to find out
 * what happened, as we cannot allow ourselves to sleep whilst waiting for
 * anything other process has the chip's lock.
 *
 * Read the interrupt status, work out what needs to be done and then clear
 * any of the interrupts that are not needed.
 */
static void ks8851_irq_work(struct work_struct *work)
{
	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
	unsigned status;
	unsigned handled = 0;

	mutex_lock(&ks->lock);

	status = ks8851_rdreg16(ks, KS_ISR);

561 562
	netif_dbg(ks, intr, ks->netdev,
		  "%s: status 0x%04x\n", __func__, status);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	if (status & IRQ_LCI) {
		/* should do something about checking link status */
		handled |= IRQ_LCI;
	}

	if (status & IRQ_LDI) {
		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
		pmecr &= ~PMECR_WKEVT_MASK;
		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);

		handled |= IRQ_LDI;
	}

	if (status & IRQ_RXPSI)
		handled |= IRQ_RXPSI;

	if (status & IRQ_TXI) {
		handled |= IRQ_TXI;

		/* no lock here, tx queue should have been stopped */

		/* update our idea of how much tx space is available to the
		 * system */
		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);

589 590
		netif_dbg(ks, intr, ks->netdev,
			  "%s: txspace %d\n", __func__, ks->tx_space);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	}

	if (status & IRQ_RXI)
		handled |= IRQ_RXI;

	if (status & IRQ_SPIBEI) {
		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
		handled |= IRQ_SPIBEI;
	}

	ks8851_wrreg16(ks, KS_ISR, handled);

	if (status & IRQ_RXI) {
		/* the datasheet says to disable the rx interrupt during
		 * packet read-out, however we're masking the interrupt
		 * from the device so do not bother masking just the RX
		 * from the device. */

		ks8851_rx_pkts(ks);
	}

	/* if something stopped the rx process, probably due to wanting
	 * to change the rx settings, then do something about restarting
	 * it. */
	if (status & IRQ_RXPSI) {
		struct ks8851_rxctrl *rxc = &ks->rxctrl;

		/* update the multicast hash table */
		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);

		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
	}

	mutex_unlock(&ks->lock);

	if (status & IRQ_TXI)
		netif_wake_queue(ks->netdev);

	enable_irq(ks->netdev->irq);
}

/**
 * calc_txlen - calculate size of message to send packet
L
Lucas De Marchi 已提交
638
 * @len: Length of data
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
 *
 * Returns the size of the TXFIFO message needed to send
 * this packet.
 */
static inline unsigned calc_txlen(unsigned len)
{
	return ALIGN(len + 4, 4);
}

/**
 * ks8851_wrpkt - write packet to TX FIFO
 * @ks: The device state.
 * @txp: The sk_buff to transmit.
 * @irq: IRQ on completion of the packet.
 *
 * Send the @txp to the chip. This means creating the relevant packet header
 * specifying the length of the packet and the other information the chip
 * needs, such as IRQ on completion. Send the header and the packet data to
 * the device.
 */
static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
{
	struct spi_transfer *xfer = ks->spi_xfer2;
	struct spi_message *msg = &ks->spi_msg2;
	unsigned fid = 0;
	int ret;

666 667
	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
		  __func__, txp, txp->len, txp->data, irq);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	fid = ks->fid++;
	fid &= TXFR_TXFID_MASK;

	if (irq)
		fid |= TXFR_TXIC;	/* irq on completion */

	/* start header at txb[1] to align txw entries */
	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
	ks->txh.txw[1] = cpu_to_le16(fid);
	ks->txh.txw[2] = cpu_to_le16(txp->len);

	xfer->tx_buf = &ks->txh.txb[1];
	xfer->rx_buf = NULL;
	xfer->len = 5;

	xfer++;
	xfer->tx_buf = txp->data;
	xfer->rx_buf = NULL;
	xfer->len = ALIGN(txp->len, 4);

	ret = spi_sync(ks->spidev, msg);
	if (ret < 0)
691
		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
}

/**
 * ks8851_done_tx - update and then free skbuff after transmitting
 * @ks: The device state
 * @txb: The buffer transmitted
 */
static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
{
	struct net_device *dev = ks->netdev;

	dev->stats.tx_bytes += txb->len;
	dev->stats.tx_packets++;

	dev_kfree_skb(txb);
}

/**
 * ks8851_tx_work - process tx packet(s)
 * @work: The work strucutre what was scheduled.
 *
 * This is called when a number of packets have been scheduled for
 * transmission and need to be sent to the device.
 */
static void ks8851_tx_work(struct work_struct *work)
{
	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
	struct sk_buff *txb;
720
	bool last = skb_queue_empty(&ks->txq);
721 722 723 724 725 726 727

	mutex_lock(&ks->lock);

	while (!last) {
		txb = skb_dequeue(&ks->txq);
		last = skb_queue_empty(&ks->txq);

728 729 730 731 732
		if (txb != NULL) {
			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
			ks8851_wrpkt(ks, txb, last);
			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
733

734 735
			ks8851_done_tx(ks, txb);
		}
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	}

	mutex_unlock(&ks->lock);
}

/**
 * ks8851_set_powermode - set power mode of the device
 * @ks: The device state
 * @pwrmode: The power mode value to write to KS_PMECR.
 *
 * Change the power mode of the chip.
 */
static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
{
	unsigned pmecr;

752
	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	pmecr = ks8851_rdreg16(ks, KS_PMECR);
	pmecr &= ~PMECR_PM_MASK;
	pmecr |= pwrmode;

	ks8851_wrreg16(ks, KS_PMECR, pmecr);
}

/**
 * ks8851_net_open - open network device
 * @dev: The network device being opened.
 *
 * Called when the network device is marked active, such as a user executing
 * 'ifconfig up' on the device.
 */
static int ks8851_net_open(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);

	/* lock the card, even if we may not actually be doing anything
	 * else at the moment */
	mutex_lock(&ks->lock);

776
	netif_dbg(ks, ifup, ks->netdev, "opening\n");
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/* bring chip out of any power saving mode it was in */
	ks8851_set_powermode(ks, PMECR_PM_NORMAL);

	/* issue a soft reset to the RX/TX QMU to put it into a known
	 * state. */
	ks8851_soft_reset(ks, GRR_QMU);

	/* setup transmission parameters */

	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
				     TXCR_TXPE | /* pad to min length */
				     TXCR_TXCRC | /* add CRC */
				     TXCR_TXFCE)); /* enable flow control */

	/* auto-increment tx data, reset tx pointer */
	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);

	/* setup receiver control */

	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
				      RXCR1_RXFCE | /* enable flow control */
				      RXCR1_RXBE | /* broadcast enable */
				      RXCR1_RXUE | /* unicast enable */
				      RXCR1_RXE)); /* enable rx block */

	/* transfer entire frames out in one go */
	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);

	/* set receive counter timeouts */
	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */

	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
			RXQCR_RXDTTE);  /* IRQ on time exceeded */

	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);

	/* clear then enable interrupts */

#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
		 IRQ_TXI |	/* TX done */		\
		 IRQ_RXI |	/* RX done */		\
		 IRQ_SPIBEI |	/* SPI bus error */	\
		 IRQ_TXPSI |	/* TX process stop */	\
		 IRQ_RXPSI)	/* RX process stop */

	ks->rc_ier = STD_IRQ;
	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
	ks8851_wrreg16(ks, KS_IER, STD_IRQ);

	netif_start_queue(ks->netdev);

832
	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

	mutex_unlock(&ks->lock);
	return 0;
}

/**
 * ks8851_net_stop - close network device
 * @dev: The device being closed.
 *
 * Called to close down a network device which has been active. Cancell any
 * work, shutdown the RX and TX process and then place the chip into a low
 * power state whilst it is not being used.
 */
static int ks8851_net_stop(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);

850
	netif_info(ks, ifdown, dev, "shutting down\n");
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

	netif_stop_queue(dev);

	mutex_lock(&ks->lock);

	/* stop any outstanding work */
	flush_work(&ks->irq_work);
	flush_work(&ks->tx_work);
	flush_work(&ks->rxctrl_work);

	/* turn off the IRQs and ack any outstanding */
	ks8851_wrreg16(ks, KS_IER, 0x0000);
	ks8851_wrreg16(ks, KS_ISR, 0xffff);

	/* shutdown RX process */
	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);

	/* shutdown TX process */
	ks8851_wrreg16(ks, KS_TXCR, 0x0000);

	/* set powermode to soft power down to save power */
	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);

	/* ensure any queued tx buffers are dumped */
	while (!skb_queue_empty(&ks->txq)) {
		struct sk_buff *txb = skb_dequeue(&ks->txq);

878 879
		netif_dbg(ks, ifdown, ks->netdev,
			  "%s: freeing txb %p\n", __func__, txb);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

		dev_kfree_skb(txb);
	}

	mutex_unlock(&ks->lock);
	return 0;
}

/**
 * ks8851_start_xmit - transmit packet
 * @skb: The buffer to transmit
 * @dev: The device used to transmit the packet.
 *
 * Called by the network layer to transmit the @skb. Queue the packet for
 * the device and schedule the necessary work to transmit the packet when
 * it is free.
 *
 * We do this to firstly avoid sleeping with the network device locked,
 * and secondly so we can round up more than one packet to transmit which
 * means we can try and avoid generating too many transmit done interrupts.
 */
901 902
static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
				     struct net_device *dev)
903 904 905
{
	struct ks8851_net *ks = netdev_priv(dev);
	unsigned needed = calc_txlen(skb->len);
906
	netdev_tx_t ret = NETDEV_TX_OK;
907

908 909
	netif_dbg(ks, tx_queued, ks->netdev,
		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967

	spin_lock(&ks->statelock);

	if (needed > ks->tx_space) {
		netif_stop_queue(dev);
		ret = NETDEV_TX_BUSY;
	} else {
		ks->tx_space -= needed;
		skb_queue_tail(&ks->txq, skb);
	}

	spin_unlock(&ks->statelock);
	schedule_work(&ks->tx_work);

	return ret;
}

/**
 * ks8851_rxctrl_work - work handler to change rx mode
 * @work: The work structure this belongs to.
 *
 * Lock the device and issue the necessary changes to the receive mode from
 * the network device layer. This is done so that we can do this without
 * having to sleep whilst holding the network device lock.
 *
 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 * receive parameters are programmed, we issue a write to disable the RXQ and
 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 * complete. The interrupt handler then writes the new values into the chip.
 */
static void ks8851_rxctrl_work(struct work_struct *work)
{
	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);

	mutex_lock(&ks->lock);

	/* need to shutdown RXQ before modifying filter parameters */
	ks8851_wrreg16(ks, KS_RXCR1, 0x00);

	mutex_unlock(&ks->lock);
}

static void ks8851_set_rx_mode(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	struct ks8851_rxctrl rxctrl;

	memset(&rxctrl, 0, sizeof(rxctrl));

	if (dev->flags & IFF_PROMISC) {
		/* interface to receive everything */

		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
	} else if (dev->flags & IFF_ALLMULTI) {
		/* accept all multicast packets */

		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
968
	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
969
		struct netdev_hw_addr *ha;
970 971 972 973
		u32 crc;

		/* accept some multicast */

974 975
		netdev_for_each_mc_addr(ha, dev) {
			crc = ether_crc(ETH_ALEN, ha->addr);
976 977 978 979 980
			crc >>= (32 - 6);  /* get top six bits */

			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
		}

981
		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	} else {
		/* just accept broadcast / unicast */
		rxctrl.rxcr1 = RXCR1_RXPAFMA;
	}

	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
			 RXCR1_RXBE | /* broadcast enable */
			 RXCR1_RXE | /* RX process enable */
			 RXCR1_RXFCE); /* enable flow control */

	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;

	/* schedule work to do the actual set of the data if needed */

	spin_lock(&ks->statelock);

	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
		schedule_work(&ks->rxctrl_work);
	}

	spin_unlock(&ks->statelock);
}

static int ks8851_set_mac_address(struct net_device *dev, void *addr)
{
	struct sockaddr *sa = addr;

	if (netif_running(dev))
		return -EBUSY;

	if (!is_valid_ether_addr(sa->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
	return ks8851_write_mac_addr(dev);
}

static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}

static const struct net_device_ops ks8851_netdev_ops = {
	.ndo_open		= ks8851_net_open,
	.ndo_stop		= ks8851_net_stop,
	.ndo_do_ioctl		= ks8851_net_ioctl,
	.ndo_start_xmit		= ks8851_start_xmit,
	.ndo_set_mac_address	= ks8851_set_mac_address,
	.ndo_set_rx_mode	= ks8851_set_rx_mode,
	.ndo_change_mtu		= eth_change_mtu,
	.ndo_validate_addr	= eth_validate_addr,
};

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/* Companion eeprom access */

enum {	/* EEPROM programming states */
	EEPROM_CONTROL,
	EEPROM_ADDRESS,
	EEPROM_DATA,
	EEPROM_COMPLETE
};

/**
 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
 * @dev: The network device the PHY is on.
 * @addr: EEPROM address to read
 *
 * eeprom_size: used to define the data coding length. Can be changed
 * through debug-fs.
 *
 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
 * Warning: The READ feature is not supported on ks8851 revision 0.
 *
 * Rough programming model:
 *  - on period start: set clock high and read value on bus
 *  - on period / 2: set clock low and program value on bus
 *  - start on period / 2
 */
unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int eepcr;
	int ctrl = EEPROM_OP_READ;
	int state = EEPROM_CONTROL;
	int bit_count = EEPROM_OP_LEN - 1;
	unsigned int data = 0;
	int dummy;
	unsigned int addr_len;

	addr_len = (ks->eeprom_size == 128) ? 6 : 8;

	/* start transaction: chip select high, authorize write */
	mutex_lock(&ks->lock);
	eepcr = EEPCR_EESA | EEPCR_EESRWA;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	eepcr |= EEPCR_EECS;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	mutex_unlock(&ks->lock);

	while (state != EEPROM_COMPLETE) {
		/* falling clock period starts... */
		/* set EED_IO pin for control and address */
		eepcr &= ~EEPCR_EEDO;
		switch (state) {
		case EEPROM_CONTROL:
			eepcr |= ((ctrl >> bit_count) & 1) << 2;
			if (bit_count-- <= 0) {
				bit_count = addr_len - 1;
				state = EEPROM_ADDRESS;
			}
			break;
		case EEPROM_ADDRESS:
			eepcr |= ((addr >> bit_count) & 1) << 2;
			bit_count--;
			break;
		case EEPROM_DATA:
			/* Change to receive mode */
			eepcr &= ~EEPCR_EESRWA;
			break;
		}

		/* lower clock  */
		eepcr &= ~EEPCR_EESCK;

		mutex_lock(&ks->lock);
		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
		mutex_unlock(&ks->lock);

		/* waitread period / 2 */
		udelay(EEPROM_SK_PERIOD / 2);

		/* rising clock period starts... */

		/* raise clock */
		mutex_lock(&ks->lock);
		eepcr |= EEPCR_EESCK;
		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
		mutex_unlock(&ks->lock);

		/* Manage read */
		switch (state) {
		case EEPROM_ADDRESS:
			if (bit_count < 0) {
				bit_count = EEPROM_DATA_LEN - 1;
				state = EEPROM_DATA;
			}
			break;
		case EEPROM_DATA:
			mutex_lock(&ks->lock);
			dummy = ks8851_rdreg16(ks, KS_EEPCR);
			mutex_unlock(&ks->lock);
			data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
			if (bit_count-- <= 0)
				state = EEPROM_COMPLETE;
			break;
		}

		/* wait period / 2 */
		udelay(EEPROM_SK_PERIOD / 2);
	}

	/* close transaction */
	mutex_lock(&ks->lock);
	eepcr &= ~EEPCR_EECS;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	eepcr = 0;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	mutex_unlock(&ks->lock);

	return data;
}

/**
 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
 * @dev: The network device the PHY is on.
 * @op: operand (can be WRITE, EWEN, EWDS)
 * @addr: EEPROM address to write
 * @data: data to write
 *
 * eeprom_size: used to define the data coding length. Can be changed
 * through debug-fs.
 *
 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
 *
 * Note that a write enable is required before writing data.
 *
 * Rough programming model:
 *  - on period start: set clock high
 *  - on period / 2: set clock low and program value on bus
 *  - start on period / 2
 */
void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
					unsigned int addr, unsigned int data)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int eepcr;
	int state = EEPROM_CONTROL;
	int bit_count = EEPROM_OP_LEN - 1;
	unsigned int addr_len;

	addr_len = (ks->eeprom_size == 128) ? 6 : 8;

	switch (op) {
	case EEPROM_OP_EWEN:
		addr = 0x30;
	break;
	case EEPROM_OP_EWDS:
		addr = 0;
		break;
	}

	/* start transaction: chip select high, authorize write */
	mutex_lock(&ks->lock);
	eepcr = EEPCR_EESA | EEPCR_EESRWA;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	eepcr |= EEPCR_EECS;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	mutex_unlock(&ks->lock);

	while (state != EEPROM_COMPLETE) {
		/* falling clock period starts... */
		/* set EED_IO pin for control and address */
		eepcr &= ~EEPCR_EEDO;
		switch (state) {
		case EEPROM_CONTROL:
			eepcr |= ((op >> bit_count) & 1) << 2;
			if (bit_count-- <= 0) {
				bit_count = addr_len - 1;
				state = EEPROM_ADDRESS;
			}
			break;
		case EEPROM_ADDRESS:
			eepcr |= ((addr >> bit_count) & 1) << 2;
			if (bit_count-- <= 0) {
				if (op == EEPROM_OP_WRITE) {
					bit_count = EEPROM_DATA_LEN - 1;
					state = EEPROM_DATA;
				} else {
					state = EEPROM_COMPLETE;
				}
			}
			break;
		case EEPROM_DATA:
			eepcr |= ((data >> bit_count) & 1) << 2;
			if (bit_count-- <= 0)
				state = EEPROM_COMPLETE;
			break;
		}

		/* lower clock  */
		eepcr &= ~EEPCR_EESCK;

		mutex_lock(&ks->lock);
		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
		mutex_unlock(&ks->lock);

		/* wait period / 2 */
		udelay(EEPROM_SK_PERIOD / 2);

		/* rising clock period starts... */

		/* raise clock */
		eepcr |= EEPCR_EESCK;
		mutex_lock(&ks->lock);
		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
		mutex_unlock(&ks->lock);

		/* wait period / 2 */
		udelay(EEPROM_SK_PERIOD / 2);
	}

	/* close transaction */
	mutex_lock(&ks->lock);
	eepcr &= ~EEPCR_EECS;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	eepcr = 0;
	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
	mutex_unlock(&ks->lock);

}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* ethtool support */

static void ks8851_get_drvinfo(struct net_device *dev,
			       struct ethtool_drvinfo *di)
{
	strlcpy(di->driver, "KS8851", sizeof(di->driver));
	strlcpy(di->version, "1.00", sizeof(di->version));
	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
}

static u32 ks8851_get_msglevel(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return ks->msg_enable;
}

static void ks8851_set_msglevel(struct net_device *dev, u32 to)
{
	struct ks8851_net *ks = netdev_priv(dev);
	ks->msg_enable = to;
}

static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_ethtool_gset(&ks->mii, cmd);
}

static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_ethtool_sset(&ks->mii, cmd);
}

static u32 ks8851_get_link(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_link_ok(&ks->mii);
}

static int ks8851_nway_reset(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return mii_nway_restart(&ks->mii);
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int ks8851_get_eeprom_len(struct net_device *dev)
{
	struct ks8851_net *ks = netdev_priv(dev);
	return ks->eeprom_size;
}

static int ks8851_get_eeprom(struct net_device *dev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct ks8851_net *ks = netdev_priv(dev);
	u16 *eeprom_buff;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	if (eeprom->len > ks->eeprom_size)
		return -EINVAL;

	eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);

	/* Device's eeprom is little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int ks8851_set_eeprom(struct net_device *dev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct ks8851_net *ks = netdev_priv(dev);
	u16 *eeprom_buff;
	void *ptr;
	int max_len;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->len > ks->eeprom_size)
		return -EINVAL;

	if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
		return -EFAULT;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	max_len = (last_word - first_word + 1) * 2;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
		eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
		ptr++;
	}
	if ((eeprom->offset + eeprom->len) & 1)
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
		eeprom_buff[last_word - first_word] =
					ks8851_eeprom_read(dev, last_word);


	/* Device's eeprom is little-endian, word addressable */
	le16_to_cpus(&eeprom_buff[0]);
	le16_to_cpus(&eeprom_buff[last_word - first_word]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);

	for (i = 0; i < last_word - first_word + 1; i++) {
		ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
							eeprom_buff[i]);
		mdelay(EEPROM_WRITE_TIME);
	}

	ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);

	kfree(eeprom_buff);
	return ret_val;
}

1426 1427 1428 1429 1430 1431 1432 1433
static const struct ethtool_ops ks8851_ethtool_ops = {
	.get_drvinfo	= ks8851_get_drvinfo,
	.get_msglevel	= ks8851_get_msglevel,
	.set_msglevel	= ks8851_set_msglevel,
	.get_settings	= ks8851_get_settings,
	.set_settings	= ks8851_set_settings,
	.get_link	= ks8851_get_link,
	.nway_reset	= ks8851_nway_reset,
1434 1435 1436
	.get_eeprom_len	= ks8851_get_eeprom_len,
	.get_eeprom	= ks8851_get_eeprom,
	.set_eeprom	= ks8851_set_eeprom,
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
};

/* MII interface controls */

/**
 * ks8851_phy_reg - convert MII register into a KS8851 register
 * @reg: MII register number.
 *
 * Return the KS8851 register number for the corresponding MII PHY register
 * if possible. Return zero if the MII register has no direct mapping to the
 * KS8851 register set.
 */
static int ks8851_phy_reg(int reg)
{
	switch (reg) {
	case MII_BMCR:
		return KS_P1MBCR;
	case MII_BMSR:
		return KS_P1MBSR;
	case MII_PHYSID1:
		return KS_PHY1ILR;
	case MII_PHYSID2:
		return KS_PHY1IHR;
	case MII_ADVERTISE:
		return KS_P1ANAR;
	case MII_LPA:
		return KS_P1ANLPR;
	}

	return 0x0;
}

/**
 * ks8851_phy_read - MII interface PHY register read.
 * @dev: The network device the PHY is on.
 * @phy_addr: Address of PHY (ignored as we only have one)
 * @reg: The register to read.
 *
 * This call reads data from the PHY register specified in @reg. Since the
L
Lucas De Marchi 已提交
1476
 * device does not support all the MII registers, the non-existent values
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
 * are always returned as zero.
 *
 * We return zero for unsupported registers as the MII code does not check
 * the value returned for any error status, and simply returns it to the
 * caller. The mii-tool that the driver was tested with takes any -ve error
 * as real PHY capabilities, thus displaying incorrect data to the user.
 */
static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int ksreg;
	int result;

	ksreg = ks8851_phy_reg(reg);
	if (!ksreg)
		return 0x0;	/* no error return allowed, so use zero */

	mutex_lock(&ks->lock);
	result = ks8851_rdreg16(ks, ksreg);
	mutex_unlock(&ks->lock);

	return result;
}

static void ks8851_phy_write(struct net_device *dev,
			     int phy, int reg, int value)
{
	struct ks8851_net *ks = netdev_priv(dev);
	int ksreg;

	ksreg = ks8851_phy_reg(reg);
	if (ksreg) {
		mutex_lock(&ks->lock);
		ks8851_wrreg16(ks, ksreg, value);
		mutex_unlock(&ks->lock);
	}
}

/**
 * ks8851_read_selftest - read the selftest memory info.
 * @ks: The device state
 *
 * Read and check the TX/RX memory selftest information.
 */
static int ks8851_read_selftest(struct ks8851_net *ks)
{
	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
	int ret = 0;
	unsigned rd;

	rd = ks8851_rdreg16(ks, KS_MBIR);

	if ((rd & both_done) != both_done) {
1530
		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1531 1532 1533 1534
		return 0;
	}

	if (rd & MBIR_TXMBFA) {
1535
		netdev_err(ks->netdev, "TX memory selftest fail\n");
1536 1537 1538 1539
		ret |= 1;
	}

	if (rd & MBIR_RXMBFA) {
1540
		netdev_err(ks->netdev, "RX memory selftest fail\n");
1541 1542 1543 1544 1545 1546 1547 1548
		ret |= 2;
	}

	return 0;
}

/* driver bus management functions */

A
Arce, Abraham 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
#ifdef CONFIG_PM
static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
{
	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
	struct net_device *dev = ks->netdev;

	if (netif_running(dev)) {
		netif_device_detach(dev);
		ks8851_net_stop(dev);
	}

	return 0;
}

static int ks8851_resume(struct spi_device *spi)
{
	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
	struct net_device *dev = ks->netdev;

	if (netif_running(dev)) {
		ks8851_net_open(dev);
		netif_device_attach(dev);
	}

	return 0;
}
#else
#define ks8851_suspend NULL
#define ks8851_resume NULL
#endif

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static int __devinit ks8851_probe(struct spi_device *spi)
{
	struct net_device *ndev;
	struct ks8851_net *ks;
	int ret;

	ndev = alloc_etherdev(sizeof(struct ks8851_net));
	if (!ndev) {
		dev_err(&spi->dev, "failed to alloc ethernet device\n");
		return -ENOMEM;
	}

	spi->bits_per_word = 8;

	ks = netdev_priv(ndev);

	ks->netdev = ndev;
	ks->spidev = spi;
	ks->tx_space = 6144;

	mutex_init(&ks->lock);
	spin_lock_init(&ks->statelock);

	INIT_WORK(&ks->tx_work, ks8851_tx_work);
	INIT_WORK(&ks->irq_work, ks8851_irq_work);
	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);

	/* initialise pre-made spi transfer messages */

	spi_message_init(&ks->spi_msg1);
	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);

	spi_message_init(&ks->spi_msg2);
	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);

	/* setup mii state */
	ks->mii.dev		= ndev;
	ks->mii.phy_id		= 1,
	ks->mii.phy_id_mask	= 1;
	ks->mii.reg_num_mask	= 0xf;
	ks->mii.mdio_read	= ks8851_phy_read;
	ks->mii.mdio_write	= ks8851_phy_write;

	dev_info(&spi->dev, "message enable is %d\n", msg_enable);

	/* set the default message enable */
	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
						     NETIF_MSG_PROBE |
						     NETIF_MSG_LINK));

	skb_queue_head_init(&ks->txq);

	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
	SET_NETDEV_DEV(ndev, &spi->dev);

	dev_set_drvdata(&spi->dev, ks);

	ndev->if_port = IF_PORT_100BASET;
	ndev->netdev_ops = &ks8851_netdev_ops;
	ndev->irq = spi->irq;

B
Ben Dooks 已提交
1642 1643 1644
	/* issue a global soft reset to reset the device. */
	ks8851_soft_reset(ks, GRR_GSR);

1645 1646 1647 1648 1649 1650 1651 1652
	/* simple check for a valid chip being connected to the bus */

	if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
		dev_err(&spi->dev, "failed to read device ID\n");
		ret = -ENODEV;
		goto err_id;
	}

1653 1654 1655 1656 1657 1658 1659 1660
	/* cache the contents of the CCR register for EEPROM, etc. */
	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);

	if (ks->rc_ccr & CCR_EEPROM)
		ks->eeprom_size = 128;
	else
		ks->eeprom_size = 0;

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	ks8851_read_selftest(ks);
	ks8851_init_mac(ks);

	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
			  ndev->name, ks);
	if (ret < 0) {
		dev_err(&spi->dev, "failed to get irq\n");
		goto err_irq;
	}

	ret = register_netdev(ndev);
	if (ret) {
		dev_err(&spi->dev, "failed to register network device\n");
		goto err_netdev;
	}

1677 1678 1679
	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
		    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
		    ndev->dev_addr, ndev->irq);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	return 0;


err_netdev:
	free_irq(ndev->irq, ndev);

err_id:
err_irq:
	free_netdev(ndev);
	return ret;
}

static int __devexit ks8851_remove(struct spi_device *spi)
{
	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);

	if (netif_msg_drv(priv))
1698
		dev_info(&spi->dev, "remove\n");
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	unregister_netdev(priv->netdev);
	free_irq(spi->irq, priv);
	free_netdev(priv->netdev);

	return 0;
}

static struct spi_driver ks8851_driver = {
	.driver = {
		.name = "ks8851",
		.owner = THIS_MODULE,
	},
	.probe = ks8851_probe,
	.remove = __devexit_p(ks8851_remove),
A
Arce, Abraham 已提交
1714 1715
	.suspend = ks8851_suspend,
	.resume = ks8851_resume,
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
};

static int __init ks8851_init(void)
{
	return spi_register_driver(&ks8851_driver);
}

static void __exit ks8851_exit(void)
{
	spi_unregister_driver(&ks8851_driver);
}

module_init(ks8851_init);
module_exit(ks8851_exit);

MODULE_DESCRIPTION("KS8851 Network driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");

module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1737
MODULE_ALIAS("spi:ks8851");