ce.c 32.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hif.h"
#include "pci.h"
#include "ce.h"
#include "debug.h"

/*
 * Support for Copy Engine hardware, which is mainly used for
 * communication between Host and Target over a PCIe interconnect.
 */

/*
 * A single CopyEngine (CE) comprises two "rings":
 *   a source ring
 *   a destination ring
 *
 * Each ring consists of a number of descriptors which specify
 * an address, length, and meta-data.
 *
 * Typically, one side of the PCIe interconnect (Host or Target)
 * controls one ring and the other side controls the other ring.
 * The source side chooses when to initiate a transfer and it
 * chooses what to send (buffer address, length). The destination
 * side keeps a supply of "anonymous receive buffers" available and
 * it handles incoming data as it arrives (when the destination
 * recieves an interrupt).
 *
 * The sender may send a simple buffer (address/length) or it may
 * send a small list of buffers.  When a small list is sent, hardware
 * "gathers" these and they end up in a single destination buffer
 * with a single interrupt.
 *
 * There are several "contexts" managed by this layer -- more, it
 * may seem -- than should be needed. These are provided mainly for
 * maximum flexibility and especially to facilitate a simpler HIF
 * implementation. There are per-CopyEngine recv, send, and watermark
 * contexts. These are supplied by the caller when a recv, send,
 * or watermark handler is established and they are echoed back to
 * the caller when the respective callbacks are invoked. There is
 * also a per-transfer context supplied by the caller when a buffer
 * (or sendlist) is sent and when a buffer is enqueued for recv.
 * These per-transfer contexts are echoed back to the caller when
 * the buffer is sent/received.
 */

static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
						       u32 ce_ctrl_addr,
						       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
}

static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
						      u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
}

static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
						      u32 ce_ctrl_addr,
						      unsigned int n)
{
79
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
}

static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
}

static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32((ar),
					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
			   CE_CTRL1_DMAX_LENGTH_SET(n));
}

static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
}

static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
}

static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
}

static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     u32 addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
						u32 ce_ctrl_addr,
						unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
			   SRC_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
						  u32 ce_ctrl_addr,
						  unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_LOW_MASK) |
			   SRC_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_HIGH_MASK) |
			   DST_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_LOW_MASK) |
			   DST_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~CE_WATERMARK_MASK);
}

static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
					       u32 ce_ctrl_addr)
{
	u32 misc_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + MISC_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
			   misc_ie_addr | CE_ERROR_MASK);
}

246 247 248 249 250 251 252 253 254 255
static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
						u32 ce_ctrl_addr)
{
	u32 misc_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + MISC_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
			   misc_ie_addr & ~CE_ERROR_MASK);
}

256 257 258 259 260 261 262 263 264 265 266 267
static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int mask)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
}

/*
 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
 * ath10k_ce_sendlist_send.
 * The caller takes responsibility for any needed locking.
 */
268 269 270 271 272 273
int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
			  void *per_transfer_context,
			  u32 buffer,
			  unsigned int nbytes,
			  unsigned int transfer_id,
			  unsigned int flags)
274 275
{
	struct ath10k *ar = ce_state->ar;
276
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 278 279 280 281 282 283 284 285
	struct ce_desc *desc, *sdesc;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (nbytes > ce_state->src_sz_max)
286
		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 288 289 290
			    __func__, nbytes, ce_state->src_sz_max);

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
M
Michal Kazior 已提交
291
		ret = -ENOSR;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   write_index);
	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;
	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

	sdesc->addr   = __cpu_to_le32(buffer);
	sdesc->nbytes = __cpu_to_le16(nbytes);
	sdesc->flags  = __cpu_to_le16(desc_flags);

	*desc = *sdesc;

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	/* WORKAROUND */
	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	return ret;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_ring *src_ring = pipe->src_ring;
	u32 ctrl_addr = pipe->ctrl_addr;

	lockdep_assert_held(&ar_pci->ce_lock);

	/*
	 * This function must be called only if there is an incomplete
	 * scatter-gather transfer (before index register is updated)
	 * that needs to be cleaned up.
	 */
	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
		return;

	if (WARN_ON_ONCE(src_ring->write_index ==
			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
		return;

	src_ring->write_index--;
	src_ring->write_index &= src_ring->nentries_mask;

	src_ring->per_transfer_context[src_ring->write_index] = NULL;
}

353
int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		   void *per_transfer_context,
		   u32 buffer,
		   unsigned int nbytes,
		   unsigned int transfer_id,
		   unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

M
Michal Kazior 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int delta;

	spin_lock_bh(&ar_pci->ce_lock);
	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
			      pipe->src_ring->write_index,
			      pipe->src_ring->sw_index - 1);
	spin_unlock_bh(&ar_pci->ce_lock);

	return delta;
}

387
int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388
{
389
	struct ath10k *ar = pipe->ar;
390
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392
	unsigned int nentries_mask = dest_ring->nentries_mask;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;

	lockdep_assert_held(&ar_pci->ce_lock);

	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}

int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index = dest_ring->write_index;
	unsigned int sw_index = dest_ring->sw_index;
	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
	u32 ctrl_addr = pipe->ctrl_addr;

	lockdep_assert_held(&ar_pci->ce_lock);

	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
		return -EIO;

	desc->addr = __cpu_to_le32(paddr);
	desc->nbytes = 0;

	dest_ring->per_transfer_context[write_index] = ctx;
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
	dest_ring->write_index = write_index;

	return 0;
}

int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
{
	struct ath10k *ar = pipe->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 434 435
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
436
	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437
	spin_unlock_bh(&ar_pci->ce_lock);
438

439 440 441 442 443 444 445
	return ret;
}

/*
 * Guts of ath10k_ce_completed_recv_next.
 * The caller takes responsibility for any necessary locking.
 */
K
Kalle Valo 已提交
446 447 448 449 450 451
int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_contextp,
					 u32 *bufferp,
					 unsigned int *nbytesp,
					 unsigned int *transfer_idp,
					 unsigned int *flagsp)
452
{
453
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;

	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
	struct ce_desc sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/*
		 * This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*bufferp = __le32_to_cpu(sdesc.addr);
	*nbytesp = nbytes;
	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);

	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
		*flagsp = CE_RECV_FLAG_SWAPPED;
	else
		*flagsp = 0;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

	/* sanity */
	dest_ring->per_transfer_context[sw_index] = NULL;

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

502
int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp,
				  unsigned int *flagsp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp, flagsp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

523
int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 525 526
			       void **per_transfer_contextp,
			       u32 *bufferp)
{
527
	struct ath10k_ce_ring *dest_ring;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le32_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;
M
Michal Kazior 已提交
561
		desc->nbytes = 0;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of ath10k_ce_completed_send_next.
 * The caller takes responsibility for any necessary locking.
 */
K
Kalle Valo 已提交
580 581 582 583 584
int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
					 void **per_transfer_contextp,
					 u32 *bufferp,
					 unsigned int *nbytesp,
					 unsigned int *transfer_idp)
585
{
586
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
587 588 589 590
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
591
	struct ce_desc *sdesc, *sbase;
592 593 594 595 596 597 598 599 600 601
	unsigned int read_index;

	if (src_ring->hw_index == sw_index) {
		/*
		 * The SW completion index has caught up with the cached
		 * version of the HW completion index.
		 * Update the cached HW completion index to see whether
		 * the SW has really caught up to the HW, or if the cached
		 * value of the HW index has become stale.
		 */
602

603 604 605 606 607 608
		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
		if (read_index == 0xffffffff)
			return -ENODEV;

		read_index &= nentries_mask;
		src_ring->hw_index = read_index;
609
	}
610

611 612
	read_index = src_ring->hw_index;

613
	if (read_index == sw_index)
614
		return -EIO;
615

616 617
	sbase = src_ring->shadow_base;
	sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
618

619 620 621 622 623
	/* Return data from completed source descriptor */
	*bufferp = __le32_to_cpu(sdesc->addr);
	*nbytesp = __le16_to_cpu(sdesc->nbytes);
	*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
			   CE_DESC_FLAGS_META_DATA);
624

625 626 627
	if (per_transfer_contextp)
		*per_transfer_contextp =
			src_ring->per_transfer_context[sw_index];
628

629 630
	/* sanity */
	src_ring->per_transfer_context[sw_index] = NULL;
631

632 633 634 635 636
	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	src_ring->sw_index = sw_index;

	return 0;
637 638 639
}

/* NB: Modeled after ath10k_ce_completed_send_next */
640
int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
641 642 643 644 645
			       void **per_transfer_contextp,
			       u32 *bufferp,
			       unsigned int *nbytesp,
			       unsigned int *transfer_idp)
{
646
	struct ath10k_ce_ring *src_ring;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	src_ring = ce_state->src_ring;

	if (!src_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (write_index != sw_index) {
		struct ce_desc *base = src_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
						CE_DESC_FLAGS_META_DATA);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

698
int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_send_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 *
 * Invokes registered callbacks for recv_complete,
 * send_complete, and watermarks.
 */
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
727
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
728 729 730 731 732 733 734 735
	u32 ctrl_addr = ce_state->ctrl_addr;

	spin_lock_bh(&ar_pci->ce_lock);

	/* Clear the copy-complete interrupts that will be handled here. */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
					  HOST_IS_COPY_COMPLETE_MASK);

736
	spin_unlock_bh(&ar_pci->ce_lock);
737

738 739 740 741 742 743 744
	if (ce_state->recv_cb)
		ce_state->recv_cb(ce_state);

	if (ce_state->send_cb)
		ce_state->send_cb(ce_state);

	spin_lock_bh(&ar_pci->ce_lock);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	/*
	 * Misc CE interrupts are not being handled, but still need
	 * to be cleared.
	 */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);

	spin_unlock_bh(&ar_pci->ce_lock);
}

/*
 * Handler for per-engine interrupts on ALL active CEs.
 * This is used in cases where the system is sharing a
 * single interrput for all CEs
 */

void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
763
	int ce_id;
764 765 766 767
	u32 intr_summary;

	intr_summary = CE_INTERRUPT_SUMMARY(ar);

M
Michal Kazior 已提交
768
	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		if (intr_summary & (1 << ce_id))
			intr_summary &= ~(1 << ce_id);
		else
			/* no intr pending on this CE */
			continue;

		ath10k_ce_per_engine_service(ar, ce_id);
	}
}

/*
 * Adjust interrupts for the copy complete handler.
 * If it's needed for either send or recv, then unmask
 * this interrupt; otherwise, mask it.
 *
 * Called with ce_lock held.
 */
786
static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
787 788 789
{
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
790
	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
791 792 793 794 795 796 797 798 799 800

	if ((!disable_copy_compl_intr) &&
	    (ce_state->send_cb || ce_state->recv_cb))
		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
	else
		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);

	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
}

801
int ath10k_ce_disable_interrupts(struct ath10k *ar)
802
{
803
	int ce_id;
804

M
Michal Kazior 已提交
805 806
	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
		u32 ctrl_addr = ath10k_ce_base_address(ce_id);
807 808

		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
809 810
		ath10k_ce_error_intr_disable(ar, ctrl_addr);
		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
811
	}
812 813

	return 0;
814 815
}

816
void ath10k_ce_enable_interrupts(struct ath10k *ar)
817 818
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
819
	int ce_id;
820

821 822 823 824
	/* Skip the last copy engine, CE7 the diagnostic window, as that
	 * uses polling and isn't initialized for interrupts.
	 */
	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
825
		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
826 827 828 829 830 831
}

static int ath10k_ce_init_src_ring(struct ath10k *ar,
				   unsigned int ce_id,
				   const struct ce_attr *attr)
{
832 833 834 835
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
836

837
	nentries = roundup_pow_of_two(attr->src_nentries);
838

M
Michal Kazior 已提交
839 840 841
	memset(src_ring->base_addr_owner_space, 0,
	       nentries * sizeof(struct ce_desc));

842
	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
843
	src_ring->sw_index &= src_ring->nentries_mask;
844 845 846 847
	src_ring->hw_index = src_ring->sw_index;

	src_ring->write_index =
		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
848
	src_ring->write_index &= src_ring->nentries_mask;
849

850 851 852 853 854 855 856 857
	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
					 src_ring->base_addr_ce_space);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);

858
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		   "boot init ce src ring id %d entries %d base_addr %p\n",
		   ce_id, nentries, src_ring->base_addr_owner_space);

	return 0;
}

static int ath10k_ce_init_dest_ring(struct ath10k *ar,
				    unsigned int ce_id,
				    const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
	u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);

	nentries = roundup_pow_of_two(attr->dest_nentries);

M
Michal Kazior 已提交
876 877 878
	memset(dest_ring->base_addr_owner_space, 0,
	       nentries * sizeof(struct ce_desc));

879 880 881 882 883 884 885 886 887 888 889 890 891
	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
	dest_ring->sw_index &= dest_ring->nentries_mask;
	dest_ring->write_index =
		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
	dest_ring->write_index &= dest_ring->nentries_mask;

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
					  dest_ring->base_addr_ce_space);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);

892
	ath10k_dbg(ar, ATH10K_DBG_BOOT,
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
		   "boot ce dest ring id %d entries %d base_addr %p\n",
		   ce_id, nentries, dest_ring->base_addr_owner_space);

	return 0;
}

static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
			 const struct ce_attr *attr)
{
	struct ath10k_ce_ring *src_ring;
	u32 nentries = attr->src_nentries;
	dma_addr_t base_addr;

	nentries = roundup_pow_of_two(nentries);

	src_ring = kzalloc(sizeof(*src_ring) +
			   (nentries *
			    sizeof(*src_ring->per_transfer_context)),
			   GFP_KERNEL);
	if (src_ring == NULL)
		return ERR_PTR(-ENOMEM);

	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;
918 919 920 921 922 923

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
924 925 926 927
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
928
	if (!src_ring->base_addr_owner_space_unaligned) {
929 930
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
931 932
	}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	src_ring->base_addr_ce_space_unaligned = base_addr;

	src_ring->base_addr_owner_space = PTR_ALIGN(
			src_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space = ALIGN(
			src_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

	/*
	 * Also allocate a shadow src ring in regular
	 * mem to use for faster access.
	 */
	src_ring->shadow_base_unaligned =
		kmalloc((nentries * sizeof(struct ce_desc) +
			 CE_DESC_RING_ALIGN), GFP_KERNEL);
949
	if (!src_ring->shadow_base_unaligned) {
950 951 952 953 954
		dma_free_coherent(ar->dev,
				  (nentries * sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  src_ring->base_addr_owner_space,
				  src_ring->base_addr_ce_space);
955 956
		kfree(src_ring);
		return ERR_PTR(-ENOMEM);
957
	}
958 959 960 961 962

	src_ring->shadow_base = PTR_ALIGN(
			src_ring->shadow_base_unaligned,
			CE_DESC_RING_ALIGN);

963
	return src_ring;
964 965
}

966 967 968
static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
			  const struct ce_attr *attr)
969
{
970
	struct ath10k_ce_ring *dest_ring;
971
	u32 nentries;
972 973
	dma_addr_t base_addr;

974
	nentries = roundup_pow_of_two(attr->dest_nentries);
975

976 977 978 979 980 981
	dest_ring = kzalloc(sizeof(*dest_ring) +
			    (nentries *
			     sizeof(*dest_ring->per_transfer_context)),
			    GFP_KERNEL);
	if (dest_ring == NULL)
		return ERR_PTR(-ENOMEM);
982 983 984 985 986 987 988 989 990

	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
991 992 993 994
		dma_alloc_coherent(ar->dev,
				   (nentries * sizeof(struct ce_desc) +
				    CE_DESC_RING_ALIGN),
				   &base_addr, GFP_KERNEL);
995
	if (!dest_ring->base_addr_owner_space_unaligned) {
996 997
		kfree(dest_ring);
		return ERR_PTR(-ENOMEM);
998 999
	}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	dest_ring->base_addr_ce_space_unaligned = base_addr;

	/*
	 * Correctly initialize memory to 0 to prevent garbage
	 * data crashing system when download firmware
	 */
	memset(dest_ring->base_addr_owner_space_unaligned, 0,
	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);

	dest_ring->base_addr_owner_space = PTR_ALIGN(
			dest_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space = ALIGN(
			dest_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

1016
	return dest_ring;
1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/*
 * Initialize a Copy Engine based on caller-supplied attributes.
 * This may be called once to initialize both source and destination
 * rings or it may be called twice for separate source and destination
 * initialization. It may be that only one side or the other is
 * initialized by software/firmware.
 */
1026
int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1027
			const struct ce_attr *attr)
1028
{
1029
	int ret;
1030 1031

	if (attr->src_nentries) {
1032
		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1033
		if (ret) {
1034
			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1035
				   ce_id, ret);
1036
			return ret;
1037 1038 1039 1040
		}
	}

	if (attr->dest_nentries) {
1041
		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1042
		if (ret) {
1043
			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1044
				   ce_id, ret);
1045
			return ret;
1046 1047 1048
		}
	}

1049
	return 0;
1050 1051
}

1052
static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1053
{
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);

	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
}

static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
{
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);

	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
}

void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
{
	ath10k_ce_deinit_src_ring(ar, ce_id);
	ath10k_ce_deinit_dest_ring(ar, ce_id);
}

int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1078 1079 1080
			 const struct ce_attr *attr,
			 void (*send_cb)(struct ath10k_ce_pipe *),
			 void (*recv_cb)(struct ath10k_ce_pipe *))
1081 1082 1083 1084 1085
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
	int ret;

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
	 * additional TX locking checks.
	 *
	 * For the lack of a better place do the check here.
	 */
	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));

	ce_state->ar = ar;
	ce_state->id = ce_id;
	ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
	ce_state->attr_flags = attr->flags;
	ce_state->src_sz_max = attr->src_sz_max;

	if (attr->src_nentries)
		ce_state->send_cb = send_cb;

	if (attr->dest_nentries)
		ce_state->recv_cb = recv_cb;

1109 1110 1111 1112
	if (attr->src_nentries) {
		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
		if (IS_ERR(ce_state->src_ring)) {
			ret = PTR_ERR(ce_state->src_ring);
1113
			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
				   ce_id, ret);
			ce_state->src_ring = NULL;
			return ret;
		}
	}

	if (attr->dest_nentries) {
		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
								attr);
		if (IS_ERR(ce_state->dest_ring)) {
			ret = PTR_ERR(ce_state->dest_ring);
1125
			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
				   ce_id, ret);
			ce_state->dest_ring = NULL;
			return ret;
		}
	}

	return 0;
}

void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1139 1140 1141

	if (ce_state->src_ring) {
		kfree(ce_state->src_ring->shadow_base_unaligned);
1142 1143 1144 1145 1146 1147
		dma_free_coherent(ar->dev,
				  (ce_state->src_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->src_ring->base_addr_owner_space,
				  ce_state->src_ring->base_addr_ce_space);
1148 1149 1150 1151
		kfree(ce_state->src_ring);
	}

	if (ce_state->dest_ring) {
1152 1153 1154 1155 1156 1157
		dma_free_coherent(ar->dev,
				  (ce_state->dest_ring->nentries *
				   sizeof(struct ce_desc) +
				   CE_DESC_RING_ALIGN),
				  ce_state->dest_ring->base_addr_owner_space,
				  ce_state->dest_ring->base_addr_ce_space);
1158 1159
		kfree(ce_state->dest_ring);
	}
1160 1161 1162

	ce_state->src_ring = NULL;
	ce_state->dest_ring = NULL;
1163
}