ce.c 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Copyright (c) 2005-2011 Atheros Communications Inc.
 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hif.h"
#include "pci.h"
#include "ce.h"
#include "debug.h"

/*
 * Support for Copy Engine hardware, which is mainly used for
 * communication between Host and Target over a PCIe interconnect.
 */

/*
 * A single CopyEngine (CE) comprises two "rings":
 *   a source ring
 *   a destination ring
 *
 * Each ring consists of a number of descriptors which specify
 * an address, length, and meta-data.
 *
 * Typically, one side of the PCIe interconnect (Host or Target)
 * controls one ring and the other side controls the other ring.
 * The source side chooses when to initiate a transfer and it
 * chooses what to send (buffer address, length). The destination
 * side keeps a supply of "anonymous receive buffers" available and
 * it handles incoming data as it arrives (when the destination
 * recieves an interrupt).
 *
 * The sender may send a simple buffer (address/length) or it may
 * send a small list of buffers.  When a small list is sent, hardware
 * "gathers" these and they end up in a single destination buffer
 * with a single interrupt.
 *
 * There are several "contexts" managed by this layer -- more, it
 * may seem -- than should be needed. These are provided mainly for
 * maximum flexibility and especially to facilitate a simpler HIF
 * implementation. There are per-CopyEngine recv, send, and watermark
 * contexts. These are supplied by the caller when a recv, send,
 * or watermark handler is established and they are echoed back to
 * the caller when the respective callbacks are invoked. There is
 * also a per-transfer context supplied by the caller when a buffer
 * (or sendlist) is sent and when a buffer is enqueued for recv.
 * These per-transfer contexts are echoed back to the caller when
 * the buffer is sent/received.
 */

static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
						       u32 ce_ctrl_addr,
						       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
}

static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
						      u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
}

static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
						      u32 ce_ctrl_addr,
						      unsigned int n)
{
79
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
}

static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
}

static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
}

static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
					       u32 ce_ctrl_addr,
					       unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32((ar),
					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
			   CE_CTRL1_DMAX_LENGTH_SET(n));
}

static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
}

static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int n)
{
	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
}

static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
						     u32 ce_ctrl_addr)
{
	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
}

static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     u32 addr)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
}

static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
						u32 ce_ctrl_addr,
						unsigned int n)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
}

static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
			   SRC_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
						  u32 ce_ctrl_addr,
						  unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
			   (addr & ~SRC_WATERMARK_LOW_MASK) |
			   SRC_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
						    u32 ce_ctrl_addr,
						    unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_HIGH_MASK) |
			   DST_WATERMARK_HIGH_SET(n));
}

static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
						   u32 ce_ctrl_addr,
						   unsigned int n)
{
	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
			   (addr & ~DST_WATERMARK_LOW_MASK) |
			   DST_WATERMARK_LOW_SET(n));
}

static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
							u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
}

static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
						    u32 ce_ctrl_addr)
{
	u32 host_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + HOST_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
			   host_ie_addr & ~CE_WATERMARK_MASK);
}

static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
					       u32 ce_ctrl_addr)
{
	u32 misc_ie_addr = ath10k_pci_read32(ar,
					     ce_ctrl_addr + MISC_IE_ADDRESS);

	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
			   misc_ie_addr | CE_ERROR_MASK);
}

static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
						     u32 ce_ctrl_addr,
						     unsigned int mask)
{
	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
}


/*
 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
 * ath10k_ce_sendlist_send.
 * The caller takes responsibility for any needed locking.
 */
static int ath10k_ce_send_nolock(struct ce_state *ce_state,
				 void *per_transfer_context,
				 u32 buffer,
				 unsigned int nbytes,
				 unsigned int transfer_id,
				 unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ce_ring_state *src_ring = ce_state->src_ring;
	struct ce_desc *desc, *sdesc;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int write_index = src_ring->write_index;
	u32 ctrl_addr = ce_state->ctrl_addr;
	u32 desc_flags = 0;
	int ret = 0;

	if (nbytes > ce_state->src_sz_max)
		ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
			    __func__, nbytes, ce_state->src_sz_max);

	ath10k_pci_wake(ar);

	if (unlikely(CE_RING_DELTA(nentries_mask,
				   write_index, sw_index - 1) <= 0)) {
		ret = -EIO;
		goto exit;
	}

	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
				   write_index);
	sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);

	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);

	if (flags & CE_SEND_FLAG_GATHER)
		desc_flags |= CE_DESC_FLAGS_GATHER;
	if (flags & CE_SEND_FLAG_BYTE_SWAP)
		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;

	sdesc->addr   = __cpu_to_le32(buffer);
	sdesc->nbytes = __cpu_to_le16(nbytes);
	sdesc->flags  = __cpu_to_le16(desc_flags);

	*desc = *sdesc;

	src_ring->per_transfer_context[write_index] = per_transfer_context;

	/* Update Source Ring Write Index */
	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);

	/* WORKAROUND */
	if (!(flags & CE_SEND_FLAG_GATHER))
		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);

	src_ring->write_index = write_index;
exit:
	ath10k_pci_sleep(ar);
	return ret;
}

int ath10k_ce_send(struct ce_state *ce_state,
		   void *per_transfer_context,
		   u32 buffer,
		   unsigned int nbytes,
		   unsigned int transfer_id,
		   unsigned int flags)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
				    buffer, nbytes, transfer_id, flags);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
				unsigned int nbytes, u32 flags)
{
	unsigned int num_items = sendlist->num_items;
	struct ce_sendlist_item *item;

	item = &sendlist->item[num_items];
	item->data = buffer;
	item->u.nbytes = nbytes;
	item->flags = flags;
	sendlist->num_items++;
}

int ath10k_ce_sendlist_send(struct ce_state *ce_state,
			    void *per_transfer_context,
			    struct ce_sendlist *sendlist,
			    unsigned int transfer_id)
{
	struct ce_ring_state *src_ring = ce_state->src_ring;
	struct ce_sendlist_item *item;
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int num_items = sendlist->num_items;
	unsigned int sw_index;
	unsigned int write_index;
	int i, delta, ret = -ENOMEM;

	spin_lock_bh(&ar_pci->ce_lock);

	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);

	if (delta >= num_items) {
		/*
		 * Handle all but the last item uniformly.
		 */
		for (i = 0; i < num_items - 1; i++) {
			item = &sendlist->item[i];
			ret = ath10k_ce_send_nolock(ce_state,
						    CE_SENDLIST_ITEM_CTXT,
						    (u32) item->data,
						    item->u.nbytes, transfer_id,
						    item->flags |
						    CE_SEND_FLAG_GATHER);
			if (ret)
				ath10k_warn("CE send failed for item: %d\n", i);
		}
		/*
		 * Provide valid context pointer for final item.
		 */
		item = &sendlist->item[i];
		ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
					    (u32) item->data, item->u.nbytes,
					    transfer_id, item->flags);
		if (ret)
			ath10k_warn("CE send failed for last item: %d\n", i);
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state,
			       void *per_recv_context,
			       u32 buffer)
{
	struct ce_ring_state *dest_ring = ce_state->dest_ring;
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int write_index;
	unsigned int sw_index;
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	write_index = dest_ring->write_index;
	sw_index = dest_ring->sw_index;

	ath10k_pci_wake(ar);

	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);

		/* Update destination descriptor */
		desc->addr    = __cpu_to_le32(buffer);
		desc->nbytes = 0;

		dest_ring->per_transfer_context[write_index] =
							per_recv_context;

		/* Update Destination Ring Write Index */
		write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
		ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
		dest_ring->write_index = write_index;
		ret = 0;
	} else {
		ret = -EIO;
	}
	ath10k_pci_sleep(ar);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of ath10k_ce_completed_recv_next.
 * The caller takes responsibility for any necessary locking.
 */
static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state,
						void **per_transfer_contextp,
						u32 *bufferp,
						unsigned int *nbytesp,
						unsigned int *transfer_idp,
						unsigned int *flagsp)
{
	struct ce_ring_state *dest_ring = ce_state->dest_ring;
	unsigned int nentries_mask = dest_ring->nentries_mask;
	unsigned int sw_index = dest_ring->sw_index;

	struct ce_desc *base = dest_ring->base_addr_owner_space;
	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
	struct ce_desc sdesc;
	u16 nbytes;

	/* Copy in one go for performance reasons */
	sdesc = *desc;

	nbytes = __le16_to_cpu(sdesc.nbytes);
	if (nbytes == 0) {
		/*
		 * This closes a relatively unusual race where the Host
		 * sees the updated DRRI before the update to the
		 * corresponding descriptor has completed. We treat this
		 * as a descriptor that is not yet done.
		 */
		return -EIO;
	}

	desc->nbytes = 0;

	/* Return data from completed destination descriptor */
	*bufferp = __le32_to_cpu(sdesc.addr);
	*nbytesp = nbytes;
	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);

	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
		*flagsp = CE_RECV_FLAG_SWAPPED;
	else
		*flagsp = 0;

	if (per_transfer_contextp)
		*per_transfer_contextp =
			dest_ring->per_transfer_context[sw_index];

	/* sanity */
	dest_ring->per_transfer_context[sw_index] = NULL;

	/* Update sw_index */
	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
	dest_ring->sw_index = sw_index;

	return 0;
}

int ath10k_ce_completed_recv_next(struct ce_state *ce_state,
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp,
				  unsigned int *flagsp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp, flagsp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

int ath10k_ce_revoke_recv_next(struct ce_state *ce_state,
			       void **per_transfer_contextp,
			       u32 *bufferp)
{
	struct ce_ring_state *dest_ring;
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	dest_ring = ce_state->dest_ring;

	if (!dest_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = dest_ring->nentries_mask;
	sw_index = dest_ring->sw_index;
	write_index = dest_ring->write_index;
	if (write_index != sw_index) {
		struct ce_desc *base = dest_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);

		/* Return data from completed destination descriptor */
		*bufferp = __le32_to_cpu(desc->addr);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				dest_ring->per_transfer_context[sw_index];

		/* sanity */
		dest_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		dest_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of ath10k_ce_completed_send_next.
 * The caller takes responsibility for any necessary locking.
 */
static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state,
						void **per_transfer_contextp,
						u32 *bufferp,
						unsigned int *nbytesp,
						unsigned int *transfer_idp)
{
	struct ce_ring_state *src_ring = ce_state->src_ring;
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;
	unsigned int nentries_mask = src_ring->nentries_mask;
	unsigned int sw_index = src_ring->sw_index;
	unsigned int read_index;
	int ret = -EIO;

	if (src_ring->hw_index == sw_index) {
		/*
		 * The SW completion index has caught up with the cached
		 * version of the HW completion index.
		 * Update the cached HW completion index to see whether
		 * the SW has really caught up to the HW, or if the cached
		 * value of the HW index has become stale.
		 */
		ath10k_pci_wake(ar);
		src_ring->hw_index =
			ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
611
		src_ring->hw_index &= nentries_mask;
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		ath10k_pci_sleep(ar);
	}
	read_index = src_ring->hw_index;

	if ((read_index != sw_index) && (read_index != 0xffffffff)) {
		struct ce_desc *sbase = src_ring->shadow_base;
		struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(sdesc->addr);
		*nbytesp = __le16_to_cpu(sdesc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(sdesc->flags),
						CE_DESC_FLAGS_META_DATA);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	}

	return ret;
}

/* NB: Modeled after ath10k_ce_completed_send_next */
int ath10k_ce_cancel_send_next(struct ce_state *ce_state,
			       void **per_transfer_contextp,
			       u32 *bufferp,
			       unsigned int *nbytesp,
			       unsigned int *transfer_idp)
{
	struct ce_ring_state *src_ring;
	unsigned int nentries_mask;
	unsigned int sw_index;
	unsigned int write_index;
	int ret;
	struct ath10k *ar;
	struct ath10k_pci *ar_pci;

	src_ring = ce_state->src_ring;

	if (!src_ring)
		return -EIO;

	ar = ce_state->ar;
	ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);

	nentries_mask = src_ring->nentries_mask;
	sw_index = src_ring->sw_index;
	write_index = src_ring->write_index;

	if (write_index != sw_index) {
		struct ce_desc *base = src_ring->base_addr_owner_space;
		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);

		/* Return data from completed source descriptor */
		*bufferp = __le32_to_cpu(desc->addr);
		*nbytesp = __le16_to_cpu(desc->nbytes);
		*transfer_idp = MS(__le16_to_cpu(desc->flags),
						CE_DESC_FLAGS_META_DATA);

		if (per_transfer_contextp)
			*per_transfer_contextp =
				src_ring->per_transfer_context[sw_index];

		/* sanity */
		src_ring->per_transfer_context[sw_index] = NULL;

		/* Update sw_index */
		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
		src_ring->sw_index = sw_index;
		ret = 0;
	} else {
		ret = -EIO;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

int ath10k_ce_completed_send_next(struct ce_state *ce_state,
				  void **per_transfer_contextp,
				  u32 *bufferp,
				  unsigned int *nbytesp,
				  unsigned int *transfer_idp)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ret;

	spin_lock_bh(&ar_pci->ce_lock);
	ret = ath10k_ce_completed_send_next_nolock(ce_state,
						   per_transfer_contextp,
						   bufferp, nbytesp,
						   transfer_idp);
	spin_unlock_bh(&ar_pci->ce_lock);

	return ret;
}

/*
 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 *
 * Invokes registered callbacks for recv_complete,
 * send_complete, and watermarks.
 */
void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
	u32 ctrl_addr = ce_state->ctrl_addr;
	void *transfer_context;
	u32 buf;
	unsigned int nbytes;
	unsigned int id;
	unsigned int flags;

	ath10k_pci_wake(ar);
	spin_lock_bh(&ar_pci->ce_lock);

	/* Clear the copy-complete interrupts that will be handled here. */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
					  HOST_IS_COPY_COMPLETE_MASK);

	if (ce_state->recv_cb) {
		/*
		 * Pop completed recv buffers and call the registered
		 * recv callback for each
		 */
		while (ath10k_ce_completed_recv_next_nolock(ce_state,
							    &transfer_context,
							    &buf, &nbytes,
							    &id, &flags) == 0) {
			spin_unlock_bh(&ar_pci->ce_lock);
			ce_state->recv_cb(ce_state, transfer_context, buf,
					  nbytes, id, flags);
			spin_lock_bh(&ar_pci->ce_lock);
		}
	}

	if (ce_state->send_cb) {
		/*
		 * Pop completed send buffers and call the registered
		 * send callback for each
		 */
		while (ath10k_ce_completed_send_next_nolock(ce_state,
							    &transfer_context,
							    &buf,
							    &nbytes,
							    &id) == 0) {
			spin_unlock_bh(&ar_pci->ce_lock);
			ce_state->send_cb(ce_state, transfer_context,
					  buf, nbytes, id);
			spin_lock_bh(&ar_pci->ce_lock);
		}
	}

	/*
	 * Misc CE interrupts are not being handled, but still need
	 * to be cleared.
	 */
	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);

	spin_unlock_bh(&ar_pci->ce_lock);
	ath10k_pci_sleep(ar);
}

/*
 * Handler for per-engine interrupts on ALL active CEs.
 * This is used in cases where the system is sharing a
 * single interrput for all CEs
 */

void ath10k_ce_per_engine_service_any(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ce_id;
	u32 intr_summary;

	ath10k_pci_wake(ar);
	intr_summary = CE_INTERRUPT_SUMMARY(ar);

	for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
		if (intr_summary & (1 << ce_id))
			intr_summary &= ~(1 << ce_id);
		else
			/* no intr pending on this CE */
			continue;

		ath10k_ce_per_engine_service(ar, ce_id);
	}

	ath10k_pci_sleep(ar);
}

/*
 * Adjust interrupts for the copy complete handler.
 * If it's needed for either send or recv, then unmask
 * this interrupt; otherwise, mask it.
 *
 * Called with ce_lock held.
 */
static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state,
						int disable_copy_compl_intr)
{
	u32 ctrl_addr = ce_state->ctrl_addr;
	struct ath10k *ar = ce_state->ar;

	ath10k_pci_wake(ar);

	if ((!disable_copy_compl_intr) &&
	    (ce_state->send_cb || ce_state->recv_cb))
		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
	else
		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);

	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);

	ath10k_pci_sleep(ar);
}

void ath10k_ce_disable_interrupts(struct ath10k *ar)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	int ce_id;

	ath10k_pci_wake(ar);
	for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
		struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
		u32 ctrl_addr = ce_state->ctrl_addr;

		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
	}
	ath10k_pci_sleep(ar);
}

void ath10k_ce_send_cb_register(struct ce_state *ce_state,
				void (*send_cb) (struct ce_state *ce_state,
						 void *transfer_context,
						 u32 buffer,
						 unsigned int nbytes,
						 unsigned int transfer_id),
				int disable_interrupts)
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);
	ce_state->send_cb = send_cb;
	ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
	spin_unlock_bh(&ar_pci->ce_lock);
}

void ath10k_ce_recv_cb_register(struct ce_state *ce_state,
				void (*recv_cb) (struct ce_state *ce_state,
						 void *transfer_context,
						 u32 buffer,
						 unsigned int nbytes,
						 unsigned int transfer_id,
						 unsigned int flags))
{
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	spin_lock_bh(&ar_pci->ce_lock);
	ce_state->recv_cb = recv_cb;
	ath10k_ce_per_engine_handler_adjust(ce_state, 0);
	spin_unlock_bh(&ar_pci->ce_lock);
}

static int ath10k_ce_init_src_ring(struct ath10k *ar,
				   unsigned int ce_id,
				   struct ce_state *ce_state,
				   const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_ring_state *src_ring;
	unsigned int nentries = attr->src_nentries;
	unsigned int ce_nbytes;
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
	dma_addr_t base_addr;
	char *ptr;

	nentries = roundup_pow_of_two(nentries);

	if (ce_state->src_ring) {
		WARN_ON(ce_state->src_ring->nentries != nentries);
		return 0;
	}

	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
	if (ptr == NULL)
		return -ENOMEM;

	ce_state->src_ring = (struct ce_ring_state *)ptr;
	src_ring = ce_state->src_ring;

	ptr += sizeof(struct ce_ring_state);
	src_ring->nentries = nentries;
	src_ring->nentries_mask = nentries - 1;

	ath10k_pci_wake(ar);
	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
925
	src_ring->sw_index &= src_ring->nentries_mask;
926 927 928 929
	src_ring->hw_index = src_ring->sw_index;

	src_ring->write_index =
		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
930
	src_ring->write_index &= src_ring->nentries_mask;
931 932 933 934 935 936 937 938 939 940 941 942 943
	ath10k_pci_sleep(ar);

	src_ring->per_transfer_context = (void **)ptr;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	src_ring->base_addr_owner_space_unaligned =
		pci_alloc_consistent(ar_pci->pdev,
				     (nentries * sizeof(struct ce_desc) +
				      CE_DESC_RING_ALIGN),
				     &base_addr);
944 945 946 947 948 949
	if (!src_ring->base_addr_owner_space_unaligned) {
		kfree(ce_state->src_ring);
		ce_state->src_ring = NULL;
		return -ENOMEM;
	}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	src_ring->base_addr_ce_space_unaligned = base_addr;

	src_ring->base_addr_owner_space = PTR_ALIGN(
			src_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	src_ring->base_addr_ce_space = ALIGN(
			src_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

	/*
	 * Also allocate a shadow src ring in regular
	 * mem to use for faster access.
	 */
	src_ring->shadow_base_unaligned =
		kmalloc((nentries * sizeof(struct ce_desc) +
			 CE_DESC_RING_ALIGN), GFP_KERNEL);
966 967 968 969 970 971 972 973 974 975
	if (!src_ring->shadow_base_unaligned) {
		pci_free_consistent(ar_pci->pdev,
				    (nentries * sizeof(struct ce_desc) +
				     CE_DESC_RING_ALIGN),
				    src_ring->base_addr_owner_space,
				    src_ring->base_addr_ce_space);
		kfree(ce_state->src_ring);
		ce_state->src_ring = NULL;
		return -ENOMEM;
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

	src_ring->shadow_base = PTR_ALIGN(
			src_ring->shadow_base_unaligned,
			CE_DESC_RING_ALIGN);

	ath10k_pci_wake(ar);
	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
					 src_ring->base_addr_ce_space);
	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
	ath10k_pci_sleep(ar);

	return 0;
}

static int ath10k_ce_init_dest_ring(struct ath10k *ar,
				    unsigned int ce_id,
				    struct ce_state *ce_state,
				    const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_ring_state *dest_ring;
	unsigned int nentries = attr->dest_nentries;
	unsigned int ce_nbytes;
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
	dma_addr_t base_addr;
	char *ptr;

	nentries = roundup_pow_of_two(nentries);

	if (ce_state->dest_ring) {
		WARN_ON(ce_state->dest_ring->nentries != nentries);
		return 0;
	}

	ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
	ptr = kzalloc(ce_nbytes, GFP_KERNEL);
	if (ptr == NULL)
		return -ENOMEM;

	ce_state->dest_ring = (struct ce_ring_state *)ptr;
	dest_ring = ce_state->dest_ring;

	ptr += sizeof(struct ce_ring_state);
	dest_ring->nentries = nentries;
	dest_ring->nentries_mask = nentries - 1;

	ath10k_pci_wake(ar);
	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1028
	dest_ring->sw_index &= dest_ring->nentries_mask;
1029 1030
	dest_ring->write_index =
		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1031
	dest_ring->write_index &= dest_ring->nentries_mask;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	ath10k_pci_sleep(ar);

	dest_ring->per_transfer_context = (void **)ptr;

	/*
	 * Legacy platforms that do not support cache
	 * coherent DMA are unsupported
	 */
	dest_ring->base_addr_owner_space_unaligned =
		pci_alloc_consistent(ar_pci->pdev,
				     (nentries * sizeof(struct ce_desc) +
				      CE_DESC_RING_ALIGN),
				     &base_addr);
1045 1046 1047 1048 1049 1050
	if (!dest_ring->base_addr_owner_space_unaligned) {
		kfree(ce_state->dest_ring);
		ce_state->dest_ring = NULL;
		return -ENOMEM;
	}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	dest_ring->base_addr_ce_space_unaligned = base_addr;

	/*
	 * Correctly initialize memory to 0 to prevent garbage
	 * data crashing system when download firmware
	 */
	memset(dest_ring->base_addr_owner_space_unaligned, 0,
	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);

	dest_ring->base_addr_owner_space = PTR_ALIGN(
			dest_ring->base_addr_owner_space_unaligned,
			CE_DESC_RING_ALIGN);
	dest_ring->base_addr_ce_space = ALIGN(
			dest_ring->base_addr_ce_space_unaligned,
			CE_DESC_RING_ALIGN);

	ath10k_pci_wake(ar);
	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
					  dest_ring->base_addr_ce_space);
	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
	ath10k_pci_sleep(ar);

	return 0;
}

static struct ce_state *ath10k_ce_init_state(struct ath10k *ar,
					     unsigned int ce_id,
					     const struct ce_attr *attr)
{
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
	struct ce_state *ce_state = NULL;
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);

	spin_lock_bh(&ar_pci->ce_lock);

	if (!ar_pci->ce_id_to_state[ce_id]) {
		ce_state = kzalloc(sizeof(*ce_state), GFP_ATOMIC);
		if (ce_state == NULL) {
			spin_unlock_bh(&ar_pci->ce_lock);
			return NULL;
		}

		ar_pci->ce_id_to_state[ce_id] = ce_state;
		ce_state->ar = ar;
		ce_state->id = ce_id;
		ce_state->ctrl_addr = ctrl_addr;
		ce_state->state = CE_RUNNING;
		/* Save attribute flags */
		ce_state->attr_flags = attr->flags;
		ce_state->src_sz_max = attr->src_sz_max;
	}

	spin_unlock_bh(&ar_pci->ce_lock);

	return ce_state;
}

/*
 * Initialize a Copy Engine based on caller-supplied attributes.
 * This may be called once to initialize both source and destination
 * rings or it may be called twice for separate source and destination
 * initialization. It may be that only one side or the other is
 * initialized by software/firmware.
 */
struct ce_state *ath10k_ce_init(struct ath10k *ar,
				unsigned int ce_id,
				const struct ce_attr *attr)
{
	struct ce_state *ce_state;
	u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1124
	int ret;
1125 1126 1127 1128 1129 1130 1131 1132

	ce_state = ath10k_ce_init_state(ar, ce_id, attr);
	if (!ce_state) {
		ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
		return NULL;
	}

	if (attr->src_nentries) {
1133 1134 1135 1136
		ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr);
		if (ret) {
			ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
				   ce_id, ret);
1137 1138 1139 1140 1141 1142
			ath10k_ce_deinit(ce_state);
			return NULL;
		}
	}

	if (attr->dest_nentries) {
1143 1144 1145 1146
		ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr);
		if (ret) {
			ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
				   ce_id, ret);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			ath10k_ce_deinit(ce_state);
			return NULL;
		}
	}

	/* Enable CE error interrupts */
	ath10k_pci_wake(ar);
	ath10k_ce_error_intr_enable(ar, ctrl_addr);
	ath10k_pci_sleep(ar);

	return ce_state;
}

void ath10k_ce_deinit(struct ce_state *ce_state)
{
	unsigned int ce_id = ce_state->id;
	struct ath10k *ar = ce_state->ar;
	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);

	ce_state->state = CE_UNUSED;
	ar_pci->ce_id_to_state[ce_id] = NULL;

	if (ce_state->src_ring) {
		kfree(ce_state->src_ring->shadow_base_unaligned);
		pci_free_consistent(ar_pci->pdev,
				    (ce_state->src_ring->nentries *
				     sizeof(struct ce_desc) +
				     CE_DESC_RING_ALIGN),
				    ce_state->src_ring->base_addr_owner_space,
				    ce_state->src_ring->base_addr_ce_space);
		kfree(ce_state->src_ring);
	}

	if (ce_state->dest_ring) {
		pci_free_consistent(ar_pci->pdev,
				    (ce_state->dest_ring->nentries *
				     sizeof(struct ce_desc) +
				     CE_DESC_RING_ALIGN),
				    ce_state->dest_ring->base_addr_owner_space,
				    ce_state->dest_ring->base_addr_ce_space);
		kfree(ce_state->dest_ring);
	}
	kfree(ce_state);
}