sh_flctl.c 23.6 KB
Newer Older
1 2 3
/*
 * SuperH FLCTL nand controller
 *
M
Magnus Damm 已提交
4 5
 * Copyright (c) 2008 Renesas Solutions Corp.
 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6
 *
M
Magnus Damm 已提交
7
 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
27
#include <linux/interrupt.h>
28 29
#include <linux/io.h>
#include <linux/platform_device.h>
30
#include <linux/pm_runtime.h>
31
#include <linux/slab.h>
32
#include <linux/string.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sh_flctl.h>

static struct nand_ecclayout flctl_4secc_oob_16 = {
	.eccbytes = 10,
	.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
	.oobfree = {
		{.offset = 12,
		. length = 4} },
};

static struct nand_ecclayout flctl_4secc_oob_64 = {
48 49 50 51 52 53
	.eccbytes = 4 * 10,
	.eccpos = {
		 6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
54
	.oobfree = {
55 56 57 58
		{.offset =  2, .length = 4},
		{.offset = 16, .length = 6},
		{.offset = 32, .length = 6},
		{.offset = 48, .length = 6} },
59 60 61 62 63 64 65 66 67 68 69 70
};

static uint8_t scan_ff_pattern[] = { 0xff, 0xff };

static struct nand_bbt_descr flctl_4secc_smallpage = {
	.options = NAND_BBT_SCAN2NDPAGE,
	.offs = 11,
	.len = 1,
	.pattern = scan_ff_pattern,
};

static struct nand_bbt_descr flctl_4secc_largepage = {
71
	.options = NAND_BBT_SCAN2NDPAGE,
72
	.offs = 0,
73 74 75 76 77 78
	.len = 2,
	.pattern = scan_ff_pattern,
};

static void empty_fifo(struct sh_flctl *flctl)
{
79 80
	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
81 82 83 84 85 86 87
}

static void start_translation(struct sh_flctl *flctl)
{
	writeb(TRSTRT, FLTRCR(flctl));
}

M
Magnus Damm 已提交
88 89
static void timeout_error(struct sh_flctl *flctl, const char *str)
{
L
Lucas De Marchi 已提交
90
	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
M
Magnus Damm 已提交
91 92
}

93 94 95 96 97 98 99 100 101 102 103 104
static void wait_completion(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		if (readb(FLTRCR(flctl)) & TREND) {
			writeb(0x0, FLTRCR(flctl));
			return;
		}
		udelay(1);
	}

M
Magnus Damm 已提交
105
	timeout_error(flctl, __func__);
106 107 108 109 110 111 112 113 114 115 116 117
	writeb(0x0, FLTRCR(flctl));
}

static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t addr = 0;

	if (column == -1) {
		addr = page_addr;	/* ERASE1 */
	} else if (page_addr != -1) {
		/* SEQIN, READ0, etc.. */
118 119
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
		if (flctl->page_size) {
			addr = column & 0x0FFF;
			addr |= (page_addr & 0xff) << 16;
			addr |= ((page_addr >> 8) & 0xff) << 24;
			/* big than 128MB */
			if (flctl->rw_ADRCNT == ADRCNT2_E) {
				uint32_t 	addr2;
				addr2 = (page_addr >> 16) & 0xff;
				writel(addr2, FLADR2(flctl));
			}
		} else {
			addr = column;
			addr |= (page_addr & 0xff) << 8;
			addr |= ((page_addr >> 8) & 0xff) << 16;
			addr |= ((page_addr >> 16) & 0xff) << 24;
		}
	}
	writel(addr, FLADR(flctl));
}

static void wait_rfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		uint32_t val;
		/* check FIFO */
		val = readl(FLDTCNTR(flctl)) >> 16;
		if (val & 0xFF)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
152
	timeout_error(flctl, __func__);
153 154 155 156 157 158 159 160 161 162 163 164 165
}

static void wait_wfifo_ready(struct sh_flctl *flctl)
{
	uint32_t len, timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		/* check FIFO */
		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
166
	timeout_error(flctl, __func__);
167 168
}

169 170
static enum flctl_ecc_res_t wait_recfifo_ready
		(struct sh_flctl *flctl, int sector_number)
171 172 173 174
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	void __iomem *ecc_reg[4];
	int i;
175
	int state = FL_SUCCESS;
176 177
	uint32_t data, size;

178 179 180 181 182 183 184
	/*
	 * First this loops checks in FLDTCNTR if we are ready to read out the
	 * oob data. This is the case if either all went fine without errors or
	 * if the bottom part of the loop corrected the errors or marked them as
	 * uncorrectable and the controller is given time to push the data into
	 * the FIFO.
	 */
185
	while (timeout--) {
186
		/* check if all is ok and we can read out the OOB */
187
		size = readl(FLDTCNTR(flctl)) >> 24;
188 189 190 191 192 193 194 195 196 197 198 199
		if ((size & 0xFF) == 4)
			return state;

		/* check if a correction code has been calculated */
		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
			/*
			 * either we wait for the fifo to be filled or a
			 * correction pattern is being generated
			 */
			udelay(1);
			continue;
		}
200

201 202 203 204 205 206 207 208 209
		/* check for an uncorrectable error */
		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
			/* check if we face a non-empty page */
			for (i = 0; i < 512; i++) {
				if (flctl->done_buff[i] != 0xff) {
					state = FL_ERROR; /* can't correct */
					break;
				}
			}
210

211 212 213 214 215 216
			if (state == FL_SUCCESS)
				dev_dbg(&flctl->pdev->dev,
				"reading empty sector %d, ecc error ignored\n",
				sector_number);

			writel(0, FL4ECCCR(flctl));
217
			continue;
218
		}
219 220 221 222 223 224 225 226

		/* start error correction */
		ecc_reg[0] = FL4ECCRESULT0(flctl);
		ecc_reg[1] = FL4ECCRESULT1(flctl);
		ecc_reg[2] = FL4ECCRESULT2(flctl);
		ecc_reg[3] = FL4ECCRESULT3(flctl);

		for (i = 0; i < 3; i++) {
227 228 229
			uint8_t org;
			int index;

230 231
			data = readl(ecc_reg[i]);

232 233 234 235 236 237 238 239 240 241
			if (flctl->page_size)
				index = (512 * sector_number) +
					(data >> 16);
			else
				index = data >> 16;

			org = flctl->done_buff[index];
			flctl->done_buff[index] = org ^ (data & 0xFF);
		}
		state = FL_REPAIRABLE;
242 243 244
		writel(0, FL4ECCCR(flctl));
	}

M
Magnus Damm 已提交
245
	timeout_error(flctl, __func__);
246
	return FL_TIMEOUT;	/* timeout */
247 248 249 250 251 252 253 254 255 256 257 258 259 260
}

static void wait_wecfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	uint32_t len;

	while (timeout--) {
		/* check FLECFIFO */
		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
261
	timeout_error(flctl, __func__);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}

static void read_datareg(struct sh_flctl *flctl, int offset)
{
	unsigned long data;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	wait_completion(flctl);

	data = readl(FLDATAR(flctl));
	*buf = le32_to_cpu(data);
}

static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	len_4align = (rlen + 3) / 4;

	for (i = 0; i < len_4align; i++) {
		wait_rfifo_ready(flctl);
284
		buf[i] = readl(FLDTFIFO(flctl));
285 286 287 288
		buf[i] = be32_to_cpu(buf[i]);
	}
}

289 290
static enum flctl_ecc_res_t read_ecfiforeg
		(struct sh_flctl *flctl, uint8_t *buff, int sector)
291 292
{
	int i;
293
	enum flctl_ecc_res_t res;
294 295
	unsigned long *ecc_buf = (unsigned long *)buff;

296 297 298 299 300 301 302
	res = wait_recfifo_ready(flctl , sector);

	if (res != FL_ERROR) {
		for (i = 0; i < 4; i++) {
			ecc_buf[i] = readl(FLECFIFO(flctl));
			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
		}
303 304
	}

305
	return res;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
	void *fifo_addr = (void *)FLDTFIFO(flctl);

	len_4align = (rlen + 3) / 4;
	for (i = 0; i < len_4align; i++) {
		wait_wfifo_ready(flctl);
		writel(cpu_to_be32(data[i]), fifo_addr);
	}
}

321 322 323 324 325 326 327 328 329 330 331 332
static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *data = (unsigned long *)&flctl->done_buff[offset];

	len_4align = (rlen + 3) / 4;
	for (i = 0; i < len_4align; i++) {
		wait_wecfifo_ready(flctl);
		writel(cpu_to_be32(data[i]), FLECFIFO(flctl));
	}
}

333 334 335
static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
336
	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	uint32_t flcmdcr_val, addr_len_bytes = 0;

	/* Set SNAND bit if page size is 2048byte */
	if (flctl->page_size)
		flcmncr_val |= SNAND_E;
	else
		flcmncr_val &= ~SNAND_E;

	/* default FLCMDCR val */
	flcmdcr_val = DOCMD1_E | DOADR_E;

	/* Set for FLCMDCR */
	switch (cmd) {
	case NAND_CMD_ERASE1:
		addr_len_bytes = flctl->erase_ADRCNT;
		flcmdcr_val |= DOCMD2_E;
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_READOOB:
356
	case NAND_CMD_RNDOUT:
357 358
		addr_len_bytes = flctl->rw_ADRCNT;
		flcmdcr_val |= CDSRC_E;
359 360
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
361 362 363 364 365 366 367
		break;
	case NAND_CMD_SEQIN:
		/* This case is that cmd is READ0 or READ1 or READ00 */
		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
		break;
	case NAND_CMD_PAGEPROG:
		addr_len_bytes = flctl->rw_ADRCNT;
368
		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
369 370
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
371 372 373
		break;
	case NAND_CMD_READID:
		flcmncr_val &= ~SNAND_E;
374
		flcmdcr_val |= CDSRC_E;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
		addr_len_bytes = ADRCNT_1;
		break;
	case NAND_CMD_STATUS:
	case NAND_CMD_RESET:
		flcmncr_val &= ~SNAND_E;
		flcmdcr_val &= ~(DOADR_E | DOSR_E);
		break;
	default:
		break;
	}

	/* Set address bytes parameter */
	flcmdcr_val |= addr_len_bytes;

	/* Now actually write */
	writel(flcmncr_val, FLCMNCR(flctl));
	writel(flcmdcr_val, FLCMDCR(flctl));
	writel(flcmcdr_val, FLCMCDR(flctl));
}

static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
396
				uint8_t *buf, int oob_required, int page)
397
{
398
	chip->read_buf(mtd, buf, mtd->writesize);
399 400
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
401 402 403
	return 0;
}

404
static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
405
				   const uint8_t *buf, int oob_required)
406
{
407
	chip->write_buf(mtd, buf, mtd->writesize);
408
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
409
	return 0;
410 411 412 413 414 415
}

static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int sector, page_sectors;
416
	enum flctl_ecc_res_t ecc_result;
417

418 419 420 421
	page_sectors = flctl->page_size ? 4 : 1;

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
422 423 424

	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
		 FLCMNCR(flctl));
425 426
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));
427

428 429
	empty_fifo(flctl);
	start_translation(flctl);
430 431 432 433

	for (sector = 0; sector < page_sectors; sector++) {
		read_fiforeg(flctl, 512, 512 * sector);

434
		ecc_result = read_ecfiforeg(flctl,
435 436
			&flctl->done_buff[mtd->writesize + 16 * sector],
			sector);
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		switch (ecc_result) {
		case FL_REPAIRABLE:
			dev_info(&flctl->pdev->dev,
				"applied ecc on page 0x%x", page_addr);
			flctl->mtd.ecc_stats.corrected++;
			break;
		case FL_ERROR:
			dev_warn(&flctl->pdev->dev,
				"page 0x%x contains corrupted data\n",
				page_addr);
			flctl->mtd.ecc_stats.failed++;
			break;
		default:
			;
		}
453
	}
454 455 456

	wait_completion(flctl);

457 458 459 460 461 462 463
	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
			FLCMNCR(flctl));
}

static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
464 465
	int page_sectors = flctl->page_size ? 4 : 1;
	int i;
466 467 468 469 470 471

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);

	empty_fifo(flctl);

472 473
	for (i = 0; i < page_sectors; i++) {
		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
474 475 476
		writel(16, FLDTCNTR(flctl));

		start_translation(flctl);
477
		read_fiforeg(flctl, 16, 16 * i);
478 479 480 481 482 483 484
		wait_completion(flctl);
	}
}

static void execmd_write_page_sector(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
485
	int page_addr = flctl->seqin_page_addr;
486 487
	int sector, page_sectors;

488
	page_sectors = flctl->page_size ? 4 : 1;
489 490 491 492

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

493 494 495 496 497
	empty_fifo(flctl);
	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));
	start_translation(flctl);
498

499
	for (sector = 0; sector < page_sectors; sector++) {
500
		write_fiforeg(flctl, 512, 512 * sector);
501
		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
502 503
	}

504
	wait_completion(flctl);
505 506 507 508 509 510 511 512 513
	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
}

static void execmd_write_oob(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int page_addr = flctl->seqin_page_addr;
	int sector, page_sectors;

514
	page_sectors = flctl->page_size ? 4 : 1;
515 516 517 518

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

519
	for (sector = 0; sector < page_sectors; sector++) {
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		empty_fifo(flctl);
		set_addr(mtd, sector * 528 + 512, page_addr);
		writel(16, FLDTCNTR(flctl));	/* set read size */

		start_translation(flctl);
		write_fiforeg(flctl, 16, 16 * sector);
		wait_completion(flctl);
	}
}

static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
			int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t read_cmd = 0;

536 537
	pm_runtime_get_sync(&flctl->pdev->dev);

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	flctl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		flctl->index = 0;

	switch (command) {
	case NAND_CMD_READ1:
	case NAND_CMD_READ0:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_page_sector(mtd, page_addr);
			break;
		}
		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, 0, page_addr);

		flctl->read_bytes = mtd->writesize + mtd->oobsize;
559 560
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		flctl->index += column;
		goto read_normal_exit;

	case NAND_CMD_READOOB:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_oob(mtd, page_addr);
			break;
		}

		if (flctl->page_size) {
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| NAND_CMD_READ0);
			set_addr(mtd, mtd->writesize, page_addr);
		} else {
			set_cmd_regs(mtd, command, command);
			set_addr(mtd, 0, page_addr);
		}
		flctl->read_bytes = mtd->oobsize;
		goto read_normal_exit;

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	case NAND_CMD_RNDOUT:
		if (flctl->hwecc)
			break;

		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, column, 0);

		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
		goto read_normal_exit;

597 598 599
	case NAND_CMD_READID:
		set_cmd_regs(mtd, command, command);

600 601 602 603 604 605
		/* READID is always performed using an 8-bit bus */
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column <<= 1;
		set_addr(mtd, column, 0);

		flctl->read_bytes = 8;
606
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
607
		empty_fifo(flctl);
608
		start_translation(flctl);
609 610
		read_fiforeg(flctl, flctl->read_bytes, 0);
		wait_completion(flctl);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		break;

	case NAND_CMD_ERASE1:
		flctl->erase1_page_addr = page_addr;
		break;

	case NAND_CMD_ERASE2:
		set_cmd_regs(mtd, NAND_CMD_ERASE1,
			(command << 8) | NAND_CMD_ERASE1);
		set_addr(mtd, -1, flctl->erase1_page_addr);
		start_translation(flctl);
		wait_completion(flctl);
		break;

	case NAND_CMD_SEQIN:
		if (!flctl->page_size) {
			/* output read command */
			if (column >= mtd->writesize) {
				column -= mtd->writesize;
				read_cmd = NAND_CMD_READOOB;
			} else if (column < 256) {
				read_cmd = NAND_CMD_READ0;
			} else {
				column -= 256;
				read_cmd = NAND_CMD_READ1;
			}
		}
		flctl->seqin_column = column;
		flctl->seqin_page_addr = page_addr;
		flctl->seqin_read_cmd = read_cmd;
		break;

	case NAND_CMD_PAGEPROG:
		empty_fifo(flctl);
		if (!flctl->page_size) {
			set_cmd_regs(mtd, NAND_CMD_SEQIN,
					flctl->seqin_read_cmd);
			set_addr(mtd, -1, -1);
			writel(0, FLDTCNTR(flctl));	/* set 0 size */
			start_translation(flctl);
			wait_completion(flctl);
		}
		if (flctl->hwecc) {
			/* write page with hwecc */
			if (flctl->seqin_column == mtd->writesize)
				execmd_write_oob(mtd);
			else if (!flctl->seqin_column)
				execmd_write_page_sector(mtd);
			else
				printk(KERN_ERR "Invalid address !?\n");
			break;
		}
		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
		start_translation(flctl);
		write_fiforeg(flctl, flctl->index, 0);
		wait_completion(flctl);
		break;

	case NAND_CMD_STATUS:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		flctl->read_bytes = 1;
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
		start_translation(flctl);
		read_datareg(flctl, 0); /* read and end */
		break;

	case NAND_CMD_RESET:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		writel(0, FLDTCNTR(flctl));	/* set 0 size */
		start_translation(flctl);
		wait_completion(flctl);
		break;

	default:
		break;
	}
693
	goto runtime_exit;
694 695 696

read_normal_exit:
	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
697
	empty_fifo(flctl);
698 699 700
	start_translation(flctl);
	read_fiforeg(flctl, flctl->read_bytes, 0);
	wait_completion(flctl);
701 702
runtime_exit:
	pm_runtime_put_sync(&flctl->pdev->dev);
703 704 705 706 707 708
	return;
}

static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
709
	int ret;
710 711 712

	switch (chipnr) {
	case -1:
713
		flctl->flcmncr_base &= ~CE0_ENABLE;
714 715

		pm_runtime_get_sync(&flctl->pdev->dev);
716
		writel(flctl->flcmncr_base, FLCMNCR(flctl));
717 718 719 720 721 722 723

		if (flctl->qos_request) {
			dev_pm_qos_remove_request(&flctl->pm_qos);
			flctl->qos_request = 0;
		}

		pm_runtime_put_sync(&flctl->pdev->dev);
724 725
		break;
	case 0:
726
		flctl->flcmncr_base |= CE0_ENABLE;
727 728 729 730 731 732 733 734 735 736 737 738

		if (!flctl->qos_request) {
			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
							&flctl->pm_qos, 100);
			if (ret < 0)
				dev_err(&flctl->pdev->dev,
					"PM QoS request failed: %d\n", ret);
			flctl->qos_request = 1;
		}

		if (flctl->holden) {
			pm_runtime_get_sync(&flctl->pdev->dev);
739
			writel(HOLDEN, FLHOLDCR(flctl));
740 741
			pm_runtime_put_sync(&flctl->pdev->dev);
		}
742 743 744 745 746 747 748 749 750
		break;
	default:
		BUG();
	}
}

static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
751
	int index = flctl->index;
752

753
	memcpy(&flctl->done_buff[index], buf, len);
754 755 756 757 758 759 760 761 762 763 764 765 766 767
	flctl->index += len;
}

static uint8_t flctl_read_byte(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int index = flctl->index;
	uint8_t data;

	data = flctl->done_buff[index];
	flctl->index++;
	return data;
}

768 769 770 771 772 773 774 775 776 777 778 779
static uint16_t flctl_read_word(struct mtd_info *mtd)
{
       struct sh_flctl *flctl = mtd_to_flctl(mtd);
       int index = flctl->index;
       uint16_t data;
       uint16_t *buf = (uint16_t *)&flctl->done_buff[index];

       data = *buf;
       flctl->index += 2;
       return data;
}

780 781
static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
782 783
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int index = flctl->index;
784

785 786
	memcpy(buf, &flctl->done_buff[index], len);
	flctl->index += len;
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

static int flctl_chip_init_tail(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	struct nand_chip *chip = &flctl->chip;

	if (mtd->writesize == 512) {
		flctl->page_size = 0;
		if (chip->chipsize > (32 << 20)) {
			/* big than 32MB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (2 << 16)) {
			/* big than 128KB */
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_2;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	} else {
		flctl->page_size = 1;
		if (chip->chipsize > (128 << 20)) {
			/* big than 128MB */
			flctl->rw_ADRCNT = ADRCNT2_E;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (8 << 16)) {
			/* big than 512KB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	}

	if (flctl->hwecc) {
		if (mtd->writesize == 512) {
			chip->ecc.layout = &flctl_4secc_oob_16;
			chip->badblock_pattern = &flctl_4secc_smallpage;
		} else {
			chip->ecc.layout = &flctl_4secc_oob_64;
			chip->badblock_pattern = &flctl_4secc_largepage;
		}

		chip->ecc.size = 512;
		chip->ecc.bytes = 10;
M
Mike Dunn 已提交
835
		chip->ecc.strength = 4;
836 837 838 839 840
		chip->ecc.read_page = flctl_read_page_hwecc;
		chip->ecc.write_page = flctl_write_page_hwecc;
		chip->ecc.mode = NAND_ECC_HW;

		/* 4 symbols ECC enabled */
841
		flctl->flcmncr_base |= _4ECCEN;
842 843 844 845 846 847 848
	} else {
		chip->ecc.mode = NAND_ECC_SOFT;
	}

	return 0;
}

849 850 851 852 853 854 855 856 857 858
static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
{
	struct sh_flctl *flctl = dev_id;

	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));

	return IRQ_HANDLED;
}

M
Magnus Damm 已提交
859
static int __devinit flctl_probe(struct platform_device *pdev)
860 861 862 863 864 865
{
	struct resource *res;
	struct sh_flctl *flctl;
	struct mtd_info *flctl_mtd;
	struct nand_chip *nand;
	struct sh_flctl_platform_data *pdata;
M
Magnus Damm 已提交
866
	int ret = -ENXIO;
867
	int irq;
868 869 870

	pdata = pdev->dev.platform_data;
	if (pdata == NULL) {
M
Magnus Damm 已提交
871 872
		dev_err(&pdev->dev, "no platform data defined\n");
		return -EINVAL;
873 874 875 876
	}

	flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
	if (!flctl) {
M
Magnus Damm 已提交
877
		dev_err(&pdev->dev, "failed to allocate driver data\n");
878 879 880 881 882
		return -ENOMEM;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
M
Magnus Damm 已提交
883
		dev_err(&pdev->dev, "failed to get I/O memory\n");
884
		goto err_iomap;
885 886
	}

887
	flctl->reg = ioremap(res->start, resource_size(res));
888
	if (flctl->reg == NULL) {
M
Magnus Damm 已提交
889
		dev_err(&pdev->dev, "failed to remap I/O memory\n");
890
		goto err_iomap;
891 892
	}

893 894 895 896 897 898 899 900 901 902 903 904
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "failed to get flste irq data\n");
		goto err_flste;
	}

	ret = request_irq(irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl);
	if (ret) {
		dev_err(&pdev->dev, "request interrupt failed.\n");
		goto err_flste;
	}

905 906 907 908
	platform_set_drvdata(pdev, flctl);
	flctl_mtd = &flctl->mtd;
	nand = &flctl->chip;
	flctl_mtd->priv = nand;
M
Magnus Damm 已提交
909
	flctl->pdev = pdev;
910
	flctl->hwecc = pdata->has_hwecc;
911
	flctl->holden = pdata->use_holden;
912 913
	flctl->flcmncr_base = pdata->flcmncr_val;
	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
914 915 916 917 918 919 920 921 922 923 924

	/* Set address of hardware control function */
	/* 20 us command delay time */
	nand->chip_delay = 20;

	nand->read_byte = flctl_read_byte;
	nand->write_buf = flctl_write_buf;
	nand->read_buf = flctl_read_buf;
	nand->select_chip = flctl_select_chip;
	nand->cmdfunc = flctl_cmdfunc;

925 926 927 928 929
	if (pdata->flcmncr_val & SEL_16BIT) {
		nand->options |= NAND_BUSWIDTH_16;
		nand->read_word = flctl_read_word;
	}

930 931 932
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);

933
	ret = nand_scan_ident(flctl_mtd, 1, NULL);
934
	if (ret)
935
		goto err_chip;
936 937 938

	ret = flctl_chip_init_tail(flctl_mtd);
	if (ret)
939
		goto err_chip;
940 941 942

	ret = nand_scan_tail(flctl_mtd);
	if (ret)
943
		goto err_chip;
944

945
	mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
946 947 948

	return 0;

949 950
err_chip:
	pm_runtime_disable(&pdev->dev);
951 952
	free_irq(irq, flctl);
err_flste:
953
	iounmap(flctl->reg);
954
err_iomap:
955 956 957 958
	kfree(flctl);
	return ret;
}

M
Magnus Damm 已提交
959
static int __devexit flctl_remove(struct platform_device *pdev)
960 961 962 963
{
	struct sh_flctl *flctl = platform_get_drvdata(pdev);

	nand_release(&flctl->mtd);
964
	pm_runtime_disable(&pdev->dev);
965
	free_irq(platform_get_irq(pdev, 0), flctl);
966
	iounmap(flctl->reg);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	kfree(flctl);

	return 0;
}

static struct platform_driver flctl_driver = {
	.remove		= flctl_remove,
	.driver = {
		.name	= "sh_flctl",
		.owner	= THIS_MODULE,
	},
};

static int __init flctl_nand_init(void)
{
982
	return platform_driver_probe(&flctl_driver, flctl_probe);
983 984 985 986 987 988 989 990 991 992 993 994 995 996
}

static void __exit flctl_nand_cleanup(void)
{
	platform_driver_unregister(&flctl_driver);
}

module_init(flctl_nand_init);
module_exit(flctl_nand_cleanup);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_DESCRIPTION("SuperH FLCTL driver");
MODULE_ALIAS("platform:sh_flctl");