sh_flctl.c 22.3 KB
Newer Older
1 2 3
/*
 * SuperH FLCTL nand controller
 *
M
Magnus Damm 已提交
4 5
 * Copyright (c) 2008 Renesas Solutions Corp.
 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6
 *
M
Magnus Damm 已提交
7
 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
27
#include <linux/interrupt.h>
28 29
#include <linux/io.h>
#include <linux/platform_device.h>
30
#include <linux/pm_runtime.h>
31
#include <linux/slab.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sh_flctl.h>

static struct nand_ecclayout flctl_4secc_oob_16 = {
	.eccbytes = 10,
	.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
	.oobfree = {
		{.offset = 12,
		. length = 4} },
};

static struct nand_ecclayout flctl_4secc_oob_64 = {
47 48 49 50 51 52
	.eccbytes = 4 * 10,
	.eccpos = {
		 6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
53
	.oobfree = {
54 55 56 57
		{.offset =  2, .length = 4},
		{.offset = 16, .length = 6},
		{.offset = 32, .length = 6},
		{.offset = 48, .length = 6} },
58 59 60 61 62 63 64 65 66 67 68 69
};

static uint8_t scan_ff_pattern[] = { 0xff, 0xff };

static struct nand_bbt_descr flctl_4secc_smallpage = {
	.options = NAND_BBT_SCAN2NDPAGE,
	.offs = 11,
	.len = 1,
	.pattern = scan_ff_pattern,
};

static struct nand_bbt_descr flctl_4secc_largepage = {
70
	.options = NAND_BBT_SCAN2NDPAGE,
71
	.offs = 0,
72 73 74 75 76 77
	.len = 2,
	.pattern = scan_ff_pattern,
};

static void empty_fifo(struct sh_flctl *flctl)
{
78 79
	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
80 81 82 83 84 85 86
}

static void start_translation(struct sh_flctl *flctl)
{
	writeb(TRSTRT, FLTRCR(flctl));
}

M
Magnus Damm 已提交
87 88
static void timeout_error(struct sh_flctl *flctl, const char *str)
{
L
Lucas De Marchi 已提交
89
	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
M
Magnus Damm 已提交
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103
static void wait_completion(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		if (readb(FLTRCR(flctl)) & TREND) {
			writeb(0x0, FLTRCR(flctl));
			return;
		}
		udelay(1);
	}

M
Magnus Damm 已提交
104
	timeout_error(flctl, __func__);
105 106 107 108 109 110 111 112 113 114 115 116
	writeb(0x0, FLTRCR(flctl));
}

static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t addr = 0;

	if (column == -1) {
		addr = page_addr;	/* ERASE1 */
	} else if (page_addr != -1) {
		/* SEQIN, READ0, etc.. */
117 118
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
		if (flctl->page_size) {
			addr = column & 0x0FFF;
			addr |= (page_addr & 0xff) << 16;
			addr |= ((page_addr >> 8) & 0xff) << 24;
			/* big than 128MB */
			if (flctl->rw_ADRCNT == ADRCNT2_E) {
				uint32_t 	addr2;
				addr2 = (page_addr >> 16) & 0xff;
				writel(addr2, FLADR2(flctl));
			}
		} else {
			addr = column;
			addr |= (page_addr & 0xff) << 8;
			addr |= ((page_addr >> 8) & 0xff) << 16;
			addr |= ((page_addr >> 16) & 0xff) << 24;
		}
	}
	writel(addr, FLADR(flctl));
}

static void wait_rfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		uint32_t val;
		/* check FIFO */
		val = readl(FLDTCNTR(flctl)) >> 16;
		if (val & 0xFF)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
151
	timeout_error(flctl, __func__);
152 153 154 155 156 157 158 159 160 161 162 163 164
}

static void wait_wfifo_ready(struct sh_flctl *flctl)
{
	uint32_t len, timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		/* check FIFO */
		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
165
	timeout_error(flctl, __func__);
166 167
}

168
static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	int checked[4];
	void __iomem *ecc_reg[4];
	int i;
	uint32_t data, size;

	memset(checked, 0, sizeof(checked));

	while (timeout--) {
		size = readl(FLDTCNTR(flctl)) >> 24;
		if (size & 0xFF)
			return 0;	/* success */

		if (readl(FL4ECCCR(flctl)) & _4ECCFA)
			return 1;	/* can't correct */

		udelay(1);
		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
			continue;

		/* start error correction */
		ecc_reg[0] = FL4ECCRESULT0(flctl);
		ecc_reg[1] = FL4ECCRESULT1(flctl);
		ecc_reg[2] = FL4ECCRESULT2(flctl);
		ecc_reg[3] = FL4ECCRESULT3(flctl);

		for (i = 0; i < 3; i++) {
			data = readl(ecc_reg[i]);
			if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
				uint8_t org;
				int index;

202 203 204 205 206 207
				if (flctl->page_size)
					index = (512 * sector_number) +
						(data >> 16);
				else
					index = data >> 16;

208 209 210 211 212 213 214 215 216
				org = flctl->done_buff[index];
				flctl->done_buff[index] = org ^ (data & 0xFF);
				checked[i] = 1;
			}
		}

		writel(0, FL4ECCCR(flctl));
	}

M
Magnus Damm 已提交
217
	timeout_error(flctl, __func__);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	return 1;	/* timeout */
}

static void wait_wecfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	uint32_t len;

	while (timeout--) {
		/* check FLECFIFO */
		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
M
Magnus Damm 已提交
233
	timeout_error(flctl, __func__);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

static void read_datareg(struct sh_flctl *flctl, int offset)
{
	unsigned long data;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	wait_completion(flctl);

	data = readl(FLDATAR(flctl));
	*buf = le32_to_cpu(data);
}

static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
	void *fifo_addr = (void *)FLDTFIFO(flctl);

	len_4align = (rlen + 3) / 4;

	for (i = 0; i < len_4align; i++) {
		wait_rfifo_ready(flctl);
		buf[i] = readl(fifo_addr);
		buf[i] = be32_to_cpu(buf[i]);
	}
}

262
static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector)
263 264 265 266 267 268
{
	int i;
	unsigned long *ecc_buf = (unsigned long *)buff;
	void *fifo_addr = (void *)FLECFIFO(flctl);

	for (i = 0; i < 4; i++) {
269
		if (wait_recfifo_ready(flctl , sector))
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
			return 1;
		ecc_buf[i] = readl(fifo_addr);
		ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
	}

	return 0;
}

static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
	void *fifo_addr = (void *)FLDTFIFO(flctl);

	len_4align = (rlen + 3) / 4;
	for (i = 0; i < len_4align; i++) {
		wait_wfifo_ready(flctl);
		writel(cpu_to_be32(data[i]), fifo_addr);
	}
}

static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
294
	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	uint32_t flcmdcr_val, addr_len_bytes = 0;

	/* Set SNAND bit if page size is 2048byte */
	if (flctl->page_size)
		flcmncr_val |= SNAND_E;
	else
		flcmncr_val &= ~SNAND_E;

	/* default FLCMDCR val */
	flcmdcr_val = DOCMD1_E | DOADR_E;

	/* Set for FLCMDCR */
	switch (cmd) {
	case NAND_CMD_ERASE1:
		addr_len_bytes = flctl->erase_ADRCNT;
		flcmdcr_val |= DOCMD2_E;
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_READOOB:
314
	case NAND_CMD_RNDOUT:
315 316
		addr_len_bytes = flctl->rw_ADRCNT;
		flcmdcr_val |= CDSRC_E;
317 318
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
319 320 321 322 323 324 325
		break;
	case NAND_CMD_SEQIN:
		/* This case is that cmd is READ0 or READ1 or READ00 */
		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
		break;
	case NAND_CMD_PAGEPROG:
		addr_len_bytes = flctl->rw_ADRCNT;
326
		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
327 328
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
329 330 331
		break;
	case NAND_CMD_READID:
		flcmncr_val &= ~SNAND_E;
332
		flcmdcr_val |= CDSRC_E;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		addr_len_bytes = ADRCNT_1;
		break;
	case NAND_CMD_STATUS:
	case NAND_CMD_RESET:
		flcmncr_val &= ~SNAND_E;
		flcmdcr_val &= ~(DOADR_E | DOSR_E);
		break;
	default:
		break;
	}

	/* Set address bytes parameter */
	flcmdcr_val |= addr_len_bytes;

	/* Now actually write */
	writel(flcmncr_val, FLCMNCR(flctl));
	writel(flcmdcr_val, FLCMDCR(flctl));
	writel(flcmcdr_val, FLCMCDR(flctl));
}

static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
354
				uint8_t *buf, int oob_required, int page)
355
{
356
	chip->read_buf(mtd, buf, mtd->writesize);
357 358 359 360
	return 0;
}

static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
361
				   const uint8_t *buf, int oob_required)
362
{
363
	chip->write_buf(mtd, buf, mtd->writesize);
364 365 366 367 368 369 370
}

static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int sector, page_sectors;

371 372 373 374
	page_sectors = flctl->page_size ? 4 : 1;

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
375 376 377

	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
		 FLCMNCR(flctl));
378 379
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));
380

381 382
	empty_fifo(flctl);
	start_translation(flctl);
383 384 385 386 387 388

	for (sector = 0; sector < page_sectors; sector++) {
		int ret;
		read_fiforeg(flctl, 512, 512 * sector);

		ret = read_ecfiforeg(flctl,
389 390
			&flctl->done_buff[mtd->writesize + 16 * sector],
			sector);
391 392 393 394 395 396

		if (ret)
			flctl->hwecc_cant_correct[sector] = 1;

		writel(0x0, FL4ECCCR(flctl));
	}
397 398 399

	wait_completion(flctl);

400 401 402 403 404 405 406
	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
			FLCMNCR(flctl));
}

static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
407 408
	int page_sectors = flctl->page_size ? 4 : 1;
	int i;
409 410 411 412 413 414

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);

	empty_fifo(flctl);

415 416
	for (i = 0; i < page_sectors; i++) {
		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
417 418 419
		writel(16, FLDTCNTR(flctl));

		start_translation(flctl);
420
		read_fiforeg(flctl, 16, 16 * i);
421 422 423 424 425 426 427 428 429 430
		wait_completion(flctl);
	}
}

static void execmd_write_page_sector(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int i, page_addr = flctl->seqin_page_addr;
	int sector, page_sectors;

431
	page_sectors = flctl->page_size ? 4 : 1;
432 433 434 435

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

436 437 438 439 440
	empty_fifo(flctl);
	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));
	start_translation(flctl);
441

442
	for (sector = 0; sector < page_sectors; sector++) {
443 444 445 446 447 448 449 450
		write_fiforeg(flctl, 512, 512 * sector);

		for (i = 0; i < 4; i++) {
			wait_wecfifo_ready(flctl); /* wait for write ready */
			writel(0xFFFFFFFF, FLECFIFO(flctl));
		}
	}

451
	wait_completion(flctl);
452 453 454 455 456 457 458 459 460
	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
}

static void execmd_write_oob(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int page_addr = flctl->seqin_page_addr;
	int sector, page_sectors;

461
	page_sectors = flctl->page_size ? 4 : 1;
462 463 464 465

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

466
	for (sector = 0; sector < page_sectors; sector++) {
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
		empty_fifo(flctl);
		set_addr(mtd, sector * 528 + 512, page_addr);
		writel(16, FLDTCNTR(flctl));	/* set read size */

		start_translation(flctl);
		write_fiforeg(flctl, 16, 16 * sector);
		wait_completion(flctl);
	}
}

static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
			int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t read_cmd = 0;

483 484
	pm_runtime_get_sync(&flctl->pdev->dev);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	flctl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		flctl->index = 0;

	switch (command) {
	case NAND_CMD_READ1:
	case NAND_CMD_READ0:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_page_sector(mtd, page_addr);
			break;
		}
		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, 0, page_addr);

		flctl->read_bytes = mtd->writesize + mtd->oobsize;
506 507
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		flctl->index += column;
		goto read_normal_exit;

	case NAND_CMD_READOOB:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_oob(mtd, page_addr);
			break;
		}

		if (flctl->page_size) {
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| NAND_CMD_READ0);
			set_addr(mtd, mtd->writesize, page_addr);
		} else {
			set_cmd_regs(mtd, command, command);
			set_addr(mtd, 0, page_addr);
		}
		flctl->read_bytes = mtd->oobsize;
		goto read_normal_exit;

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	case NAND_CMD_RNDOUT:
		if (flctl->hwecc)
			break;

		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, column, 0);

		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
		goto read_normal_exit;

544 545 546
	case NAND_CMD_READID:
		set_cmd_regs(mtd, command, command);

547 548 549 550 551 552
		/* READID is always performed using an 8-bit bus */
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column <<= 1;
		set_addr(mtd, column, 0);

		flctl->read_bytes = 8;
553
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
554
		empty_fifo(flctl);
555
		start_translation(flctl);
556 557
		read_fiforeg(flctl, flctl->read_bytes, 0);
		wait_completion(flctl);
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		break;

	case NAND_CMD_ERASE1:
		flctl->erase1_page_addr = page_addr;
		break;

	case NAND_CMD_ERASE2:
		set_cmd_regs(mtd, NAND_CMD_ERASE1,
			(command << 8) | NAND_CMD_ERASE1);
		set_addr(mtd, -1, flctl->erase1_page_addr);
		start_translation(flctl);
		wait_completion(flctl);
		break;

	case NAND_CMD_SEQIN:
		if (!flctl->page_size) {
			/* output read command */
			if (column >= mtd->writesize) {
				column -= mtd->writesize;
				read_cmd = NAND_CMD_READOOB;
			} else if (column < 256) {
				read_cmd = NAND_CMD_READ0;
			} else {
				column -= 256;
				read_cmd = NAND_CMD_READ1;
			}
		}
		flctl->seqin_column = column;
		flctl->seqin_page_addr = page_addr;
		flctl->seqin_read_cmd = read_cmd;
		break;

	case NAND_CMD_PAGEPROG:
		empty_fifo(flctl);
		if (!flctl->page_size) {
			set_cmd_regs(mtd, NAND_CMD_SEQIN,
					flctl->seqin_read_cmd);
			set_addr(mtd, -1, -1);
			writel(0, FLDTCNTR(flctl));	/* set 0 size */
			start_translation(flctl);
			wait_completion(flctl);
		}
		if (flctl->hwecc) {
			/* write page with hwecc */
			if (flctl->seqin_column == mtd->writesize)
				execmd_write_oob(mtd);
			else if (!flctl->seqin_column)
				execmd_write_page_sector(mtd);
			else
				printk(KERN_ERR "Invalid address !?\n");
			break;
		}
		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
		start_translation(flctl);
		write_fiforeg(flctl, flctl->index, 0);
		wait_completion(flctl);
		break;

	case NAND_CMD_STATUS:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		flctl->read_bytes = 1;
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
		start_translation(flctl);
		read_datareg(flctl, 0); /* read and end */
		break;

	case NAND_CMD_RESET:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		writel(0, FLDTCNTR(flctl));	/* set 0 size */
		start_translation(flctl);
		wait_completion(flctl);
		break;

	default:
		break;
	}
640
	goto runtime_exit;
641 642 643

read_normal_exit:
	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
644
	empty_fifo(flctl);
645 646 647
	start_translation(flctl);
	read_fiforeg(flctl, flctl->read_bytes, 0);
	wait_completion(flctl);
648 649
runtime_exit:
	pm_runtime_put_sync(&flctl->pdev->dev);
650 651 652 653 654 655
	return;
}

static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
656
	int ret;
657 658 659

	switch (chipnr) {
	case -1:
660
		flctl->flcmncr_base &= ~CE0_ENABLE;
661 662

		pm_runtime_get_sync(&flctl->pdev->dev);
663
		writel(flctl->flcmncr_base, FLCMNCR(flctl));
664 665 666 667 668 669 670

		if (flctl->qos_request) {
			dev_pm_qos_remove_request(&flctl->pm_qos);
			flctl->qos_request = 0;
		}

		pm_runtime_put_sync(&flctl->pdev->dev);
671 672
		break;
	case 0:
673
		flctl->flcmncr_base |= CE0_ENABLE;
674 675 676 677 678 679 680 681 682 683 684 685

		if (!flctl->qos_request) {
			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
							&flctl->pm_qos, 100);
			if (ret < 0)
				dev_err(&flctl->pdev->dev,
					"PM QoS request failed: %d\n", ret);
			flctl->qos_request = 1;
		}

		if (flctl->holden) {
			pm_runtime_get_sync(&flctl->pdev->dev);
686
			writel(HOLDEN, FLHOLDCR(flctl));
687 688
			pm_runtime_put_sync(&flctl->pdev->dev);
		}
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		break;
	default:
		BUG();
	}
}

static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int i, index = flctl->index;

	for (i = 0; i < len; i++)
		flctl->done_buff[index + i] = buf[i];
	flctl->index += len;
}

static uint8_t flctl_read_byte(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int index = flctl->index;
	uint8_t data;

	data = flctl->done_buff[index];
	flctl->index++;
	return data;
}

716 717 718 719 720 721 722 723 724 725 726 727
static uint16_t flctl_read_word(struct mtd_info *mtd)
{
       struct sh_flctl *flctl = mtd_to_flctl(mtd);
       int index = flctl->index;
       uint16_t data;
       uint16_t *buf = (uint16_t *)&flctl->done_buff[index];

       data = *buf;
       flctl->index += 2;
       return data;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		buf[i] = flctl_read_byte(mtd);
}

static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		if (buf[i] != flctl_read_byte(mtd))
			return -EFAULT;
	return 0;
}

static int flctl_chip_init_tail(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	struct nand_chip *chip = &flctl->chip;

	if (mtd->writesize == 512) {
		flctl->page_size = 0;
		if (chip->chipsize > (32 << 20)) {
			/* big than 32MB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (2 << 16)) {
			/* big than 128KB */
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_2;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	} else {
		flctl->page_size = 1;
		if (chip->chipsize > (128 << 20)) {
			/* big than 128MB */
			flctl->rw_ADRCNT = ADRCNT2_E;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (8 << 16)) {
			/* big than 512KB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	}

	if (flctl->hwecc) {
		if (mtd->writesize == 512) {
			chip->ecc.layout = &flctl_4secc_oob_16;
			chip->badblock_pattern = &flctl_4secc_smallpage;
		} else {
			chip->ecc.layout = &flctl_4secc_oob_64;
			chip->badblock_pattern = &flctl_4secc_largepage;
		}

		chip->ecc.size = 512;
		chip->ecc.bytes = 10;
M
Mike Dunn 已提交
792
		chip->ecc.strength = 4;
793 794 795 796 797
		chip->ecc.read_page = flctl_read_page_hwecc;
		chip->ecc.write_page = flctl_write_page_hwecc;
		chip->ecc.mode = NAND_ECC_HW;

		/* 4 symbols ECC enabled */
798
		flctl->flcmncr_base |= _4ECCEN;
799 800 801 802 803 804 805
	} else {
		chip->ecc.mode = NAND_ECC_SOFT;
	}

	return 0;
}

806 807 808 809 810 811 812 813 814 815
static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
{
	struct sh_flctl *flctl = dev_id;

	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));

	return IRQ_HANDLED;
}

M
Magnus Damm 已提交
816
static int __devinit flctl_probe(struct platform_device *pdev)
817 818 819 820 821 822
{
	struct resource *res;
	struct sh_flctl *flctl;
	struct mtd_info *flctl_mtd;
	struct nand_chip *nand;
	struct sh_flctl_platform_data *pdata;
M
Magnus Damm 已提交
823
	int ret = -ENXIO;
824
	int irq;
825 826 827

	pdata = pdev->dev.platform_data;
	if (pdata == NULL) {
M
Magnus Damm 已提交
828 829
		dev_err(&pdev->dev, "no platform data defined\n");
		return -EINVAL;
830 831 832 833
	}

	flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
	if (!flctl) {
M
Magnus Damm 已提交
834
		dev_err(&pdev->dev, "failed to allocate driver data\n");
835 836 837 838 839
		return -ENOMEM;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
M
Magnus Damm 已提交
840
		dev_err(&pdev->dev, "failed to get I/O memory\n");
841
		goto err_iomap;
842 843
	}

844
	flctl->reg = ioremap(res->start, resource_size(res));
845
	if (flctl->reg == NULL) {
M
Magnus Damm 已提交
846
		dev_err(&pdev->dev, "failed to remap I/O memory\n");
847
		goto err_iomap;
848 849
	}

850 851 852 853 854 855 856 857 858 859 860 861
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "failed to get flste irq data\n");
		goto err_flste;
	}

	ret = request_irq(irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl);
	if (ret) {
		dev_err(&pdev->dev, "request interrupt failed.\n");
		goto err_flste;
	}

862 863 864 865
	platform_set_drvdata(pdev, flctl);
	flctl_mtd = &flctl->mtd;
	nand = &flctl->chip;
	flctl_mtd->priv = nand;
M
Magnus Damm 已提交
866
	flctl->pdev = pdev;
867
	flctl->hwecc = pdata->has_hwecc;
868
	flctl->holden = pdata->use_holden;
869 870
	flctl->flcmncr_base = pdata->flcmncr_val;
	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
871 872 873 874 875 876 877 878 879 880 881 882

	/* Set address of hardware control function */
	/* 20 us command delay time */
	nand->chip_delay = 20;

	nand->read_byte = flctl_read_byte;
	nand->write_buf = flctl_write_buf;
	nand->read_buf = flctl_read_buf;
	nand->verify_buf = flctl_verify_buf;
	nand->select_chip = flctl_select_chip;
	nand->cmdfunc = flctl_cmdfunc;

883 884 885 886 887
	if (pdata->flcmncr_val & SEL_16BIT) {
		nand->options |= NAND_BUSWIDTH_16;
		nand->read_word = flctl_read_word;
	}

888 889 890
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);

891
	ret = nand_scan_ident(flctl_mtd, 1, NULL);
892
	if (ret)
893
		goto err_chip;
894 895 896

	ret = flctl_chip_init_tail(flctl_mtd);
	if (ret)
897
		goto err_chip;
898 899 900

	ret = nand_scan_tail(flctl_mtd);
	if (ret)
901
		goto err_chip;
902

903
	mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
904 905 906

	return 0;

907 908
err_chip:
	pm_runtime_disable(&pdev->dev);
909 910
	free_irq(irq, flctl);
err_flste:
911
	iounmap(flctl->reg);
912
err_iomap:
913 914 915 916
	kfree(flctl);
	return ret;
}

M
Magnus Damm 已提交
917
static int __devexit flctl_remove(struct platform_device *pdev)
918 919 920 921
{
	struct sh_flctl *flctl = platform_get_drvdata(pdev);

	nand_release(&flctl->mtd);
922
	pm_runtime_disable(&pdev->dev);
923
	free_irq(platform_get_irq(pdev, 0), flctl);
924
	iounmap(flctl->reg);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	kfree(flctl);

	return 0;
}

static struct platform_driver flctl_driver = {
	.remove		= flctl_remove,
	.driver = {
		.name	= "sh_flctl",
		.owner	= THIS_MODULE,
	},
};

static int __init flctl_nand_init(void)
{
940
	return platform_driver_probe(&flctl_driver, flctl_probe);
941 942 943 944 945 946 947 948 949 950 951 952 953 954
}

static void __exit flctl_nand_cleanup(void)
{
	platform_driver_unregister(&flctl_driver);
}

module_init(flctl_nand_init);
module_exit(flctl_nand_cleanup);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_DESCRIPTION("SuperH FLCTL driver");
MODULE_ALIAS("platform:sh_flctl");